PUBLIC

Code Assessment

of the DSS Emergency Spells

Smart Contracts

April 25, 2025

Produced for

= Sky

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

N o o b~ WDN P

Notes

@ Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG

10
11
12
13
15

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Sky with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of DSS Emergency Spells
according to Scope to support you in forming an opinion on their security risks.

Sky implements DssEmergencySpells, a set of pre-defined emergency spells that bypass the
governance delay defined in DSPause to enable prompt governance actions if necessary.

The most critical subject covered in our audit is functional correctness. After the intermediate report, all
findings have been resolved, hence security regarding functional correctness is high.

The general subjects covered are trustworthiness and documentation. Security regarding all the
aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the DSS Emergency Spells repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V | Date Commit Hash Note

1 | 19 Sep bc06eebcec04800f778b0bef339f5253222209d | Initial Version
2024 2

2 | 24 Oct 1fecald3feefl9783944c8b86142c7d19f8cddfd | After Intermediate Report
2024

3 | 21 Nov f9308604f731ab180f6eb10d463b3edeb6a9al | Rename LineWipe Spell
2024 27

4 | 09 Dec 0129bcdle7b5a91782aceb5b5d2c5ece5e413 | Additional Spells
2024 8ff

5 | 13 Dec 107a165afaB8d801df424c179666f762f629eae4 | Natspec Description Corrected
2024 9

6 | 13 Feb a052bb416fae2e03b64756c87eb67eclala818 | Amended Broken License Headers
2025 al

7 | 11 Apr fd1c76e644e845b349f3b7072666db60b16025 | SPBEAM Halt Spell
2025 73

8 | 16 Apr eal0alb2305395c¢7885c134d4d79105af47256 | README Update
2025 bb

9 | 21 Apr 96cdc2a7f86372dcf6432b08202fae2fa366280 | Update Chainlog Key
2025 2

For the solidity smart contracts, the compiler version 0. 8. 16 was chosen.

The following contracts were in scope:

src/

DssEner gencySpel | . sol

osm st op/

Si ngl eCsntt opSpel | . sol

Mul ti CsnSt opSpel | . sol
cli p-breaker/

Si ngl e i pBreaker Spel | . sol

Mul ti Cl i pBreaker Spel | . sol
aut o-1i ne-w pe/

Si ngl eAut oLi neW peSpel | . sol

Mul ti Aut oLi neW peSpel | . sol
ddm di sabl e/

Si ngl eDdnDi sabl eSpel | . sol

Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 5

https://github.com/makerdao/dss-emergency-spells/tree/bc06eebcec04800f778b0bef339f5253222209d2
https://github.com/makerdao/dss-emergency-spells/tree/bc06eebcec04800f778b0bef339f5253222209d2
https://github.com/makerdao/dss-emergency-spells/tree/1feca1d3feef19783944c8b86142c7d19f8cddfd
https://github.com/makerdao/dss-emergency-spells/tree/f9308604f731ab180f6eb10d463b3edeb6a9a127
https://github.com/makerdao/dss-emergency-spells/tree/f9308604f731ab180f6eb10d463b3edeb6a9a127
https://github.com/makerdao/dss-emergency-spells/tree/0129bcd1e7b5a91782aceb5b5d2c5ece5e4138ff
https://github.com/makerdao/dss-emergency-spells/tree/0129bcd1e7b5a91782aceb5b5d2c5ece5e4138ff
https://github.com/makerdao/dss-emergency-spells/tree/107a165afa8d801df424c179666f762f629eae49
https://github.com/makerdao/dss-emergency-spells/tree/107a165afa8d801df424c179666f762f629eae49
https://github.com/makerdao/dss-emergency-spells/tree/a052bb416fae2e03b64756c87eb67ec1a1a818a1
https://github.com/makerdao/dss-emergency-spells/tree/a052bb416fae2e03b64756c87eb67ec1a1a818a1
https://github.com/makerdao/dss-emergency-spells/tree/fd1c76e644e845b349f3b7072666db60b1602573
https://github.com/makerdao/dss-emergency-spells/tree/fd1c76e644e845b349f3b7072666db60b1602573
https://github.com/makerdao/dss-emergency-spells/tree/ea10a1b2305395c7885c134d4d79105af47256bb
https://github.com/makerdao/dss-emergency-spells/tree/ea10a1b2305395c7885c134d4d79105af47256bb
https://github.com/makerdao/dss-emergency-spells/tree/96cdc2a7f86372dcf6432b08202fae2fa3662802
https://github.com/makerdao/dss-emergency-spells/tree/96cdc2a7f86372dcf6432b08202fae2fa3662802
https://chainsecurity.com

