PUBLIC

Code Assessment

of the Core Engine

Smart Contracts

Oct 11, 2021

Produced for

by

\V PRIMITIVE

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG

© 00 N b~ W

11
21

https://chainsecurity.com

1 Executive Summary

Dear Sir or Madam,

First and foremost we would like to thank Primitive Finance for giving us the opportunity to assess the
current state of their Core Engine system. This document outlines the findings, limitations, and
methodology of our assessment.

Primitive Finance's team was very responsive and professional. We found multiple issues which were
addressed. The remaining issues are listed in this report.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EXED-Severity Findings 0
(C)-Severity Findings 7
¥ Code Corrected) 3
Y Specification Changed 4
(Medium)-Severity Findings 7
¥ Code Corrected) 4
'Svecitcation Changed) 3
(Low)-Severity Findings 14
¥ Code Corrected) :
Y Specification Changed 1
o) 1
W Acknowiedged 4

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview

In this section we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Core Engine repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note

1 | 13 Aug 2021 9c2111fd31d4faaabb5b1606ff5668adllaf7261 Initial Version
2 | 28 Aug 2021 5b418337e8bd00cd59766d1251931b9094cf0353 Version 2

3 | 12 Sep 2021 82d01cd0030fab67780fbb5bef40b6748ff24644 Version 3

4 | 26 Sep 2021 c44f8caleed3772ecdbab6e031bdb6fb8aacOca3 Version 4

For the solidity smart contracts, the compiler version 0. 8. 6 was chosen.

2.1.1 Excluded from scope

Explicitly excluded is the ABDK math library ABDKMVat h64x64, the underlying theoretical framework that
includes the economics and math (convergence, correctness of the functions and solutions, etc.) behind
the project.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview. Changes are tagged with the corresponding version tag. Furthermore, in the
findings section we have added a version icon to each of the findings to increase the readability of the
report.

Liquidity providers on current exchanges like Uniswap or Curve have a pay-off profile that depends on
the used trading function (curve). Instead of a trading function dependent pay-off function, Primitive
finance offers liquidity providers a specific pay-off function and adjusts the trading function to mimic to a
desired pay-off function. The desired pay-off function is a covered call for liquidity providers. /
Additionally, users can borrow the liquidity tokens from liquidity providers by paying the price for
the stable part of the liquidity token in the underlying (risky token). The borrower can trade buy back the
risky share of the liquidity token by providing stable tokens (like paying the price for the underlying in a
long call).

The price of the options is determined by the liquidity pool's token composition. The trading function
offers profitable trades for arbitrageurs so that they rebalance the pool, resulting in the target pay-off
functions.

The target pay-off functions are (1) a covered call for a normal liquidity provider and (Version 1) / (Version 2)
(2) a long call for a liquidity token borrower. The corresponding trading function (invariant) is

WV(R1, Ry) = Ry—K®(®~1(1—Rq)—0VT)
for <0 and negative infinity otherwise. R is the reserve value of the respective coins 1 (risky) and 2
(stable).

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

This invariant is used to calculate the swap amounts and consecutively the swap price. The trade
updates the reserve amounts and, hence, the liquidity provider should always get the pay-off when
withdrawing their liquidity tokens as if they would have a covered call position. (Version 1) / (Version 2) The
same should hold for a borrower of a liquidity token who sells of the stable part for risky tokens. Their
pay-off function should be a long call. Details are described in the following papers (1)
https://stanford.edu/~guillean/papers/rmms.pdf describing that the trading function can mimic a pay-off
function for a covered call and (2) https://stanford.edu/~guillean/papers/cfmm-lending.pdf describing that
borrowing the liquidity position should result in a long call pay-off (Version 2)) or long put.

The system has two main contracts. The PrimtiveFactory.sol which can deploy one
Prim tiveEngi ne. sol per token pair. The Prim tiveEngi ne. sol can open multiple pools/option
markets per token pair. E.g. different strike prices and maturities. Both contracts are permissionless in
the sense that there is no permissioned role with power. Still, there is one factory owner with no special
power set at the factory's deployment.

