

PUBLIC

Limited Code Review

of the SSV-DKG Tool

Nov 20th, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Review Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

7 Informational 15

8 Notes 17

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear SSV Team,

Thank you for trusting us to help SSV Labs with this security review. Our executive summary provides an
overview of subjects covered in our review of the latest reviewed code of SSV-DKG according to Scope
to support you in forming an opinion on their security risks. The review was executed by 2 engineers over
a period of 3 weeks. It's important to note that, due to the extensive scope and codebase, our time-limited
review does not capture the full depth of a comprehensive security analysis.

SSV Labs implements a distributed key generation tool to enable the creation of threshold keypairs for
Ethereum validators.

The most critical subjects covered in our review are protocol correctness and network security. Security
regarding protocol correctness is high. Network security is improvable, see Insecure TLS Default
Configuration.

The general subjects covered are behavior in the presence of malicious nodes and denial-of-service
vectors. Security regarding all the aforementioned subjects is good. Functionality issues may arise in the
presence of malicious nodes, see Crash by Malicious Operator and Ignored DKG Phases. Plausible
denial-of-service vectors have been found, see Denial of Service via Spam.

In summary, we find that the codebase provides a good level of security.

It is important to note that security reviews are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 3

• Code Corrected 3

Medium -Severity Findings 3

• Code Corrected 2

• Risk Accepted 1

Low -Severity Findings 2

• Code Corrected 1

• Specification Changed 1

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Review Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
This review was not conducted as an exhaustive search, but rather as a best-effort sanity check. It was
performed on the source code files inside the SSV-DKG repository based on the documentation files.
The table below indicates the code versions relevant to this report and when they were received.

dkg

V Date Commit Hash Note

1 14 Oct 2024 b24742520a59ad045f535e9049d542e6c8625717 Initial Version

2 18 Nov
2024

bf4be233a622b9705c6ec45a383624b9f3fc145f Fixes

3 19 Nov
2024

3cf2e91e4388e561b17bab7d84ed14565c0abdc9 Fixes, Final Version

dkg-spec

V Date Commit Hash Note

1 14 Oct 2024 40e39a71b6bd35e332c51dfe714c055a5fbc9050 Initial Version

2 18 Nov
2024

2a2ca086d5296d585d858129a8b95a15687e837e Fixes

3 19 Nov
2024

f956634b520b220d298ae6ddd0d0fe5e2401dab4 Fixes, Final Version

For the Go modules, the compiler version 1.23.0 was chosen.

In dkg, the following directories were in scope (excluding test files)

• cli/

• cmd/

• pkgs/

In dkg-spec, only the following files were in-scope:

• result.go

• resign.go

• rehare.go

• proof.go

• init.go

• crypto/ (all non-test files)

• eip1271/common.go (just magic values)

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 5

https://github.com/ssvlabs/ssv-dkg/tree/b24742520a59ad045f535e9049d542e6c8625717
https://github.com/ssvlabs/ssv-dkg/tree/bf4be233a622b9705c6ec45a383624b9f3fc145f
https://github.com/ssvlabs/ssv-dkg/tree/3cf2e91e4388e561b17bab7d84ed14565c0abdc9
https://github.com/ssvlabs/dkg-spec/tree/40e39a71b6bd35e332c51dfe714c055a5fbc9050
https://github.com/ssvlabs/dkg-spec/tree/2a2ca086d5296d585d858129a8b95a15687e837e
https://github.com/ssvlabs/dkg-spec/tree/f956634b520b220d298ae6ddd0d0fe5e2401dab4
https://chainsecurity.com

2.1.1 Excluded from scope
The DKG implementation and Kyber library are out of scope. The Ethereum validator is out of scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the tool as defined in the

Review Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

SSV Labs provides a tool that implements a distributed key generation (DKG) protocol in order to let
multiple cooperating node operators produce threshold keypairs for distributed Ethereum validators.

In the absence of a DKG tool, the owner of the validator locally generates a random polynomial over
a prime field. The shared private key is defined to be . They then send shares of the form ,
where is a unique index, and to operators. Using threshold cryptography, operators are then
able to cooperate to compute the public key as well as sign Ethereum attestations without ever
reconstructing the private key. The degree of the polynomial determines the threshold of validators

 that must agree to a signature.