In (Version 3), the following files:

src/
aut o-li ne-w pe/
Si ngl eAut oLi neW peSpel | . sol
Mul ti Aut oLi neW peSpel | . sol

were renamed to:

src/
i ne-w pe/
Si ngl eLi neW peSpel | . sol
Mul ti Li neW peSpel | . sol

In (Version 4), the following files were added to scope:

src/

DssG oupedEner gencyspel | . sol
splitter-stop/

SplitterStopSpell. sol
lite-psmhalt/

Si ngl eLi t ePsnHal t Spel | . sol
cli p-breaker/

Groupedd i pBr eaker Spel | . sol
i ne-w pe/

G oupedLi neW peSpel | . sol

In (Version 7), the following file was added to scope:

src/
spbeam hal t/
SPBEAMHal t Spel | . sol

2.1.1 Excluded from scope

Generally, all files not mentioned above are out of scope.

2.2 System Overview

This system overview describes the contracts as defined in the Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Sky offers a set of pre-defined emergency spells that bypass the governance delay defined in DSPause.

With continuous approval voting in MCD_ADM governance token holders can elect a hat which has the
authorization to call privileged functions in the system. More specifically, the hat can call functions
access-controlled by the canCal | function of MCD_ADM That typically allows regular spells to register an
action for execution in DSPause so that it can be executed once the governance delay passes. In
contrast, emergency spells bypass the governance delay by not interacting with DSPause but with other
contracts that define access control with canCal | function of MCD_ADM (e.g. certain functionality in mom
contracts).

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Thus, a suite of contracts implementing pre-defined emergency actions is provided to allow for quickly
taking action if necessary.

2.2.1 General

The generic and abstract emergency spell contract DssEmergencySpell implements the shared logic for
all emergency spells. For compatibility with existing tooling, the emergency spells share the interface with
the regular ones (see DssExec). Given the lack of an action, the interface of actions (see DssAction) is
also implemented.

The core functionality is abstract and consists of:
edescri ption(): Abstract. An accurate description for the spell (e.g. suitable name).

e done() : Abstract. Returning f al se defines that the spell could be executed (if the spell is the hat).
Returning t r ue indicates that no action needs to or can be taken (e.g. completed, misconfiguration,
or similar). Note that the spells do not have state and are reusable. Thus, this could become t r ue or
f al se due to external factors not related to the emergency spell.

eschedul e(): Performs the emergency actions with the abstract function
_energencyActi ons() . Note that schedul e() is the first action taken on a regular spell. Thus,
for compatibility reasons with existing tooling, the execution is implemented in this function.

The remaining functionality is purely present for interface compatibility:

eaction(): Returns address(this) since no action contract exists for emergency spells.
However, given that the action interface is implemented, the return value is somewhat meaningful.

e cast () : No-Op. For emergency spells, the function is not expected to perform any operation.

eeta(): Zero. et a is used to enforce the GSM delay between the schedul e() and cast () . While
it is zero, the spell can be scheduled. Thus, zero is chosen.

eexpiration():uint256. max. The pre-defined emergency spells are never expected to expire.
* | og() : Returns the address of the Chainlog contract.

* next Cast Ti me() / next Cast Ti me(ui nt 256) : ui nt 256. max since emergency spells are never
expected to be cast.

«of fi ceHours():fal se. Office hours do not apply to emergency spells.
* pause() : Returns the MCD_PAUSE contract.

* si g() : Returns the selector of execut e() . Note that this is the typical value and that the selector is
supported by emergency spells.

et ag() : Returns the codehash of addr ess(t hi s) as itis the address of the action.
e execut e() : No-Op. For emergency spells, the function is not expected to perform any operation.

eactions(): No-Op. For emergency spells, the function is not expected to perform any operation.