The PrimitiveFactory. sol has the callable function depl oy to deploy a new Engine for a token
pair. The Pri m ti veEngi ne. sol offers users the following functionality:

l.create : Creates a new option contract / trading function with provided parameters.
Simultaneously, the new pool needs to be funded and the initial invariant is calculated.

2.deposit and wi t hdr aw: Add funds to a margin account that can be used to save gas later.

3.al |l ocat e and r enpve : Allocates funds from a margin account or a transfer to a specified pool
/ option or removes the funds. By calling al | ocat e, the caller becomes a liquidity provider
opening a covered call position. When calling r enove the caller closes their position and
receives the current value of the covered call option. The value is payed in the share of the
current pool composition (that should be balanced to the correct option value by arbitrageurs
who constantly balance the pool.

4. suppl y and cl ai m: A liquidity provider can put up his position to be borrowed by another user
by calling suppl y. cl ai mundoes this under certain restrictions.

5. borrow and r epay : When calling bor r ow a user pays buys the stable part of a
liquidity token that has been supplied to be borrowed by a liquidity provider in risky token. By
calling r epay, the user can buy risky token for stable tokens. This mimics the pay-off scenario
of buying a long call. When calling bor r ow the user can borrow liquidity tokens and
sell the stable share of it for risky or vice versa. Depending on which share of the liquidity
position was payed, the user can call r epay to buy the collateral for the other token. This now
mimics either a call or a put pay-off.

6. swap : Crucial for the system to work is, that the pool has the correct composition of risky and
stable tokens to mimic the pay-off for the two different investors. The trading function changes
the price for a pool asset if time progresses or an asset price changes. This opens arbitrage
opportunities which should balance the pool to the correct composition at any time (given some
frictions occurring through fees, transaction costs etc.). The swap function simply converts a
provided amount of stable tokens to risky and vice versa (incl. a small fee). The price for an
asset is determined by the solving the invariant accordingly.

7. The remaining functions are view functions.

A 0. 0015 percent fee is charged at each swap. The fee is taken from the funds transferred in.
The code simply assumes in the calculation it received 0. 0015 less tokens. The reserve still accounts
for the full 100 percent. Hence, when the reserve pays out funds for position tokens, the fees should also
payout out proportionally.

The fee structure was changed. Liquidity provide that lend their positions to borrower bear a
risk and costs that they should be compensated for (which they were not in the old version).

The system is intended to be used by smart contracts and, therefore, has optimistic transfers with
callback hooks and pre and post condition checks. The functions repay ((Version1) / (Version 2)),
deposi t,wi t hdrawand al | ocat e can be used with a specified receiver.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 5

https://stanford.edu/~guillean/papers/rmms.pdf
https://stanford.edu/~guillean/papers/cfmm-lending.pdf
https://chainsecurity.com

In versions above version two the supply/claim and borrow/repay functionality was removed completely.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.
EIED-severity Findings e
(C)-Severity Findings 0
(Medium)-Severity Findings 0

(Low)-Severity Findings 5

» Code Duplication Balance Getters(_~)
« Event Optimization ()

« Sanity Checks ()
» Unused Function getRiskyGivenStable ()

 Unused Storage Fields ()

5.1 Code Duplication Balance Getters
[Low] [Version 1)[]

The engine contract implements two functions: bal anceRi sky() and bal anceSt abl e() which return
the balance of the engine for the respective token. These two functions implement the same functionality
and have the same logic, therefore can be merged into a single function that takes the token address (for
stable or risky) as an input parameter.

Acknowledged

The client prefers two separate functions.

5.2 Event Optimization
[Low] [Version 1)[j

The swap() function emits two events: Updat edTi mest anp() and Swap() which can be integrated
into one event to reduce the gas consumption.

Acknowledged

This behavior is desired by Primitive.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5.3 Sanity Checks
[Low] [Version 1][]

When depositing, withdrawing, allocating, and swapping (VERSION4) the receiving account can be
chosen. No basic sanity check if it is accidentally address zero is performed. Additionally, the strike price
could be validated if it is not zero in cr eat e.

Code partially corrected

A sanity check for the strike price in cr eat e is implemented but no checks for address zero are added.

5.4 Unused Function get Ri skyG@ vensSt abl e
[Low][Version 1)[]

The function get Ri skyG venSt abl e is declared i nt er nal but not used in the code.

