PUBLIC

Security Audit
of STOKR’s Smart Contracts

April 29, 2019

Produced for

STOKR

C CHAINSECURITY

Table Of Content

Foreword 1
Executive Summary 1
Audit Overview L e 2
1. Scopeofthe Audit 2
2. Depthof Audit. 2
3. Terminology 2
Limitations 4
System OVerview L L e e 4
Best Practices in STOKR’s project e 5
1. Hard Requirements e 5
2. Soft Requirements 5
Security ISSUES L 6

1. Outdated compiler version = PAREEIEEEE] . oo 6

3. Potential overflow in setRate() ,: 6
4. Adjusting Allowance can lead to front-running i‘ 6
Design ISSUEeS 8
1. Functions visbility can be setto external . [PAREEN - - - - - o o oo 8

4. Remaining tokens might not be purchasable H v/ Acknowledged [N 9
5. Whitelisting of Token Recovery Address is not Enforced A: 9

https://chainsecurity.com

https://chainsecurity.com

Recommendations / Suggestions e
NOtES . . o o 11
1. Rounding Errors FAAGGONIERERE L L 11
Disclaimer 12

ChainSecurity Audit Report

Foreword

We first and foremost thank STOKR for giving us the opportunity to audit their smart contracts. This documents
outlines our methodology, limitations, and results.

— ChainSecurity

Executive Summary

The STOKR smart contracts have been analyzed under different aspects, with a variety of tools for automated
security analysis of Ethereum smart contracts.

Overall, we found that STOKR has a well written code and extensive tests with 100% code coverage.
CHAINSECURITY did not find major issues. Nonetheless, CHAINSECURITY raised some minor issues and
suggestions. These issues were all acknowledged or fixed in a professional manner.

CHAINSECURITY extended the audit after completion on request. The extended review now also includes

the post-audit added changes listed below.
e Token destruction now emits an event
e The TokenDistribution event’s information was extended

e A function to change the closing time of the crowdsale was added

ChainSecurity Audit Report

Audit Overview

Scope of the Audit

The scope of the audit is limited to the following source code files. All of these source code files were received
on February 22, 2019.

The corresponding Git commit was: be93ca797a9096fb3f157fbcefe3dee05214e66c.

An update has been received on March 21, 2019.

The corresponding Git commit is: aa0d4dc69087d2d668b921803026644d23c8443c.

The latest update has been received on April 29, 2019.

The corresponding Git commit is: 92967a£293168dd1d2773336adal1b3534c6031f.

File SHA-256 checksum

./crowdsale/MintingCrowdsale.sol 393f81b519blebdc7abfadb24bd2bcc04f 132e1b4bd36a06bd7a28957d1aa254

Jcrowdsale/RateSourcelnterface.sol d843d7e0a90b554c4f1052d442d4084f4b4996389ef22dafc311eafcbd7bf4b3

./crowdsale/StokrCrowdsaleFactory.sol ecad6110880c6da853329c83bbcf4e8c8a8fe29fffe68b0cd4bb6e86aas3blble