Further note that grouped emergency spells are defined, enabling an emergency action to be applied to
multiple ilks set in the constructor. The abstract DssGroupedEmergencySpellLike extends
DssEmergencySpellLike and implements:

«il ks() : Returns the list of ilks to which the spell applies.

edescri ption(): Returns the spell description: The full description is formed by concatenating the
description prefix with a comma-separated list of ilks.

e enmergencyActi onsl nBat ch(): Entrypoint to execute the emergency actions for selected ilks
(between st art and end of the i | kLi st) in a batch.

«done() : Returns whether the spell is done for all ilks of the group or not.

The following functionalities must be implemented by the contract extending the abstract contract:

(S: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 7

https://github.com/makerdao/dss-exec-lib/blob/master/src/DssExec.sol
https://github.com/makerdao/dss-exec-lib/blob/master/src/DssAction.sol
https://chainsecurity.com

e descriptionPrefix(): Returns the description prefix used to build the final description with the
appended ilks.

e _energencyActions(bytes32 _ilKk):Implements the emergency actions for a specified ilk.

« done(): Indicates whether the spell can be executed. See the General section for detalils.

2.2.2 Emergency Spells

This section describes the individual emergency spells.

Note that for some spell types, there is a single-ilk and a multi-ilk version of the spell. The former can be
permissionlessly deployed by a factory and is performing the action solely for one ilk which is specified
on deployment. The latter iterates over the ilks registered in the ilk registry. Typically, for the multi-ilk
version an additional function to iterate over a subset of ilks is provided. Additionally, for some spell types
grouped emergency spells are provided. Factories are typically provided to deploy such spells.

Line Wipe: Both a single- and a multi-ilk version are implemented. Additionally, a grouped version is
provided. The spells disable generating further debt for ilks by calling wi pe() on the LineMom. That
clears the AutoLine storage for an ilk and sets the ilk's | i ne in the Vat to zero. A spell is considered done
if the ilks' AutoLine storage and the ilks' Vat line are zero.

Clip Breaker: Both a single- and a multi-ilk version are implemented. Additionally, a grouped version is
provided. The spells disable collateral auctions by calling the function set Breaker() on the
ClipperMom for the ilks' Clippers (e.g. Clipper, LockstakeClipper) to set the breaker level to 3 which
disables the functions ki ck(), redo() and t ake() . A spell is considered done if the breaker level on
the ilks' Clippers is set to 3.

DDM Disable: Only a single-ilk version is implemented. The spell disables the D3MPlan (e.g.
D3MOperatorPlan) for an ilk by calling disable on the D3MMom for the ilk's D3MPlan. That effectively
makes acti ve() return f al se so that the D3MHub only unwinds ilk's D3MPool's position. A spell is
considered done if the ilk's plan's act i ve() function returns f al se.

OSM Stop: Both a single- and a multi-ilk version are implemented. Stops the ilks' OSM (e.g. OSM,
CurvelLPOracle) by calling st op() on the OsmMom. That disables an ilk's respective oracle by calling
stop() onit. A spell is considered done if the ilks' OSM are stopped.

SingleLitePsmHaltSpell: Only a single psm version is implemented. The spell halts certain flows (SELL,
BUY, or BOTH) of LitePsm by calling the function hal t () on the LitePsmMom to set the swap feesti n or
tout to HALTED (t ype(ui nt 256) . max). A spell is considered done if the swap fees for respective
flows are set to HALTED.

SplitterStopSpell: The spell stops the Splitter by calling the function st op() on the SplitterMom to set the
hop (the cooldown period before the next ki ck) to t ype(ui nt 256) . max. A spell is considered done if
the hop ist ype(ui nt 256) . max.

SPBEAMHaltSpell: The spell stops the SPBEAM by calling the function hal t () on the SPBEAMMom to
set the bad (the circuit breaker flag) to 1, preventing future rate updates with SPBEAM. A spell is
considered done if the bad is 1.