A DKG protocol aims to produce a threshold keypair as the previously described process does, but
without ever reconstructing the private key in one location. This requires multiple rounds of
communication between operators.

In SSV-DKG, nodes play two distinct roles: operators participate in the DKG protocol with the aim of
receiving a share of the final private key, while an initiator relays messages between operators as well as
from the validator owner to the operators. The owner trusts the initiator to run the protocol honestly. They
also trust that at most of their chosen operators are malicious.

Operators are registered in a central data repository. For DKG purposes, it provides their unique integer
ID, Internet HTTPS endpoint, and RSA public key. Operators run the tool as an HTTPS server with a
valid certificate and listen for connections. Initiators act as clients connect to the operators.

The owner is represented by their Ethereum address. They can sign using standard ECDSA signatures,
or EIP-1271 if the address is a smart contract.

We highlight that operators do not keep state in-between active DKG runs. Instead they produce signed
proofs attesting to the DKG detail and containing encrypted shares. The initiator is expected to present
the proofs to the operators during subsequent operations.

2.2.1 Ping
To check if certain given operators are available, an initiator can perform a GET request on the "health
check" endpoint. Live and honest operators will reply with their ID, public key, whether they support
EIP-1271 signatures, and whether their Ethereum node appears to be working.

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.2 Init
To generate a distributed key, the initiator first sends an INIT message signed by itself. (not by the owner)
It contains the list of operators, the threshold, the beacon chain withdraw credentials, the beacon chain
fork id, the address of the owner, a nonce, and the deposit amount in wei. Operators respond with a DKG
exchange message signed with their RSA key. It contains an ECIES public key. The initiator collects all
exchanges and broadcasts them to every operator. Operators respond with deal messages that contain
shares encrypted with the ECIES keys of other operators. The initiator collects all deals and broadcasts
them to every operator. Finally, each operator responds with a partial signature of the beacon chain
deposit data, a partial signature of the owner and nonce, and an RSA-signed proof, which consists of the
full validator public key, the RSA encrypted key share, the public key of the share, and the owner
address. Both the initiator and the operators save the proofs to disk.

2.2.3 Resign
The resign process allows the owner of the validator to request that operator sign a different beacon
chain deposit object and owner-nonce. This is useful if there was a mistake in the first set of deposit
parameters. The owner is authenticated by a signature coming from their ethereum address: either
recoverable ECDSA if it is an EOA, or EIP-1271 if it is a smart contract. The initiator relays one or more
signed request to the operators and collects the partial signatures, It then saves them to disk.

Version 2In , the owner can also change their address using by running a resign.

2.2.4 Reshare
During the reshare process, the owner requests that the operators share their existing key shares in such
a way that a new set of operators can operate the same existing validator. The protocol is broadly similar
to the one performed for Init. However, like Resign, multiple instances can be set up batched and
perfomed sequentially.

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedUse of Discouraged Asymmetric Encryption Primitive

Low -Severity Findings 0

5.1 Use of Discouraged Asymmetric Encryption
Primitive
Security Medium Version 1 Risk Accepted

CS-SSVDKG-006

Secret shares of the validator key are protected using PKCS#1 v1.5 encryption. This scheme is
vulnerable to Bleichenbacher's attack, which can allow the attacker to decrypt the shares.

In practice, the attack requires that the node operator expose an interactive padding oracle.
ChainSecurity does not believe that such an oracle is exposed in-scope.

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 3

• Code CorrectedDenial of Service With Malicious Initiator

• Code CorrectedInsecure TLS Default Configuration

• Code CorrectedMissing Signature Check

Medium -Severity Findings 2

• Code CorrectedCrash by Malicious Operator

• Code CorrectedIncorrect EIP-1271 Magic Value

Low -Severity Findings 2

• Specification ChangedIgnored DKG Phases

• Code CorrectedReshare Denial-of-Service via Predicable Instance IDs

Informational Findings 2

• Code CorrectedArbitrary Path Access

• Code CorrectedUse of Potentially Vulnerable Package

6.1 Denial of Service With Malicious Initiator
Security High Version 1 Code Corrected

CS-SSVDKG-015

In InitInstance, any INIT message with a valid signature causes an entry to be added to the
s.Instances array. If that array contains 1024 entries not older than 5 minutes, no new DKG can be
initiated. Anyone with network access can create valid INIT messages, easily denying service to the
legitimate initiator.