./crowdsale/StokrCrowdsale.sol

0193b1cb3d39bad4993341b84c32146132c40be7e769d3b70a%ee445ceead7629

/math/SafeMath.sol

e6c93ab77ee0942cc0068c3ddc0805023d905338a381d52ea29fa4c0998d4£21

Jownership/Ownable.sol

alaB882a1fc19d439e3ca8dccfbalc4f3f4a6853e2791a316fa872c46d6b60£34

./StokrProjectManager.sol

e79741£4b6db791c0a5182cbfae70db89ccfbcb54471738cad74b131£63bbfbfc

/token/ERC20.sol

e497cbc10d77c03b4fa35cfcfdl3ec60e56032f75f1a42ba2bf60c5d33c849b6b

J/token/MintableToken.sol

879£7201076c62fa8a4e4317£2a4d5e95414b036d4a5869d7dbafe825e17801a

./token/ProfitSharing.sol

8c6£b60080938£0cd5259a25a943d4a2b3b01d5d6d7cl1ba347e4ae3377c46c66

./token/StokrTokenFactory.sol

da6704724a713bebe694a96accebbbcde22a05354c79edeb61debfaf2c48aebfc

Jtoken/StokrToken.sol

b7db6bac950c1a4d3c834bb9efa9302886c10a31350698fe3fd6b5565548adf9

J/token/TokenRecoverable.sol

Teca951ef2cda0048052e02eec5bdafa095d1c13e12634f3bf2e5600e54a7971

Jwhitelist/Whitelisted.sol

cf6eb5be5c902b0040429599e922fb30bcadd09£d5174317172b4£faa806812214

/whitelist/Whitelist.sol

b102be5d807e47a67f£fb1093bab47585a4ae7363fe153dfb71b44134940d44956

Depth of Audit

The scope of the security audit conducted by CHAINSECURITY was restricted to:

e Scan the contracts listed above for generic security issues using automated systems and manually in-

spect the results.

e Manual audit of the contracts listed above for security issues.

Terminology

For the purpose of this audit, we adopt the following terminology. For security vulnerabilities, we specify the
likelihood, impact and severity (inspired by the OWASP risk rating methodology).

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.

Impact specifies the technical and business related consequences of an exploit.

Severity is derived based on the likelihood and the impact calculated previously.

"https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

https://chainsecurity.com

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://chainsecurity.com

We categorize the findings into 4 distinct categories, depending on their severities:

Low: can be considered as less important
° m Medium: should be fixed
° 0 High: we strongly suggest to fix it before release

° e Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the following table, following a stan-
dard approach in risk assessment.

IMPACT

LIKELIHOOD

SRR

T

VRN NN

During the audit concerns might arise or tools might flag certain security issues. After careful inspection of
the potential security impact, we assign the following labels:

o A no security impact

o : during the course of the audit process, the issue has been addressed technically

o WAl N: issue addressed otherwise by improving documentation or further specification

o MANe GL\VIEGe[STel: issue is meant to be fixed in the future without immediate changes to the code

Findings that are labelled as either or RALYLIEERET] are resolved and therefore pose no security
threat. Their severity is still listed, but just to give the reader a quick overview what kind of issues were found
during the audit.

ChainSecurity Audit Report _

Limitations

Security auditing cannot uncover all existing vulnerabilities, and even an audit in which no vulnerabilities are
found is not a guarantee for a secure smart contract. However, auditing allows to discover vulnerabilities that
were overlooked during development and areas where additional security measures are necessary.

In most cases, applications are either fully protected against a certain type of attack, or they lack protection
against it completely. Some of the issues may affect the entire smart contract application, while some lack
protection only in certain areas. We therefore carry out a source code review trying to determine all locations
that need to be fixed. Within the customer-determined timeframe, CHAINSECURITY has performed auditing in
order to discover as many vulnerabilities as possible.

System Overview

STOKR is as crowd-investing platform based on smart contracts on the Ethereum blockchain. STOKR enables
ventures to create projects and investors to invest into these projects. For this purpose STOKR implemented
a system which has built-in features to support investors and ventures. Each project launched on STOKR’s
platform has a crowdsale contract to manage the sale of a dedicated security token with profit sharing and a
global whitelist. Thus, only whitelisted investors can invest.

The profit sharing schemes distributes all deposited profits among the token holders according to their token
balance at the time of deposit. A user’s profit share is tracked automatically and can be withdrawn at any time
using the corresponding function.

The crowdsale has multiple configurable parameters such as an individual purchase cap or start and end
times. In case a crowdsale, doesn’t reach its defined investment goal, then all investor can obtain a refund. In
case of a successful crowdsale, investors can withdraw their tokens after the completion of the crowdsale.

https://chainsecurity.com

https://chainsecurity.com

Best Practices in STOKR'’s project

Projects of good quality follow best practices. In doing so, they make audits more meaningful, by allowing
efforts to be focused on subtle and project-specific issues rather than the fulfillment of general guidelines.
Avoiding code duplication is a good example of a good engineering practice which increases the potential
of any security audit.
We now list a few points that should be enforced in any good project that aims to be deployed on the
Ethereum blockchain. The corresponding box is ticked when STOKR’s project fitted the criterion when the
audit started.

