

PUBLIC

Code Assessment

of the Exchange V2

Smart Contracts

25 June, 2021

Produced for

 Rarible Inc.

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 6

4 Terminology 7

5 Findings 8

6 Resolved Findings 10

7 Notes 14

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Sir or Madam,

First and foremost, we would like to thank Rarible Inc. for giving us the opportunity to assess the current
state of their Exchange V2 system. This document outlines the findings, limitations, and methodology of
our assessment.

The majority of raised issues were fixed by modifications of code or by clarified documentation. Two low
severity and one medium severity issues were not fixed, as the risk was accepted by the Rarible Inc..
Even though they do not threaten the main functionality of the Exchange V2, we suggest revisiting these
issues.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 4

• Code Corrected 1

• Specification Changed 2

• Risk Accepted 1

Low -Severity Findings 5

• Code Corrected 2

• Specification Changed 1

• Risk Accepted 2

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview
In this section we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Rariable repository in exchange-v2
folder, based on the documentation files. In addition contract LibAsset from the same repository asset
folder is included in the scope. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 13 May 2021 ffb48d0c6c3593a8ea8e41669d370057315b8265 Initial Version

2 14 June 2021 f62e271ef3affb65f37d47723f6060f434f29152 Version with fixes

3 18 June 2021 1ea1ac9f965553cf749a646e65124e1e23966681 Version with fixes

For the solidity smart contracts, the compiler version 0.7.6 was chosen.

2.1.1 Excluded from scope
Contracts from test subfolders inside the folders mentioned in the Scope. External library dependencies
and any UI components that might interact with the contracts.

2.2 System Overview
Version 1This system overview describes the of the contracts as defined in the Assessment Overview.

Furthermore, in the findings section we have added a version icon to each of the findings to increase the
readability of the report.

Exchange V2 implements two main functionalities: order matching (matchOrder) and order cancellation
(cancelOrder).

When a pair of valid orders is matched, at least one of the orders gets fully filled. Then, the fees and
royalties are paid to the corresponding parties. The filling of the order is measured by the received take
asset of the order. Due to flooring of the estimation of the remaining make amount from remaining take
amount, some leftover make assets can be unsellable. Depending on the arrangement of arguments, the
two orders of the pair are named Left and Right. An order is valid if its signature is valid or the invoker of
the matchOrder is also the maker of the order. A pair of orders is matchable if:

1. For both orders, the receiver (taker) of the order, if defined, is the same as the offerer (maker) of
the other one. If no taker is defined any offerer can match.

2. The asset types used in the orders match, meaning the make asset type of one order should match
the take asset type of other order.

3. The make/take ratios of orders allow them to be filled. In other words, the seller and buyer can agree
on the price. In case of matchable but different prices the left order dictates the price of the
exchange. Because of the uint arithmetics, prices are estimated by uint and checks prevent price
slippage with 0.1% accuracy.

The orders can be separated into two categories:

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

1. Salted orders: In these orders a salt (a random number) is defined. The status of these orders is
stored on the blockchain. An order can be partially filled. These orders can be canceled.

2. Ad-hoc orders: they have salt set to 0 and need to be sent to contract directly by the maker.
Filling degree tracking is off for such orders, while only the maker can resubmit the order.

A normal order is canceled by setting its filling degree to the maximum possible value. Cancellation of the
order is possible only by the maker of the order.

2.2.1 Fees
Depending on the asset types in the orders, one of them can be chosen as an asset for fee payment. In
the current setup, fees can only be paid if ERC20, ERC1155 or native ether are among the order asset
types.

If both make and take assets of the order can pay fees, the left order make asset pays the fees.

Maker of the fee paying asset needs to provide fees on top of the order maker value. Taker of the fee
paying asset will receive amount reduced by the fees.

2.2.2 Trust Model
We assume that the users are fully aware of the what orders they sign. An order formed by a malicious
party can lead the seller to send the amounts to addresses that they do not control.

Owner of the contract is considered to be trusted party, that will not set up malicious contract parameters
such as platform fees or transfer proxies.