Code corrected:

Client has decreased the time-to-live to 1 minute and increased the amount of entries to 102400.

6.2 Insecure TLS Default Configuration
Security High Version 1 Code Corrected

CS-SSVDKG-001

In pkgs/initiator/initiator.go, the following lines are used to set TLS parameters:

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

if len(certs) > 0 {
 client.SetRootCertsFromFile(certs...)
} else {
 client.SetTLSClientConfig(&tls.Config{InsecureSkipVerify: true})
}

This means that if the user passes any certificates on the command-line, the TLS library is configured to
use them as only roots of trust, to the exclusion of the default root certificates. If they do not pass any
certificates, the library is configured to accept any certificate presented by the server and thus allow a
man-in-the-middle attack to occur. Thus the default setting, which users are likely to use, is highly
insecure in production.

In System Overview, we assert that the system trusts the "official" certificate authorities, in part because
the web application is served over HTTPS. Therefore, it is surprising that the DKG tool doesn't do the
same by default.

Code corrected:

Version 2In , the InsecureSkipVerify flag is no longer set by default, it must be set explicitly.

6.3 Missing Signature Check
Correctness High Version 1 Code Corrected

CS-SSVDKG-002

At line 282 of pkgs/initiator/initiator.go, verifyMessageSignatures() is called on the
kyberMsgs variable. However, those messages have already been verified at line 264. The context
suggests that the intent was to check the signatures on dkgResult, which are currently never verified.

Code corrected:

Version 2In , signatures on both sets of messages are verified once.

6.4 Crash by Malicious Operator
Security Medium Version 1 Code Corrected

CS-SSVDKG-003

When processing a message of type ReshareExchangeMessageType from another operator relayed
by the initiator, the operator dereferences the DKGData.reshare field to access the list of new
operators. These types of messages are only expected during reshare DKG and not during the initial
DKG. As a consequence, a malicious operator could intentionally submit an reshare message. This
would cause other operators to dereference a nil pointer and crash.

Code corrected:

Version 2In , the request terminates with an error instead of crashing.

6.5 Incorrect EIP-1271 Magic Value
Correctness Medium Version 1 Code Corrected

CS-SSVDKG-004

In dkg-spec/eip1271/common.go, the magic return value is defined as
[4]byte{16, 26, 0xba, 0x7e}. Note that the first two bytes are expressed in decimal notation. In

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

the EIP-1271 standard, the value is 0x1626ba7e, which means that the first and second bytes are set to
decimal 22 and 38 respectively. This will cause EIP-1271 verification to reject valid signatures.

Code corrected:

Version 2In , the constant has been fixed.

6.6 Ignored DKG Phases
Design Low Version 1 Specification Changed

CS-SSVDKG-009

In the presence of faulty participants, DKG protocols can take additional rounds (complaint, justification)
to terminate. The tool does not take these rounds into account and instead expect termination after a
fixed number of rounds. If the DKG protocol does not terminate early, the tool might behave
unexpectedly.

Code corrected:

Version 2

SSV Labs has clarified that if a node misbehaves, the client should abort and does not need to handle
the additional phases. In , the initiator outputs more precise errors when it detects that a
justification round has been initiated.

6.7 Reshare Denial-of-Service via Predicable
Instance IDs
Security Low Version 1 Code Corrected

CS-SSVDKG-010

A reshare message can initiate multiple DKG instances. The request IDs for those DKG instances are
chosen deterministically by hashing the reshare message. Then, the DKG instances are performed by
the initiator in sequence. Given that instances become stale after one minute, it is possible to evict later
reshare instances from the buffer by reusing their instance ID. This will prevent the legitimate initiator
from finishing.

The same applies to the resign message flow.