Hard Requirements

These requirements ensure that the STOKR'’s project can be audited by CHAINSECURITY.
m The code is provided as a Git repository to allow the review of future code changes.
|Z[Code duplication is minimal, or justified and documented.

Libraries are properly referred to as package dependencies, including the specific version(s) that are
compatible with STOKR’s project. No library file is mixed with STOKR’s own files.

The code compiles with the latest Solidity compiler version. If STOKR uses an older version, the reasons
are documented.

IZ There are no compiler warnings, or warnings are documented.
Soft Requirements

Although these requirements are not as important as the previous ones, they still help to make the audit more
valuable to STOKR.

m There are migration scripts.

IZ There are tests.

|Z[The tests are related to the migration scripts and a clear separation is made between the two.

m The tests are easy to run for CHAINSECURITY, using the documentation provided by STOKR.

m The test coverage is available or can be obtained easily.

m The output of the build process (including possible flattened files) is not committed to the Git repository.

The project only contains audit-related files, or, if not possible, a meaningful separation is made between
modules that have to be audited and modules that CHAINSECURITY should assume correct and out of
scope.

m There is no dead code.
IZ The code is well documented.

The high-level specification is thorough and allow a quick understanding of the project without looking at
the code.

Both the code documentation and the high-level specification are up to date with respect to the code
version CHAINSECURITY audits.

|Z[There are no getter functions for public variables, or the reason why these getters are in the code is given.

IZ Function are grouped together according either to the Solidity guidelines?, or to their functionality.

®https://solidity.readthedocs.io/en/latest/style-guide.html#order-of-functions

ChainSecurity Audit Report

https://solidity.readthedocs.io/en/latest/style-guide.html#order-of-functions

Security Issues

This section relates our investigation into securify issues. It is meant to highlight whenever we found specific
issues but also mention what vulnerability classes do not appear, if relevant.

Outdated compiler version .~ PALYIGIINELLTY

STOKR'’s contracts make use of compiler version @.4.25, which is an outdated compiler version. Since version
0.4 .25 there have been major changes and fixes®. As a result, STOKR’s code is not compiling with versions
above 0.5 due to some breaking changes.

Without an explicit reason, the latest stable compiler version is recommended to be used homogeneously
throughout the project.

Likelihood: Low

Impact: Low

Acknowledged: STOKR acknowledged the issue. The reason STOKR provided is that changing the com-
piler, would result in breaking changes in their development tool chain.

Batch function call may fail ‘ v Acknowledged

distributeRefunds() calls the untrusted address _investor provided in the function argument. Even though
the transfer () function is considered safe regarding reentrancy, a malicious address could intentionally make
the transfer () call fail. As a result, the function distributeRefunds() is blocked because the loop cannot
be executed anymore. But distributeRefunds() is just the “batch” version of claimRefund() and therefore
the impact is low as each investor can still use claimRefund() to get their refund. The same issue occurs in
withdrawProfitShares(), butagainthe impactis low as the non-batch version could still be called individually
by each investor.

STOKR could consider preventing one failing ETH transfer in the loop from reverting the entire transaction.

Likelihood: Low

Impact: Low

Acknowledged: STOKR acknowledged that they are aware of this issue.

Potential overflow in setRate() =
STOKR does not use SafeMath to verify the new rate to be set. This could lead to an overflow in the
multiplication part of the check, newRate < 10 x rate. [frate is near the maximum uint256 value, multiplying
by 10 might cause an overflow. This function can only be called by rateAdmin, which is set by the owner.
STOKR should consider using SafeMath.mul() to prevent overflow.
Likelihood: Low
Impact: Low

Fixed: STOKR solved the problem by adding end enforcing a maximum rate of uint(—1)/10.

Inside the ERC20 token standard, there is a well-documented* issue with front-running when it comes to the
approve function. When changing a particular allowance from X to Y, where X # 0 and Y # 0 using a
single transaction, this transaction is susceptible to front-running. The spender of the allowance can send a
competing transferFrom transaction and therefore transfer X + Y tokens.