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product, changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedCancel Order Authorization Differs From Match

Low -Severity Findings 2

• Risk AcceptedDependency on EIP712Upgradeable

• Risk AcceptedMissing Indexes In Events

5.1 Cancel Order Authorization Differs From
Match
Design Medium Version 1 Risk Accepted

Function validate of OrderValidator contract permits matches in cases when the message sender
is not the order maker. This can be done when the order maker is an ERC1271 implementation or when
the sender provides a valid signature. During the cancellation the only check that is done is:

require(_msgSender() == order.maker, "not a maker");

This check is more strict than the matchOrders authorization rules and limits the possible pool of
parties that can use this entry-point, for example, ERC1271 contracts cannot cancel their orders.

5.2 Dependency on EIP712Upgradeable
Security Low Version 1 Risk Accepted

Contract OrderValidator uses EIP712Upgradeable contract from openzeppelin library, which is
currently in a draft stage. That increases the risk of bugs and errors in all contracts that use this
dependency. In addition draft library contracts tend to be inefficient. For example in current version, every
call to _hashTypedDataV4 triggers two storage lookups (_EIP712NameHash(),
_EIP712VersionHash()) which together cost 4200. That is fairly unnecessary.

import "@openzeppelin/contracts-upgradeable/drafts/EIP712Upgradeable.sol";

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5.3 Missing Indexes In Events
Design Low Version 1 Risk Accepted

In ExchangeV2Core the events Cancel and Match contain no indexed fields. Indexing order hashes
will help to avoid performance issues on node clients.

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrecteddoTransfers Does Not Hanlde LibFeeSide.FeeSide.NONE

Medium -Severity Findings 3

• Specification ChangedFunction safeGetPartialAmountFloor Precision Problems

• Specification ChangedOrder Salt Problems

• Code CorrectedOrders With Salt 0 Can Be Canceled

Low -Severity Findings 3

• Code CorrectedCompiler Version Not Fixed

• Specification ChangedContracts Can Be Order Makers

• Code CorrectedPrecision Check in calculateRemaining Problem

6.1 doTransfers Does Not Hanlde
LibFeeSide.FeeSide.NONE
Design High Version 1 Code Corrected

doTransfers performs the transfer of assets after choosing which is the feeable side. However,
getFeeSide can return the value LibFeeSide.FeeSide.NONE in the case none of the assets are ETH
or ERC20 or ERC1155. This value is not handled by the function doTransfers which results to the
transfer not being performed.

Code corrected:

doTransfers was changed to handle LibFeeSide.FeeSide.NONE.

6.2 Function safeGetPartialAmountFloor
Precision Problems
Correctness Medium Version 1 Specification Changed

The function safeGetPartialAmountFloor(uint256 numerator, uint256 denominator,
uint256 target) defined in LibMath contract effectively computes the
numerator * target / denominator and reverts on too much divergence from the correct value.
Due to the different nature of tokens (ETH, ERC20, ERC721, etc.) and different decimals on them, the
actual values sent to this function can be of different orders. In cases when the denominator is greater

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

than the numerator * target the 0 will be returned. This can lead to situations when the orders
cannot be matched. For example order "Buy 30 for 600X" cannot be matched with order "Sell X for 10",
because the fillRight function that relies on safeGetPartialAmountFloor will return (10, 0)
value that later will fail the check in matchAndTransfer function.

The safeGetPartialAmountFloor function is used in following places:

• Function fillLeft in LibFill contract.

• Function fillRight in LibFill contract.

• Function calculateRemaining in LibOrder contract. In this case, big, close to filling values may
fail.

Specification corrected:

Now the specification correctly communicates the behavior of the contract.

6.3 Order Salt Problems
Design Medium Version 1 Specification Changed

The salt is effectively a field of an order that allows different orders of the same asset types from the
same maker to be distinguishable from each other. This field is also part of the hashKey of the order that
is used to track the filling of the order. However, due to the lack of Asset values in the hashKey, the
same value for salt can be resubmitted with higher-order take value, and thus lead to multiple full filling of
the same order. For example, an order that makes 20 take X after filling can be resubmitted with the
same salt and higher take limit: make 30 take 2X. Note that after cancellation the salt becomes unusable
for the maker. From a specification point of view, it the order with same hashKey shouldn't be fully filled
multiple times.

function hashKey(Order memory order) internal pure returns (bytes32) {
 return keccak256(abi.encode(
 order.maker,
 LibAsset.hash(order.makeAsset.assetType),
 LibAsset.hash(order.takeAsset.assetType),
 order.salt
));
}

Specification corrected:

The behavior was documented and properly described in exchange-v2/readme.md.