Acknowledged

Primitive Finance acknowledged the issue but communicated that the function is kept as it is for now.

5.5 Unused Storage Fields
[Low] [Version 1][]

The Pri m tiveEngi ne contract is deployed by the Pri i ti veFact ory contract. The engine stores
the factory address as state variable address public i mutable override factory; and an
owner but these variables are not used.

Acknowledged

Primtive acknowledged the behavior and informed us that this is intended.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 7

« Low Decimal Token Issues

« Anyone Can Call the Repay Function After Pool's Maturity
« Borrower Locks Liquidity in the Pool

« Disable Unnecessary Functionalities After Expiry

« Flawed Fee and Premium Structure

« No Slippage Protection
* Violation of Maximum Ratio of Float Liquidity GRS ERTE

(Medium)-Severity Findings 7
» Token Decimal Validation
« Explicitly Handling Positive Invariant Restriction
» Incorrect Tracking of Cumulative Values for Pool Reserves
» Liquidity Providers Get Rewards Without Supplying Float Liquidity
» Possible Overflows
» Possible to Frontrun on Claim Request
+ Redundant and Improper Revert Condition

(Low)-Severity Findings 9
ty g

« Inconsistency of Input Parameters

« Unused Error Definition

« Redundant Storage Read

+ Code Duplication

« Duplicated Calculation of Invariant

« Implementation of getStableGivenRisky Function
« Possible Gas Optimization in the Deposit Function
« Return Value in safeTransfer

* MANTISSA_INT Constant

6.1 Low Decimal Token Issues

(Design | High (B Cod Corrected)

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

The lower the decimals of a token are and the higher the value, the more severe rounding issues will
become. Simultaneously, the liquidity position accounting with 18 decimals will cause issues.

Examples issues are:
Burning one unit of a low decimal but high value token (in cr eat e) might be a huge loss for the user.

There is a dependency between the delta when creating a pool and the decimals of a token. del t a
cannot be chosen freely because of this dependency (1e18 - delta) - 1e(18-deci nal s) needs
to be bigger than 1, else the create will revert. This basically eliminates the support of zero decimal
tokens (as the only viable option is del ta = 0). Low decimals limit the range of del t a and the step
accuracy with which the risky token amount is calculated. E.g. the maximum value of del t a can be
9e17 (should be 1e18) for 1 decimals, 99e16 for 2 decimals and so on. The step size should be
accordingly high to increase the resulting del Ri sky one unit.

With decreasing decimals this calculation will lose precision if the token decimals are not dividable by the
fraction del Li quidity / PRECI SI ONwith modulo zero.

del Ri sky (del Ri sky del Li quidity) PRECI SI ON,
del Stabl e (del Stabl e del Liquidity) PRECI SI ON,

The function get Anount s has a similar problem and will losing precision. This can be exploited in
al | ocat e to receive more liquidity tokens than the user would be entitled to as the rounding in
al | ocat e is in the user's favor.

Code corrected

The issues above have been tackled by only accepting token decimals between six and 18. Six was
chosen to support famous stable coins and did not lead to issues in tests. However, tests and fuzzing
does not cover all possible states and due to the complex math, there might be a state that still results in
issues regarding to the decimals.

6.2 Anyone Can Call the Repay Function After

Pool's Maturity
(Design | High \ZZZIBY] Specification Changed)

After the pool's maturity has passed, i.e., the pool has expired, anyone can call the f uncti on repay()
for any borrower and receive their premiums in case the borrower's possition yields profit. The first three
lines of the functi on repay() allow any nsg. sender to receive the premiums for any borrower:

Since the borrower is incentivized to call the f uncti on repay() only when there is profit, the function
allows any attacker to collect the unclaimed profit of any borrower after the pool's maturity. Furthermore,
if the legitimate borrwers calls the f uncti on repay() atthe maturity of the pool, the attacker has still a
possibility to frontrun the legitimate transaction.

Specification changed

This version of the code introduces a grace period, around 24h, to permit only borrowers calling the
function r epay() after pool's maturity. In case a borrower does not call the function during this period,
anyone can call the function r epay() and exit the borrowers' positions, therefore releasing the locked
liquidity.

Specification changed

The respective code has been removed according to the new specifications of (Version 3).