Shttps://github.com/ethereum/solidity/releases
“https://github.com/ethereum/EIPs/issues/20#issuecomment - 263524729

m https://chainsecurity.com

https://github.com/ethereum/solidity/releases
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://chainsecurity.com

This issue can either be addressed in client applications by performing two transactions, where the first
transaction resets the allowance to 0, or increaseAllowance and decreaseAllowance functions can be in-
troduced to allow a safe allowance adjustment in a single transaction.

Likelihood: Low

Impact: Medium

Fixed: STOKR solved the issue by adding the two functions increaseAllowance and decreaseAllowance.
STOKR also added a require() to check for over- and underflows.

ChainSecurity Audit Report

Design Issues

This section lists general recommendations about the design and style of STOKR’s project. They highlight
possible ways for STOKR to further improve the code.

Functions visbility can be set to external

There are a number of functions declared as public when they could also be set to external. A non-
exhaustive list of these functions is:

distributeTokensViaPublicSale()

distributeTokensViaPrivateSale()

addToWhitelist()

removeFromWhitelist()

withdrawProfitShares()

e distributeRefunds()

e createNewProject()

Functions with visibility external can directly read from calldata® and do not copy function arguments
to memory. Thus, declaring these functions external might optimize the gas costs. If and how much gas is
saved, depends on the compiler version and the optimization done by the compiler.

Fixed: STOKR fixed the issue by setting the visibility from public to external.

Failing checks silently continue ‘ v Acknowledged

STOKR uses an if in multiple places to perform a check when a require would make more sense. For
example the second condition in TokenRecoverable.sol on line 39.

function setTokenRecoverer (address _newTokenRecoverer) public onlyOwner {

require(_newTokenRecoverer != address(0x@), "New_token_recoverer is zero");

if (tokenRecoverer !=address(0x0) && _newTokenRecoverer != tokenRecoverer) {
emit TokenRecovererChange(_newTokenRecoverer);

}

tokenRecoverer = _newTokenRecoverer;

CHAINSECURITY sees no reason to allow token recoverer to be updated to a new address if the new
address is the same as the current address. STOKR is advised to reevaluate the usage of i f statements vs
throwing an error in such cases as described above.

Acknowledged: STOKR partially solved the problem by only updating the value if it it differs from the current
value. However, calling this function to update the value to the same value does still not result in an error.

Crowdsale continues if sold out * v Acknowledged

In case a crowdsale is sold out, it continues until the hasClosed condition is fulfilled, which is that the
closingTime has passed. Up until that time the finalize function is not callable. Hence, during this time
tokens are not transferable and no deposits can be made even though no more tokens can be purchased.

Shttps://solidity.readthedocs.io/en/v0.5.3/types.html?highlight=external#data-location7D

m https://chainsecurity.com

https://solidity.readthedocs.io/en/v0.5.3/types.html?highlight=external#data-location%7D
https://chainsecurity.com

Acknowledged: STOKR acknowledged the issue and explained that this behavior is intended.

The crowdsale enforces a tokenPurchaseMinimum for each token purchase. This can lead to issues towards
the end of a crowdsale in case the crowdsale is close to selling out. In particular, it might be impossible to
purchase remaining tokens.
As an example let’s say that tokenPurchaseMinimum = 100 and that tokenRemainingForPublicSale =
80. Hence, 80 tokens are still for sale. If a buyer tries to purchase 80 tokens, the purchase will fail as it is
below the minimum. If a buyer tries to purchase the minimum of 100 tokens, it will fail, because there are only
80 tokens left. Obviously, the impact and likelihood of this issue depend on the choice of the parameters.

Acknowledged: STOKR is aware of this issue and acknowledges it.

In the documentation, STOKR states that the whitelist defines which addresses “are able to send or receive
tokens”. This is ensured during regular transfers. However, as part of the recoverToken function, tokens can
also be transferred and there no whitelist check is performed.

Fixed: STOKR solved the problem by adding the onlyWhitelisted modifier to the recoverTokens func-
tion.