Code corrected:

Version 2

Version 3

In , the instance ID is chosen by combining the fresh random request ID of the outer reshare
message with the hash of the current inner reshare message. This means that knowing the reshare
message is no longer sufficient to perform a targeted DoS. In , the instance ID is
deterministically computed from the initiator public key, the hash of the instance, and the request ID.
Thus the attack is no longer possible without knowing the initiator public key.

6.8 Arbitrary Path Access
Informational Version 1 Code Corrected

CS-SSVDKG-011

In cli/utils/utils.go at line 260, the tool defends against path traversal. However, OutputPath
could be an absolute path, such as /etc/passwd, defeating the defense.

Severity is informational since in our model, the configuration values are not controlled by an adversary.

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

This also applies to ConfigPath, LogFilePath, OperatorsInfoPath, elements of
ClientCACertPath, ProofsFilePath, KeystorePath, ServerTLSCertPath,
ServerTLSKeyPath, and CeremonyDir.

Code corrected:

Version 2In , it is enforced that the paths cannot escape the current directory thanks to the
"path/filepath".IsLocal() predicate.

6.9 Use of Potentially Vulnerable Package
Informational Version 1 Code Corrected

CS-SSVDKG-014

In dkg/drand.go at line 19, the package github.com/drand/kyber/sign/bls is imported. The
scheme implemented by this package is known to be vulnerable to rogue key attacks. DEDIS
recommend github.com/drand/kyber/sign/bdn instead.

As far as we can tell, SSV-DKG does not rely on the part of the scheme that is vulnerable to rogue key
attacks. Nevertheless, the bdn package is backwards compatible to bls except for the problematic part,
meaning that it could be substituted in place.

Code corrected:

Version 2In , the bdn package is used.

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 DKG Can Produce Full Validator Private Key
Informational Version 1

CS-SSVDKG-007

In secret-sharing schemes based on Shamir Secret Sharing such as Drand's DKG, the secret share at
index 0 is conventionally the private key. This means that, when distributing secret shares, one must
choose non-zero indices. A share with index 0 is in a sense a "backdoor" share that reveals the full
private key.

In Drand Kyber 1.1.18, the backdoor share has index -1. In computeDKGResult(), the uint32 share
index is cast to a platform-sized int. As a result, on a 32-bit system, an index of 2**32 -1 can access
the backdoor share. If every dealer were to use a version of SSV-DKG compiled for 32-bit, they would
leave the operator with that index in possession of the full private key.

In SSV-DKG, indices are computed by subtracting one from the operator IDs, which is always 64 bits and
assigned sequentially by the SSV smart contract, starting at one. Thus, this issue cannot occur in a
realistic setting since more than 4 billion operators would need to be registered.

ChainSecurity has reported this issue to Drand so that the root cause can be addressed.

7.2 Unnecessary Use of BLS12-381 Curve
Informational Version 1

CS-SSVDKG-013

In pkgs/dkg/drand, ECIES is instantiated using the BLS12-381. While this is perfectly functional and
secure, ECIES does not require the pairing functionality carried by BLS and is usually deployed with
pairing-unfriendly curves that are more performant in this use case. For instance, Kyber supports ECIES
with Curve25519.

SSV Labs noted that:

Kyber supports only same schemas for VSS and Auth messages: if we use BLS12-381 for VSS and
edwards25519/Curve25519 for ECIES, then we get an error at this place
https://github.com/drand/kyber/blob/master/share/dkg/dkg.go#L220

Based on that, we can't use different schemes for VSS and ECIES, so we continue to use
BLS12-381 despite its slower

7.3 Misleading Function Prototype
Informational Version 1 Acknowledged

CS-SSVDKG-012

In the package github.com/ssvlabs/ssv/utils/rsaencryption, the following function is
defined:

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 15

https://github.com/drand/kyber/blob/master/share/dkg/dkg.go#L220
https://chainsecurity.com

// DecodeKey with secret key (rsa) and hash (base64), return the decrypted key
func DecodeKey(sk *rsa.PrivateKey, hash []byte) ([]byte, error) {
 decryptedKey, err := rsa.DecryptPKCS1v15(rand.Reader, sk, hash)
 if err != nil {
 return nil, errors.Wrap(err, "could not decrypt key")
 }
 return decryptedKey, nil
}

Rather than simply a decoding function, it is a decryption function. Its hash argument is not a hash but a
ciphertext. This is confusing for readers, who have to check the implementation of the function to find out
that it is in fact performing PKCS1v1.5 decryption.