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6.3 Borrower Locks Liquidity in the Pool
(Design | High NI Seecification Changed

Calling the function borrow() with a given delLiquidity triggers the call
reserve. borr owFl oat () which decreases the amount of available float in the pool and increases the
debt of the pool reserve accordingly. This way, the borrower locks del Li qui di ty from the available
float in the pool reserve. Below is the bor r owFl oat function.

function borrowrl oat (Data storage reserve, uint256 delLiquidity) internal {
reserve. f | oat del Liquidity.toU nt128();
reserve. debt delLiquidity.toU nt128();

}

A liquidity provider that has supplied its liquidity as float needs to first call the f uncti on cl ai () which
converts the float into liquidity before removing the liquidity from the pool. However, the only way for all
liquidity providers to claim all their float liquidities is if all borrowers call the f uncti on repay() which
triggers a calltor eserve. repayFl oat () :

function repayFl oat (Data storage reserve, uint256 delLiquidity) internal ({
reserve. fl oat del Li quidity. toU nt128();
reserve. debt del Li quidity. toUi nt 128();

}

But, if the price of the risky token is below the strike price, the borrower has no incentive to call the
function repay(), therefore potentially keeping locked the float liquidity. Moreover, the function
repay() does not impose any time restriction to borrowers when they can exercise their option, i.e., the
borrower can potentially call the repay() function at an arbitrary time after the maturity. This puts
pressure on the liquidity providers to call it themselves which is possible because in the current version of
the Prim tiveEngi ne contract, anyone can call the functi on repay() after the maturity of the
pool. If liquidity provider have the burden to call the functions, they also bear the costs.

Specification changed

This version of the code introduces a grace period, around 24h, to permit only borrowers calling the
function r epay() after pool's maturity. In case a borrower does not call the function during this period,
anyone can call the function r epay() and exit the borrowers' positions, therefore releasing the locked
liquidity. Still, the additional costs need to be payed by the caller / LP if they call it to relase their funds.

Specification changed

The respective code has been removed according to the new specifications of (Version 3),

6.4 Disable Unnecessary Functionalities After
Expiry
(Design [High \ZZEXIBY| Code Corrected)

In the current version of the PrimitiveEngine contract all functions, except f uncti on swap(), can be
called after the pool has expired. For example, a liquidity provider could close the opened positions of
borrowers, claim its share of the float liquidity, and then call f uncti on borrow() for the remaining
amount of float.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Code corrected
The updated version of the contract has new checks if the pool is still valid in the respective functions.

6.5 Flawed Fee and Premium Structure

(Design | High (LB Specification Changed)

When swapping, a fee is charged and borrows pay a premium on their position. Both amounts end up in
the pool without separate accounting. This has various implication. All arising from the fact that the
underlying calculation are based on the pool's reserve, which includes the fees and premiums. All
operations that pay out a proportion of the reserve amounts - also pay out parts of the fees and
premiums. Hence, each time r enove, r epay, swap or bor r owis called, fees and premiums are payed
out. Regardless of the callee is entitled to receive these fees.

The most severe issue is the swap function. Swapping on the pool's reserve, which includes the
collected fees, will nullify all previous fees and prevent fee accumulation. Hence, liquidity providers will
not earn fees collected during the lifetime of the pool, but only the fee from the last swap.

Other examples for issues are shared (even with non-eligible users) premiums and fees, participating on
fees and premiums repeatedly. E.g. a liquidity provider that does not take the risk of lending their token
gets a share of the premium. A borrower gets part of the premium and fees of others. All this can be
leveraged through repeating the operation.

Specification changed

This version of the code introduces a novel fee structure.

Specification changed

The respective code has been updated according to the new specifications of which assume
fees only during swaps.

6.6 No Slippage Protection
(Design | High \ZZEXRBY| Code Corrected)

All transactions have a lag between the time they are sent and the time they are executed as they remain
in the mem pool for some time prior to being executed. Between sending and execution, other
transaction might change the contract's state. This is critical for all transaction where the user receives or
has to pay funds. In all action function in the Engine contract except for suppl y and cl ai mdo
not offer any protection against slippage. In VERSION4 this affects al | ocat e, r enove, and swap.
Without checking if the transaction is still executed under the desired conditions, the user may suffer
losses.