2.2.3 Changelog

In (Version 4), the emergency spells for halting LitePsm and Splitter were added. Additionally the grouped
line wipe and the grouped Clip breaker have been added. Note that in this version grouped spells were
first introduced.

In (Version 7), the emergency spell for halting SPBEAM was added.

2.2.4 Roles & Trust Model

Emergency spells are immutable contracts with no special privileges by default. There are no privileged
roles in the contracts and any functionality is permissionless.

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 8

https://github.com/makerdao/line-mom/blob/master/src/LineMom.sol
https://github.com/makerdao/dss-auto-line/blob/master/src/DssAutoLine.sol
https://github.com/makerdao/clipper-mom/blob/master/src/ClipperMom.sol
https://github.com/makerdao/dss/blob/master/src/clip.sol
https://github.com/makerdao/lockstake/blob/dev/src/LockstakeClipper.sol
https://github.com/makerdao/dss-direct-deposit/blob/master/src/plans/D3MOperatorPlan.sol
https://github.com/makerdao/dss-direct-deposit/blob/master/src/D3MMom.sol
https://github.com/makerdao/osm/blob/master/src/osm.sol
https://github.com/makerdao/curve-lp-oracle/blob/master/src/CurveLPOracle.sol
https://github.com/makerdao/osm-mom/blob/master/src/OsmMom.sol
https://github.com/makerdao/dss-lite-psm/blob/main/src/DssLitePsmMom.sol
https://github.com/makerdao/dss-flappers/blob/master/src/SplitterMom.sol
https://github.com/makerdao/sp-beam/blob/initial-implementation/src/SPBEAMMom.sol
https://chainsecurity.com

Should the need arise, governance token holders can elect an emergency spell to be the hat in
MCD_ADM giving it certain privileges to execute the predefined actions with schedul e.

The majority of governance token holders is trusted to act honestly and correctly at all times and to vote
for such a proposal when needed.

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 0

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
CLZ)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 2

» Incorrect Use of try/catch
+ No Vat line Check for Line Wipes

Informational Findings 1

* Incorrect Parameter Description il NSIEREE,

6.1 Incorrect Use oftry/ catch

(Correctness JICTOETRY Cods Corrected)

In the multi-ilk version spells (MultiClipBreakerSpell and MultiOsmStopSpell), the t ry/ cat ch pattern is
used during the spell execution. It is intended to skip an incompatible contract, which does not implement
the typical interfaces.

CS-MKR-ES-001

However, the catch clause used is catch Error(string nmenory reason).When a function call is
made to a contract that does not implement the expected interface, the execution reverts with empty
error data instead of an error with signature Err or (stri ng) . Consequently, the catch block will fail to
handle such cases, causing the entire function to revert and the emergency spell to fail.

Code corrected:

Spells have been corrected to use clause catch (bytes nenory reason) for any other type of
reverts in the external call.

6.2 No Vat |l i ne Check for Line Wipes
D (Low) (Version 1) (CIIETID)

The done() functions will generally only return t r ue if zeroed state is returned by the AutoLine contract.
However, Vat : : | i ne() is not checked.

CS-MKR-ES-002

Consider the following scenario:
1. The ilk is registered and used. An AutoLine configuration is set up.

2. Eventually, the configuration in AutoLine is temporarily disabled and hence deleted. Thus, the ilk
remains registered in the LineMom.

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

3. Now, done() could return t rue even if the | i ne has not been fully wiped (LineMom wipes the
I i ne, too).

4. As a consequence, a call to wi pe() might be missed.

Ultimately, the Vat: :1ine() could be non-zero, leading to scenarios where properly set up ilks can
generate debt.

Code corrected:
Spells have been corrected to take Vat : : | i ne() into consideration.

6.3 Incorrect Parameter Description

[Informational] [Version 1] Specification Changed

The natspec description of DssG oupedEner gencySpel | . _ener gencyActi ons() reads:

CS-MKR-ES-003

@aram _ilk The ilk to set the related Clip breaker.

This description is specific to the GroupedClipBreakerSpell, in general for the abstract
DssGroupedEmergencySpell this is the ilk for which the emergency action is executed.

Specification changed:

Specification has been corrected to align with the contract.