6.4 Orders With Salt 0 Can Be Canceled
Design Medium Version 1 Code Corrected

The filling degree of orders with salt 0 is not tracked in the matchOrders function. But the
calculateRemaining function will use the value from fills map to compute the remaining value that
needs to be filled. The cancel function effectively sets the fills map value to the UINT256_MAX
value. Users can also cancel orders with salt 0, effectively making the asset pair not longer usable with
salt 0.

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Code corrected:

A check that prevents 0 salt order cancellation was added.

6.5 Compiler Version Not Fixed
Design Low Version 1 Code Corrected

The solidity compiler is not fixed in the code. In addition, different files define different pragmas. The
version, however, is defined in the truffle-config.js to be 0.7.6. In the code the following pragma
directives are used:

pragma solidity >=0.6.2 <0.8.0;
pragma solidity >=0.6.9 <0.8.0;

Code corrected:

The pragma was fixed to 0.7.6 for all contracts.

6.6 Contracts Can Be Order Makers
Design Low Version 1 Specification Changed

Maker and Taker of orders can be contracts with the help of the ERC1271 standard. In addition, fee
receiving parties can be contracts too. If native ether is used as an asset during the match, the transfers
can fail if the contracts do not implement a payable fallback function. The system specification should
clearly communicate this requirement to the users.

Specification corrected:

The expectations from contracts were documented and described in exchange-v2/readme.md.

6.7 Precision Check in calculateRemaining
Problem
Design Low Version 1 Code Corrected

Due to a precision check in function calculateRemaining orders with different magnitudes of take
and make values can become unfillable even with a small filling degree. For example, Order with make
10 take 100 cannot be filled if fill amount of take is 15. In calculateRemaining the remaining make
value for that order will be approximated with value 8. Because the true value of 8.5 cannot be expressed
with integer numbers, the error of 0.5 will exceed 0.1% limit that is built-in in calculateRemaining due
to utilization of LibMath.safeGetPartialAmountFloor function.

Code corrected:

The precision check in calculateRemaining function was removed in commit
839710b1bd7ed11fc22fa2093f408934b92ccf35. This fix prevents premature order freeze. With the fix,

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

only the last make item of the order can be unsellable. For example, an order with make 10 take 100
cannot be fully filled if the fill amount of take is 95, as the 0.5 make value will be estimated by
calculateRemaining function as 0. With help of order extension functionality, such orders can be
fixed via signature resubmission with greater values. The precision check for price computation is still
used.

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Accumulation of Rounding Errors
Note Version 1

The fullfilment of an order is tracked by the fills mapping. The remaining part comes from the
subtraction of the value the fills mapping holds for a particular order from the total take value of the
order.

if (orderLeft.salt != 0) {
 fills[leftOrderKeyHash] = leftOrderFill.add(newFill.takeValue);
}
if (orderRight.salt != 0) {
 fills[rightOrderKeyHash] = rightOrderFill.add(newFill.makeValue);
}

However, the value added to the fills mapping is a result of a division occuring in
LibOrder.calculateRemaining. Division might introduce some rounding erros which gradually
accumulate if an order is partially filled multiple times. Notice that the implemenation tolerates a 0.1%
rounding error.

function calculateRemaining(Order memory order, uint fill) internal pure returns (uint makeValue, uint takeValue) {
 takeValue = order.takeAsset.value.sub(fill);
 makeValue = LibMath.safeGetPartialAmountFloor(order.makeAsset.value, order.takeAsset.value, takeValue);
}

function safeGetPartialAmountFloor(
 uint256 numerator,
 uint256 denominator,
 uint256 target
) internal pure returns (uint256 partialAmount) {
 if (isRoundingErrorFloor(numerator, denominator, target)) {
 revert("rounding error");
 }
 partialAmount = numerator.mul(target).div(denominator);
}

7.2 AssetMatcher Gas Efficiency
Note Version 1

The matchAssetOneSide function in AssetMatcher contract effectively decides if two assets types can
be matched. It also contains logic for matching assets that are not yet known to the systems:

if (classLeft == classRight) {
 bytes32 leftHash = keccak256(leftAssetType.data);
 bytes32 rightHash = keccak256(rightAssetType.data);
 if (leftHash == rightHash) {
 return leftAssetType;
 }
}

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

This piece of code works for all known asset types as well. In addition, it is more efficient than the current
matchAssetOneSide for most of the known asset types.