This issue can be maliciously exploited by front running certain transactions. However, as the system is
designed to interact with smart contracts, the slippage protection could be implemented on their side.

Code corrected

The user is now able to define the delta in and delta out when swapping. Hence, the user either gets the
defined values or the swap will revert due to a violation of the invariant check. The check verifies that the
invariant can only increase.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6.7 Violation of Maximum Ratio of Float Liquidity
(Security | High (EZEIB)] Specification Changed)

The amount of liquidity supplied as float should be less than a threshold value, hard coded to 80% in the
current version of the contract. This restriction is enforced in the f uncti on addFl oat () as follows:

function addFl oat (Data storage reserve, uint256 delLiquidity) internal ({
reserve. f | oat del Liquidity.toUi nt128();
i ((reserve.fl oat 1000) reserve.liquidity 800) revert LiquidityError()

}

This restriction is enforced only when a liquidity provider supplies its liquidity as float, but it does not hold
always as any liquidity provider can freely remove available liquidity from the pool. For example, if the
float liquidity is at its maximum level (i.e., 80%), one liquidity provider could call the
function renove() to remove the 20% of the remaining liquidity, thus putting the pool reserve in a
state with 100% of its liquidity as float.

function renpove(
Dat a storage reserve,
ui nt 256 del Ri sky,
ui nt 256 del St abl e,
ui nt 256 del Li quidity,
ui nt 32 bl ockTi nmest anp

) internal {

reserve. reserveRi sky del Ri sky. toUi nt 128();
reserve.reserveStabl e del St abl e. t oUi nt 128() ;
reserve.liquidity del Liquidity.toUi nt128();
updat e(reserve, bl ockTi nestanp);

Code corrected

The Reser ve library now defines a function checkUti | i zati on() which checks if the invariant holds
whenever float is added, float is payed, or the liquidity is removed.

(Version 3): Specification changed The respective code has been removed according to the new

specifications of (Version 3),

6.8 Token Decimal Validation

(D (Miedium) (Version 3) (SRR

The engine contract supports tokens with different decimals. However, tokens with very few decimals and
more than 18 decimals cause severe issues but are allowed to be deployed by the factory.

Code corrected

The factory now validates decimals for both tokens before deploying an engine. Tokens with 6 to 18
decimals are supported.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.9 Explicitly Handling Positive Invariant
Restriction

(Design (T TR Specifcation Changed

The current implementation checks that the invariant grows assuming it is negative and, when updated
by a swap, grows closer to zero: i f (i nvariant > nextlnvariant && nextlnvariant.sub(in
variant) >= Units. MANTI SSA | NT).

A zero invariant implies a balanced pool at the time of the swap. Typically, the invariant should not
become positive but could happen in specific scenarios such as high trading frequency and high fee
accumulation. If this is the case, besides major other problems, the pool cannot recover as the invariant
needs to decrease back to zero to be in balance again. This is because of the check, that the invariant is
only allowed to grow after a trade. However, in case of a positive invariant, it should not become more
positive.

(Version 2): Code changed

The updated version of the code checks explicitly if the invariant is positive and prevents the invariant to
grow in the wrong direction.

(Version 3): Specification and code changed The issue theoretically exists in version 3. However,
according to Primitive Finance, a positive invariant is not an undisired state any more and a swap should
not lead to a decreasing invariant - even if it is positive.

6.10 Incorrect Tracking of Cumulative Values for
Pool Reserves

(D (Wiedium) (Version 1) (SRR

Primitive Finance pointed out this issues while the audit was ongoing. They are aware that calling the
function updat e() after the pool reserve values are updated, results in incorrect cumulative values.

Code corrected

The function updat e() is called before the new amounts have been applied to the pool reserves.

6.11 Liquidity Providers Get Rewards Without
Supplying Float Liquidity
Design [CLZITNEEITBY| Specification Changed)

In order for users to borrow liquidity from the pools, liquidity providers should allocate liquidity to a pool
and then supply it as float which can be borrowed. Users pay a premium when borrowing liquidity and the
float liquidity of the pool reserve is deducted. After the borrowers pay their debt, the liquidity providers
should claim at first their share of liquidity as float, and then remove it from the reserve.