SSV Labs has opened an issue to fix this.

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 16

https://github.com/ssvlabs/ssv/issues/1847
https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Consequences of Picking Malicious Node
Operators
Note Version 1

As highlighted in System Overview, when choosing operators with the help of the web application, the
initiator must not choose a majority of malicious operators. Ideally, they should assess which operators
are reputable/trustworthy in their opinion.

We want to expand on the risks that can materialize if the majority of operators in a given distributed
validator are malicious. Without EIP-7002, there is no way to initiate a beacon chain withdrawal without
using the validator key. Thus, the malicious operators can hold the initiator's funds hostage indefinitely.
They can also intentionally slash themselves, affecting the initiator's fund.

8.2 Denial of Service via Spam
Note Version 1

CS-SSVDKG-008

Requesting a DKG ceremony with an INIT message is unpermissioned. Anyone who is willing to run the
initiator client can coordinate ceremonies without necessarily holding any ETH. While this is by design, it
can also be used to spam the operators. The cost to run a honest but useless DKG is not so high
compared to the computational load incurred by the operators as a result.

Replay of DKG Reshare could also be used to run useless reshare DKGs.

Version 2In , IP-based rate limits have been added on the init, reshare, and resign routes to
mitigate the DoS vector. This does not completely prevent spam, but makes it more difficult. SSV Labs
has stated that this is sufficient for their purposes.

More precise metrics would need to be collected to determine how this compares to existing DoS vector
and thus whether it could be an issue in practice.

8.3 Lack of Forward Security
Note Version 1

After a DKG, operators encrypt their key share with their long-term RSA key and store it in the ceremony
proof. This means that, by design, if enough long-term keys are compromised at any point, the master
key can be recovered from protocol transcripts.

DKG systems often feature proactive key rotation, whereby a DKG reshare is performed so that key
shares are fully rotated and future break-ins do not result in compromise. The current system does not
achieve this property due to the presence of encrypted key shares in the transcripts.

Version 2In addition, the owner change mechanism introduced in does not invalidate the old owner
address, which means that if it is later compromised, it can be used to recover the validator key using a
reshare.

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

8.4 Replay of DKG Reshare
Note Version 1

CS-SSVDKG-005

Reshare messages signed by the owner do not include the initiator public key. As a result, anyone in
possession of a valid reshare message can act as an initiator for an existing shared keypair. Since
honest operators do not keep state, the DKG parameters can be replayed anytime and repeatedly, with
valid and valuable keyshares as input.

When this is done, the initiator can behave arbitrarily. In particular, the assumption that a broadcast
channel can be used by DKG participants is no longer valid since the initiator mediates all
communications. ChainSecurity was not able to study the behavior of DKG protocols under these
conditions. However, it appears unlikely that these conditions lead to key disclosure.

We note that "forget-and-forgive"-style attacks are not applicable due to the operators' statelessness.

SSV Labs - SSV-DKG - ChainSecurity - © Decentralized Security AG 18

https://eprint.iacr.org/2020/1052
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Review Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Ping
	2.2.2 Init
	2.2.3 Resign
	2.2.4 Reshare

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Use of Discouraged Asymmetric Encryption Primitive

	6 Resolved Findings
	6.1 Denial of Service With Malicious Initiator
	6.2 Insecure TLS Default Configuration
	6.3 Missing Signature Check
	6.4 Crash by Malicious Operator
	6.5 Incorrect EIP-1271 Magic Value
	6.6 Ignored DKG Phases
	6.7 Reshare Denial-of-Service via Predicable Instance IDs
	6.8 Arbitrary Path Access
	6.9 Use of Potentially Vulnerable Package

	7 Informational
	7.1 DKG Can Produce Full Validator Private Key
	7.2 Unnecessary Use of BLS12-381 Curve
	7.3 Misleading Function Prototype

	8 Notes
	8.1 Consequences of Picking Malicious Node Operators
	8.2 Denial of Service via Spam
	8.3 Lack of Forward Security
	8.4 Replay of DKG Reshare