7.3 Incentives for Front-Running
Note Version 1

In case when 2 assets that can pay fees are exchanged, the order of arguments in matchOrders
function might matter. Moreover it determines the price and thus the amounts exchanged between the
two parties. There might be third parties that are incentivised to front-run the transactions in order to
determine the position of the orders for their own interest. The users should be aware of such events. In
addition, once the transactions are visible in the mining pool, any other parties can try to frontrun the
match, to profit from matching with lower fees or good price.

Illustration of order importance:

Let A and B be an ERC20 and ERC1157 token respectively. Accoring to the contract logic currently
implemented, the feeable token is A. Assume two orders O1:(10A, 20B) and O2:(50B,11A) Executing
matchOrder(O1, O2) yields fillResult(10A, 20B) (fillLeft will be called). On the other hand,
executing matchOrder(O2, O1) yields fillResult(20B, 220/50A) (fillRight will be called).
Assuming a fee of 10% then in the first case we have 0.1 * 10A and the second 0.1* 220/50 A

7.4 Orders Can Pay No Fees
Note Version 1

Before transfering the assets to the corresponding parties the fee side is chosen. The side is chosen to
be the one that offers ETH or ERC20 or ERC1155. If there is no such types in make and take assets of the
order, the fees won't be deducted.

7.5 Reentrancy Risk
Note Version 1

In the matchOrders can occur calls to other contacts and addresses. For example, during the native
ether transfer or during the transfer of tokens that allow user hooks e.g. ERC777 (extension of ERC20).
While we haven't identified a direct way, how this can be abused. But risk of reentrancy is nullified when
a non-reentrant lock is used, for a price of small gas cost increase.

In addition, following transfers of ether will send all the gas to the callee, allowing it to execute any other
contract with no restrains.

(bool success,) = to.call{ value: value }("");

7.6 The Order of Orders Determines The Price
Note Version 1

In centralized order book-based exchanges, the price of matchable orders with different prices is usually
determined by the order with the earliest submission time. In the current implementation, the price is
determined by the left order. While the centralized method is not applicable to this system, the current
behavior should be documented in specification, as the users should be aware of the price formation.

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7.7 Use of SafeMath
Note Version 1

There are many instance where the SafeMath is not used. Such calculations can lead to overflows and,
thus, unexpected behavior. No dangerous overflows have been found during the overflow, however, the
use of SafeMath is recommended. For example such calculations happen in transferPayouts
function on sumBps accumulator.

7.8 Validate Gas Efficiency
Note Version 1

Function validate in OrderValidator contract can be restructured for a lower gas cost. The
isContract check is performed in all cases when the message sender is not the maker. Assuming that
the most popular cases are when the maker is not a contract, the signature check can be performed first,
before the isContract check.

Rarible Inc. - Exchange V2 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Fees
	2.2.2 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Cancel Order Authorization Differs From Match
	5.2 Dependency on EIP712Upgradeable
	5.3 Missing Indexes In Events

	6 Resolved Findings
	6.1 doTransfers Does Not Hanlde LibFeeSide.FeeSide.NONE
	6.2 Function safeGetPartialAmountFloor Precision Problems
	6.3 Order Salt Problems
	6.4 Orders With Salt 0 Can Be Canceled
	6.5 Compiler Version Not Fixed
	6.6 Contracts Can Be Order Makers
	6.7 Precision Check in calculateRemaining Problem

	7 Notes
	7.1 Accumulation of Rounding Errors
	7.2 AssetMatcher Gas Efficiency
	7.3 Incentives for Front-Running
	7.4 Orders Can Pay No Fees
	7.5 Reentrancy Risk
	7.6 The Order of Orders Determines The Price
	7.7 Use of SafeMath
	7.8 Validate Gas Efficiency