Since the liquidity providers do not get tokens for their supplied liquidity, the premiums paid by borrowers
go to the pool reserve. This way, all liquidity provider get tokens out according to their share of liquidity
and independently if they have supplied float liquidity to the pool. Hence, a liquidity provider that supplies

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

float liquidity and is more exposed (cannot remove liquidity unless borrowers repay it, or the maturity has
passed) do not get any additional reward.

Specification and code changed

Version 2 introduces a novel fee structure that collects fees when borrow() function is called and
distributes the collected fees to liquidity providers that have supplied float. In case of a positive invariant,
swap fees are also distributed to float providers.

Specification changed

The respective code has been removed according to the new specifications of (Version 3),

6.12 Possible Overflows

(Security \WTDEZZTE] Code Corected)

Primitive Finance pointed out these issues while the audit was ongoing. They are aware that the following
expressions could overflow:

res.cunul ati veRi sky += res.reserveRi sky * deltaTi ne;
ui nt 256 reserveRi sky = (res.reserveRisky * 1el8) / res.liquidity;

Code corrected
The overflow is avoided by casting the variables to ui nt 256 as follows:

res. cunul ati veRi sky += ui nt 256(res.reserveRi sky) * deltaTi ne;
del Rl sky = (delLiquidity * reserve.reserveRisky) / reserve.liquidity;, where
del Li qui di ty is of type ui nt 256.

6.13 Possible to Frontrun on Claim Request

(Design LT MTDIZIETR] Specification Changed)

In some situations, e.g., the price of the underlying token changes significantly, one (or more) liquidity
providers might want to exit their positions and call f uncti on cl ai n{) to remove their liquidity from
float. However, an attacker might frontrun this transaction and call f uncti on borrow() and prevent
the liquidity provider from exiting their position.

Specification changed

The respective code has been removed according to the new specifications of (Version 3),

6.14 Redundant and Improper Revert Condition

(D (Miedium) (Version 1) CTEEIEED)

The two functions bal anceRi sky() and bal anceSt abl e() verify if the call returns the balance
correctly by checking: i f (! success && data.l ength < 32) and revert if the condition is true. This
makes sense if success is f al se or the call did not return a value (dat a. | engt h < 32). With using
&& instead of or the condition would not revert for the combination of success = fal se and
data.l ength > 32 (which is possible). As the function needs the balance to work properly, we do not
see a case where this should not revert if data. | ength < 32. The data. | ength check is also

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

redundant because it is also performed in abi . decode(data, (uint256)). Additionally, it might
make sense to reevaluate if the | ess t han condition makes sense or an equal condition would be more
suitable.

Code corrected
The client has updated the check as follows: i f (! success || data.length < 32).

6.15 Inconsistency of Input Parameters

(Design {(ETO)] Code Corrected

The engine contract is not consistent on the number of decimals an input value should have when called
externally. More precisely, the function creat e() expects the strike price to have 18 decimals,
independently from the decimals of the stable token. However, the function swap() expect the del tal n
to have the same decimals as the token being swapped in. A similar format is expected by functions
deposit() andwi t hdraw() .

Code corrected

The function creat e() expects the strike price to have the same number of decimals as the stable
token. Also, the specification has been updated accordingly.

6.16 Unused Error Definition
7D (Low) (Version 3) CXESIZET)

The error Zer oLi qui di t yError is definedin| Prim ti veEngi neErrors but not used.

Code corrected

The Zer oLi qui di t yErr or erroris now used inrenove and al | ocat e.

6.17 Redundant Storage Read
(Design |(ET(TETTRAY Specification Changed

Reading from state storage consumes more gas than reading from memory. The compiler often handles
redundant storage reads. To avoid paying multiple times for storage reads, storage variables can be
buffered in memory if used more than once. This is tha case for precisionStable and
preci si onRi sky in cr eat e and swap as they are accessed more than once from storage.

Specification changed
The decimal accounting was changed in (Version 3), This issue does not exist anymore.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6.18 Code Duplication
D) (Low) (Version 1) (XL

The following functions share the same code which could be reused:

In borrow, repay, renove and al | ocat e:

del Ri sky (del Liquidity reserve. reserveRi sky) reserve.liquidity;
del St abl e (del Liquidity reserve.reserveStabl e) reserve.liquidity;

Code corrected

The duplicated statements are moved into a function get Anmount s() in the Reser ve library.