ChainSecurity Audit Report

Recommendations / Suggestions

m The function transferOwnership() transfers the ownership directly to the address given in the function’s
argument. In case of a mistake, the ownership will be transferred to some random account and is most
likely “lost”. Therefore, client could consider using a scheme in which the new owner needs to claim the
ownership, to finally get it. This makes sure that at least the account is controlled by some user.

m InMintingCrowdSale.sol andProfitSharing.sol STOKR makes use of the fallback function to catch
ether sent to the contract and call buyTokens(). Since the fallback function is not only called for plain
ether transfers (without data) but also when no other function matches, STOKR should check that the
data is empty if the fallback function is intended to be used only for the purpose of forwarding ether to
buyTokens (). Otherwise, callers will not notice if your contract is used incorrectly and functions that do
not exist are called®.

The storage variable deploymentBlockNumber in StokrProjectManager is only set once in the con-
structor. The variable is not used anywhere else. If it is not required urgently by any other interacting
contract CHAINSECURITY is not aware of, STOKR could consider removing the variable.

STOKR might consider using the indexed keyword in some logged events. This might make sense to
later better search through the events.

The token contract has a special role called token recoverer. In most places of the code, it is referred to as
tokenRecoverer. However, there are also multiple occurrences where this role is called keyRecoverer.
This naming could be harmonized.

There are different implementations of the ERC20 token standard, but some have started emitting a
Approval event whenever the token allowance has been changed. In case, STOKR wants to adapt this,
an additional Approval event could be emitted from the transferFrom function.

In the code, there are two semantically identical getter functions. The two functions mintingFinished()
and totalSupplyIsFixed() both return the value of the variable totalSupplyIsFixed. Therefore, one
of the two getter functions could be omitted to achieve some gas savings during deployment.

N N N & H

Shttps://consensys.github.io/smart-contract-best-practices/recommendations/#check-data-length-in-fallback-functions

m https://chainsecurity.com

https://consensys.github.io/smart-contract-best-practices/recommendations/#check-data-length-in-fallback-functions
https://chainsecurity.com

Notes

This section highlights additional remarks about the behaviour of the smart contracts. These are not consid-
ered as issues. However, CHAINSECURITY still wants to point them out for completeness and for educational
purposes.

Rounding Errors FZAV-Ye ([} Yo [e]=Te

(Unsigned) integer divisions generally suffer from rounding errors. The same holds true for divisions inside
the EVM. Therefore, the results of arithmetic operations can be imprecise. The effects of these errors can be
reduced by ordering arithmetic operations in a numerically stable manner. However, even then minor errors
(e.g. in the order of one token wei) can occur.

In the STOKR contracts, any user can call updateProfitShare(A) on another user A to trigger additional
rounding errors and therefore effectively lower the token balance of A. Furthermore, the rounding errors during
the calculation of profit shares will lead to an accumulated amount of "lost" tokens inside the ProfitSharing
contract over time. However, CHAINSECURITY expects both of these errors to have a negligible effect due to
use of 18 decimals.

Acknowledged: STOKR acknowledged the theoretical possibility, but also correctly pointed out that a potential
attacker has no economic incentive to perform such an attack, as it: (i) only incurs a tiny damage on the victim,
(ii) incurs gas costs on the attacker, and (iii) does not provide any direct benefit to the attacker.

ChainSecurity Audit Report

Disclaimer

UPON REQUEST BY STOKR, CHAINSECURITY LTD. AGREES MAKING THIS AUDIT REPORT PUBLIC.
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS AND
WARRANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY FOR DAMAGE
ARISING OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF THIS REPORT

REMAINS WITH CHAINSECURITY LTD..

https://chainsecurity.com

https://chainsecurity.com

	Foreword
	Executive Summary
	Audit Overview
	Scope of the Audit
	Depth of Audit
	Terminology

	Limitations
	System Overview
	Best Practices in STOKR's project
	Hard Requirements
	Soft Requirements

	Security Issues
	Outdated compiler version repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Batch function call may fail repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Potential overflow in setRate() repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Adjusting Allowance can lead to front-running repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Design Issues
	Functions visbility can be set to external repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Failing checks silently continue repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Crowdsale continues if sold out repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Remaining tokens might not be purchasable repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Whitelisting of Token Recovery Address is not Enforced repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Recommendations / Suggestions
	Notes
	Rounding Errors push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Disclaimer