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Considerations for Clipper Breaker

The Clipper Breaker spells disable clipper functions for a set of ilks. Note the following:
1. The multi-ilkk spell will only operate on ilks that have a non-zero clipper registered in the ilk registry.

2. The multi-ilk spell will only operate on ilks where the ClipperMom is the ward of the respective
Clipper.

3. The multi-ilk spell will only operate on ilks if the functions with the respective arguments are
supported on the Clipper. Thus, to ensure consistency between done() and schedul e() the
property should hold that if st opped() is supported by the Clipper, the Clipper should support
file("stopped", 3) callsfrom the mom, too, and vice versa.

Note that there is a subtle difference between the multi- and the single-ilk spells:

1. The schedul e() function of the single-ilk spell could revert for an ilk (e.g. if the mom is not
authorized on the Clipper). In contrast, the same function in the multi-ilk spell will skip such ilks.

7.2 Considerations for DDM Disable

The DDM Disable spells disable an ilk's D3M plan so that only unwinding can happen. Note the following:

1. Itis assumed that the D3MMom is authorized in the plan.

7.3 Considerations for Line Wipe

(D (Version T

The Line Wipe spells disable generating more debt for a set of ilks. Note the following:

1. The multi-ilk spell will only operate on ilks that have also been registered in the LineMom and will
skip the execution and done-check for any other ilk registered in the ilk registry.

2. It is assumed that no other mechanism besides the governance's Vat interactions and the AutoLine
can adjust | i ne.

3. It is assumed that the LineMom is authorized in the AutoLine and the Vat.

Note that there is a subtle difference between the multi- and the single-ilk spells:

1. The schedul e() function of the single-ilk spell will revert for an ilk if it is not registered in the mom
contract. In contrast, the same function in the multi-ilk spell will skip such ilks during the iteration.

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7.4 Considerations for OSM Stop
(D) (Version 1

The OSM Stop spells stop the OSMs for a set of ilks. Note the following:

1. The multi-ilk spell will only operate on ilks that have also been registered in the OsmMom and will
skip the execution and done-check for any other ilk registered in the ilk registry.

2. The multi-ilk spell will only operate on ilks where the OsmMom is the ward of the respective oracle.

3. The multi-ilk spell will only operate on ilks if the functions with the respective arguments are
supported on the oracle. Thus, to ensure consistency between done() and schedul e() the
property should hold that if st opped() is supported by the OSM, the OSM should support st op()
calls from the mom, too, and vice versa.

Note that there is a subtle difference between the multi- and the single-ilk spells:

1. The schedul e() function of the single-ilk spell could revert for an ilk (e.g. if the mom is not
authorized on the oracle). In contrast, the same function in the multi-ilk spell will skip such ilks.

7.5 Out-of-Gas for Multi-llk Spells
(D) (Version 1)

Governance should be aware that for multi-ilk spells the schedul e() and the done() function could run
out-of-gas. For schedul e(), an alternative function is typically offered that allows iterating over a
subset. done() is intended for off-chain use.

Further, note that the calls in t ry / cat ch might run out-of-gas, potentially leading to a scenario where
the last call might fail but the overall execution succeeds (even though with sufficient gas it would have
succeeded). However, done() should indicate off-chain that the spell has not been completed.

7.6 Single-llk Spell Factories
(D) (Version 1

Governance should be aware that:

1. Multiple single-ilk spell contracts could be deployed by the factory for the same ilk. That might
require additional coordination efforts when voting for executing a single-ilk spell.

2. For non-existing ilks, a single-ilk spell could exist, too.

I:$: Sky - DSS Emergency Spells - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 General
	2.2.2 Emergency Spells
	2.2.3 Changelog
	2.2.4 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Incorrect Use of try/catch
	6.2 No Vat line Check for Line Wipes
	6.3 Incorrect Parameter Description

	7 Notes
	7.1 Considerations for Clipper Breaker
	7.2 Considerations for DDM Disable
	7.3 Considerations for Line Wipe
	7.4 Considerations for OSM Stop
	7.5 Out-of-Gas for Multi-Ilk Spells
	7.6 Single-Ilk Spell Factories