6.19 Duplicated Calculation of Invariant

D (Low) (Version 1) ST

The function swap() after updating the timestamp of the pool, calculates the invariant for the new
time until expiry (tau): int128 invariant = invariantO (details.poolld);. Afterwards,
depending on the value of riskyForStable parameter, the function calls either
get St abl eG venRi sky() or getRi skyGvenStable(). Both these functions call
function invariantO (), which recalculates the invariant for the same pool and the same
timestamp. Although recalculating the invariant is reasonable for external calls, it increases the gas
consumption for calls from the swap function.

Code corrected

The updated function swap() calls the get Ri skyG venStabl e() and get St abl eG venRi sky()
functions from the Repl i cati onMat h library which take the invariant as an argument and do not
recalculate it.

6.20 Implementation of get St abl eG venRi sky
Function

(Coreectness YR Code Corrected)

The function specification for calculating the st abl ePer Li qui di t y do not include the value of the last
invariant. However, the function implementation adds the last invariant in the computed stables, therefore
resulting in this formula: st abl ePer Li quidity = K*CDF(CDF*-1(1 - riskyPerLiquidity) -
sigma*sqrt(tau)) + invariantlLast X64.

Code corrected
The code comment has been updated correctly.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

6.21 Possible Gas Optimization in the Deposit
Function

(D (Cow) (Version 1) RIS

The functi on deposit () inthe engine contract allows users to deposit a single token to their margin
account, therefore the function calls the bal anceof () function only for the token with a positive delta.
However, after the callback function for the transfer executes, the function checks the balance of both
tokens (performs two bal anceOf () calls). The function can optimize the gas consumption again by
calling the bal anceOf () only for the token added.

Code corrected

The updated version of the function deposi t () now checks if the delta value is greater than 0 before
reading the balance (before and after the transfer) for the stable and the risky tokens.

6.22 Return Value in saf eTr ansf er

(D (Low) (Version 1) ISR

The function saf eTr ansf er () in the library Tr ansf er s checks if an ERC20 token transfer completed
successfully, otherwise the function reverts. Currently, the function returns a boolean value but it is never
checked in the caller functions.

Code corrected

The return value in saf eTr ansf er () has been removed.

6.23 MANTI SSA | NT Constant
7DD (Tow) (Version 1) CXIIIEED)

MANTI SSA | NT is a constant defined in units library and its value in 64x64 format corresponds to 10x
the value of the constant variable Mant i ssa in units library.

Code corrected
The unused MANTI SSA | NT has been removed.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Engine Shall Not Have Privileges in Other
Smart Contracts

With the current setup, for security reasons, the engine contract must not have privileges in any other
smart contracts. The main reason is that the engine contract supports several callbacks which potentially
could have the same function signature as a sensitive function in the contract being called.

7.2 Limited Supported Token Pairs

PrimitiveFactory contract deploys a unique PrimitiveEngine contract for a pair of ERC20 tokens. The
function depl oy() takes as arguments the addresses of the two ERC20 tokens and assumes that
they are implemented correctly and behave as expected. The functi on depl oy checks only if the
provided addresses of the risky token and the stable one are not the same and that they are different
from addr ess(0) .

Technically, it is possible to deploy a PrimitiveEngine with any arbitrary pair of tokens, such as:
compromised/malicious tokens, two risky tokens, two stable tokens, or with switched addresses for the
risky and stable tokens. Therefore, the filtering of the bad or malicious engines and their respective pools
should happen on the application level (outside the audited smart contracts) in order to protect users
from interacting with incorrect engines.

We explicitly mention that the contract ONLY works with standard ERC20 tokens that do not have any
unusual behavior like inflation, deflation, locking, fees, two addresses etc. Users needs to carefully
evaluate if the pool's token fulfill the requirements!

A check in the factory before deploying the engine might at least prevent accidentally adding a token with
unsupported decimals.

