PUBLIC

Code Assessment

of the Conditional Tokens

Smart Contracts

11 April, 2024

Produced for

g Polymarket

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

o O A W N P

Notes

@ Polymarket - Conditional Tokens - ChainSecurity - © Decentralized Security AG

© 0 01 W

10
11

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Polymarket with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Conditional Tokens
according to Scope to support you in forming an opinion on their security risks.

Polymarket uses gnosis conditional tokens to represent positions in prediction markets with binary
outcomes.

The most critical subjects covered in our audit are functional correctness and the resilience of elliptic
curve calculations used in ID computation.

Security regarding functional correctness is high. Furthermore, the possibility of negating IDs on the used
elliptic curve (and the subsequent possibility if creating "all-purpose” tokens) does not pose a security risk
within the conditional token framework but adds additional complexity that should be taken into
consideration when using conditional tokens (see Infinite minting of position tokens with no value).

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Polymarket - Conditional Tokens - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

@ Polymarket - Conditional Tokens - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Conditional Tokens repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V | Date Commit Hash Note
1 | 17 September 2020 | eeefca66eb46c800a9aaab88db2064a99026fde5 Initial Version

For the solidity smart contracts, the compiler version 20. 5. 1 was chosen.

2.1.1 Included in scope
This report covers the gnosis conditional tokens contracts.
» contracts/ERC1155/ERC1155.sol
» contracts/ERC1155/ERC1155TokenReceiver.sol
» contracts/ERC1155/IERC1155.sol
» contracts/ERC1155/IERCTokenReceiver.sol
» contracts/ConditionalTokens.sol
« contracts/CTHelpers.sol

« contracts/Migrations.sol

2.1.2 Excluded from scope

Any contracts inside the repository that are not mentioned in Scope are not part of this assessment. All
external libraries and imports are assumed to behave correctly according to their high-level specification,
without unexpected side effects.

Tests and deployment scripts are excluded from the scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Conditional tokens are an ERC-1155 representation of prediction markets with arbitrary complexity.
Polymarket uses these conditional tokens to represent such prediction markets with binary outcomes.

@ Polymarket - Conditional Tokens - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.1 ConditionalTokens

Condi ti onal Tokens is an ERC-1155 contract that allows users to create tokens tied to questions with
up to 256 outcomes (conditions). Each position a user can hold is identified by a unique posi ti onld
that corresponds to an ERC-1155 token id. A position is tied to a collateral token and a col | ecti onl d.
A collection is a condition tied to a subset of all possible outcomes.

A user can call pr epar eCondi ti on() by defining an oracle address, a unique identifier quest i onl d,
and the number of outcome slots the condition has. This condition can then only be resolved by the
oracle.

Once the condition is prepared, the user can call spl i t Posi ti on() by defining a collateral token and a
valid outcome partition (at least two different disjoint subsets of the total outcome set covering all
available outcome slots) for the given condition. The function then mints one outcome token of each
partition per supplied collateral.

For example, a user splitting on a condition with 2 outcomes and providing one collateral token will
receive one token for each outcome. For conditions with more than two outcomes, the user can also split
a position into at least two distinct subsets of outcomes. For example, for a condition with 3 outcomes (
A|B|C), a user can split one collateral token into one A token and one B|C token. Furthermore, the B|C
token can then also be split into one B and one C token.

If a user holds a position for each outcome of a condition, they can call mer gePosi ti ons() to redeem
the underlying collateral token. For conditions with more than two outcomes, it is possible to merge a
subset of outcomes. For example, for a condition with 3 outcomes (A|B|C), a user can merge one A and
one B token to receive one A|B token.

A condition can only be resolved by the oracle of the condition using r eport Payout s() . This function
will set the outcome of the condition and set the payout vector for each outcome of the condition
(payout Nurrer at or s and payout Denomi nat or). The payout for each outcome is a fraction of the
total collateral tokens. The total payout ratio for all outcomes must be 1.

Once the condition is resolved, the positions can be redeemed using r edeenPosi ti ons() . For each
position, the user will receive the payout set by the oracle for that specific outcome.

A position in the conditional token contract is represented by a positionl d. A position is tied to a
collateral token and a col | ecti onl d, which is computed from a condi ti onl d and an outcome. A
collection is therefore a set of outcomes for a condition.

The contract also offers the possibility to combine multiple conditions into a single position allowing for
positions that have to correctly predict the outcome of multiple questions in order to receive a payout.

For this purpose, collection IDs are computed by adding the hash of a condition and an outcome set to
the collection ID of another condition on an elliptic curve. This approach ends up with the same position
ID no matter from which condition the first split is performed. For such composite conditions, the
contract's functions work slightly differently:

esplitPosition() burns the tokens of the "parent” condition instead of transferring collateral from
the user.

emmergePositions() and redeenPositions() mint "parent" condition tokens instead of
transferring collateral to the user.

2.2.2 Contract CTHel pers

CTHel per s offers helper functions to compute condition IDs, collection IDs and position IDs.

A condi tionl d is computed as the keccak256 hash of the oracle, a question ID and the number of
outcomes.

@ Polymarket - Conditional Tokens - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

A collectionld is computed as the keccak256 hash of a conditionld and an index set of
outcomes. The index set is a bit array where each bit represents an outcome. For example, a condition
with 3 outcomes (A|B|C) will have a 3-bit index set.

For a combination of collections, the col | ecti onl d is computed as a multi-hash set of col | ecti onl d
points on the bn_128 elliptic curve. This is done to leverage the commutative property of point addition
on elliptic curves over finite fields, which allows the combination of collections in any order. To compute
the corresponding elliptic curve point of the col | ect i onl d, the first 254 bits of the ID are used as the x
coordinate, the 255th bit is used as a parity bit and the 256th bit is not used. The y coordinate is then
computed using the elliptic curve equation.