7.3 More Testing for CDF

The correctness of the cumulative normal distribution function and its inverse function are important for
the whole protocol. The functions get CDF() and get | nver seCDF() ensure that the pool maintains the
correct values of stable and risky tokens at any time. Both functions compute approximate values and the
current testing shows that the error falls below a chosen threshold. However, the code calls these
functions in the pattern get CDF(get | nver seCDF(x) + volatility) (refer to
get R skyG venStabl e() and get Stabl eG venRi sky() functions), therefore it is highly
recommended to expand the testing for checking how the combine error changes when the functions are
called as in the above example.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

7.4 Oracle Usage
(D) (Version 1

In case any project uses the current marginal prices as oracles, the oracle price would be an easy target
to price manipulation.

7.5 Stuck Funds
(D) (Version 1

When the Pri m ti veEngi ne contract calls callbacks from other contracts to make a token transfer, the
engine only checks that its token balance increased by a value equal or greater than an expected
amount. Afterwards, the engine updates the reserve balances with the expected amount. However, if the
external contract transfers more token than expected, the difference (tokens transferred - expected
tokens) are locked in the engine contract and neither pools, nor liquidity providers can access them.
Below is a code example from the f uncti on create():

(bal anceRi sky() del Ri sky bal Ri sky) revert RiskyBal anceError (del Ri sky bal Ri sky, bal anceRi sky());
(bal anceSt abl e() del St abl e bal St abl e) revert Stabl eBal anceError(del Stable bal St abl e, bal anceStable());

if
if
Funds can also be locked during liquidity allocation if either del Ri sky or del St abl e does not match
the del Li qui di ty that the user intents to allocate. The function al | ocat e() computes the respective
delta liquidities for both tokens (risky and stable) and rewards the smallest delta liquidity to the user. The
code is shown below:

ui nt 256 i quidity0 (del R sky reserve.liquidity) ui nt 256(reserve. reserveRi sky) ;
uint256 liquidityl (del stabl e reserve. liquidity) ui nt 256(reserve. reservesSt abl e) ;
delLiquidity liquidityO liquidityl ? liquidityOo : liquidityl

liquidity[recipient]|poolld] del Liquidity;

The same is true for all other funds that are accidentally send to the contract or intentionally forced into
the contract.

7.6 Timestamp Conversion Limit

(D) (Version 1

The _bl ockTi mest anp function converts the bl ock.ti nestanp from a ui nt 256 to a ui nt 32.
Hence, limiting the maximum value for the timestamp to Sunday, February 7, 2106. This is in 84 years.
The contract will have issues in case it is used this long at that point in time.

@ Primitive Finance - Core Engine - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Code Duplication Balance Getters
	5.2 Event Optimization
	5.3 Sanity Checks
	5.4 Unused Function getRiskyGivenStable
	5.5 Unused Storage Fields

	6 Resolved Findings
	6.1 Low Decimal Token Issues
	6.2 Anyone Can Call the Repay Function After Pool's Maturity
	6.3 Borrower Locks Liquidity in the Pool
	6.4 Disable Unnecessary Functionalities After Expiry
	6.5 Flawed Fee and Premium Structure
	6.6 No Slippage Protection
	6.7 Violation of Maximum Ratio of Float Liquidity
	6.8 Token Decimal Validation
	6.9 Explicitly Handling Positive Invariant Restriction
	6.10 Incorrect Tracking of Cumulative Values for Pool Reserves
	6.11 Liquidity Providers Get Rewards Without Supplying Float Liquidity
	6.12 Possible Overflows
	6.13 Possible to Frontrun on Claim Request
	6.14 Redundant and Improper Revert Condition
	6.15 Inconsistency of Input Parameters
	6.16 Unused Error Definition
	6.17 Redundant Storage Read
	6.18 Code Duplication
	6.19 Duplicated Calculation of Invariant
	6.20 Implementation of getStableGivenRisky Function
	6.21 Possible Gas Optimization in the Deposit Function
	6.22 Return Value in safeTransfer
	6.23 MANTISSA_INT Constant

	7 Notes
	7.1 Engine Shall Not Have Privileges in Other Smart Contracts
	7.2 Limited Supported Token Pairs
	7.3 More Testing for CDF
	7.4 Oracle Usage
	7.5 Stuck Funds
	7.6 Timestamp Conversion Limit