A positionldisacollectionld tied to a collateral token. It is computed as the keccak256 hash of
the col | ecti onl d and the collateral token address.

2.2.3 Polymarket Conditional Token Usage

Polymarket uses conditional tokens to represent conditions with binary outcomes. Furthermore,
Polymarket does not create combinatorial markets over multiple conditions. This means that only
conditions with 2 outcomes are created with par ent Col | ecti onl d setto O.

2.2.4 Trust Model

Anyone can create a condition with pr epar eCondi ti on() . However, only the or acl e provided during
condition preparation can resolve it by calling r epor t Payout s() . This means that the oracle has the
power to set the outcome of a condition and the payout for each position. The oracle is a trusted party
and the system relies on the oracle to resolve conditions correctly.

@ Polymarket - Conditional Tokens - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Polymarket - Conditional Tokens - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Polymarket - Conditional Tokens - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings

In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings ¢
(1 1)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings g
@ Polymarket - Conditional Tokens - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

6.1 Infinite Minting of Position Tokens With No
Value

(D) (Version 1)

For any resolved condition it is possible to mint an infinite amount of tokens for the losing outcomes from
a single 0 token (i.e., a token with a collection ID of 0x0). For this to work, one outcome must receive all
the payout and the other outcomes must receive none.

For example, for a condition with binary outcomes (True|False), if the condition resolves to True, it is
possible to mint an infinite amount of False tokens from a single 0 token. Because the False tokens have
no value at this point, it is not an issue by itself but it should always be taken into account when designing
a market around conditional tokens.

We will now explain how to mint an infinite amount of losing tokens from a single 0 token.

From a previous audit on the conditional tokens contracts, we learn how to obtain one 0 token from one
collateral token (Chapter 6). Furthermore, it is stated that a 0 token, tied to collateral token CT, can be
used with any position tied to CT.

In case a particular market is created using Polymarket's NegRi skAdapt er (instead of directly working
with the Condi ti onal Tokens contract), the conversion of a O token to a token representing a
Polymarket condition must be tied to wrapped collateral. Polymarket uses wrapped collateral tokens as
collateral for conditional tokens. Users can obtain wrapped collateral tokens by redeeming conditional
tokens directly on the used Condi t i onal Tokens instead of the adapter.

We assume that we have a condition with a condi ti onl d C with two possible outcomes (True|False)
and that the condition has resolved to True. Furthermore, the notation H(T) represents the elliptic curve
multi-hash set of condi ti onl d C with outcome True while H(F) represents the same for outcome
False.

The first step of converting a 0 token to a False token is a call to redeenPosi tions() with the
following arguments:

e col | at er al Token: The collateral token CT used when creating the O token.

e parent Col | ecti onl d: —H(T), the additive inverse of H{T) on the given elliptic curve.
econdi tionld:C.

*i ndexSets:[0b01].

Because the condition has resolved to True, the function will convert one 0 token (the result of the
calculation —H(T) + H(T) that is performed in r edeenPosi ti ons() to calculate the col | ecti onl d of
the tokens that should be redeemed) to one —H(T) token. We note that redeeming to —H(F) tokens is not
possible as it would require redeeming an index set of 0610 which does not have a payout vector.

The next step is a call to spl i t Posi ti on() with the following arguments:
ecol | at er al Token: CT.
eparent Col | ecti onl d: —H(T).
econdi tionld:C.
epartition:[0b01, 0bl0].

@ Polymarket - Conditional Tokens - ChainSecurity - © Decentralized Security AG 11

https://github.com/gnosis/conditional-tokens-contracts/blob/master/docs/audit/2020-01-20_accumulator_audit.pdf
https://chainsecurity.com

« anount : The amount of obtained —H(7T) tokens.

Equal amounts of 0 tokens and one —H(T) + H(F) tokens are created. The new 0 tokens can be re-used
with the first step of this conversion.

—H(T) + H(F) tokens can be split in another step to equal amounts of H(F) and —H(T) + 2H(F) tokens
using splitPosition():

ecol | ateral Token: CT.

e parent Col | ecti onl d: —H(T) + H(F).

econdi tionld:C.

epartition:[0b01, 0b10].

e anount : The amount of obtained —H(T) + H(F) tokens.

The following graphic gives an overview of the conversion steps:

l redeem()

Repeat -H(T)

H(T) H(F)
split()

~— 0 -H(T) + H(F)

H(T) H(F)

split()

H(F) -H(T) + 2H(F)

We notice that from a single 0 token we can obtain an infinite amount of H(F) tokens, since a single 0
token can be transformed to a 0 and a H{F) token. The same issue arises for conditions with more than
two outcomes where all losing outcome tokens can be minted infinitely from a single O token.

It is therefore important that, once a condition is resolved in the Condi ti onal Tokens contract, there
should no longer exist any arbitrage opportunities for the respective tokens and no external contract's
accounting should rely on the token amounts to be correct.

6.2 No Irregular ERC-20 Tokens Supported
(D) (Version 1)

The Condi ti onal Tokens contract does not support ERC-20 tokens that do not return values in the
transfer/approval functions (e.g., USDT).

@ Polymarket - Conditional Tokens - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Included in scope
	2.1.2 Excluded from scope

	2.2 System Overview
	2.2.1 ConditionalTokens
	2.2.2 Contract CTHelpers
	2.2.3 Polymarket Conditional Token Usage
	2.2.4 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Notes
	6.1 Infinite Minting of Position Tokens With No Value
	6.2 No Irregular ERC-20 Tokens Supported

