PUBLIC

Code Assessment

of the PoS Portal
Smart Contracts

April 18, 2023

Produced for

by

CH polygon

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
System Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

© 00 N o 0o A~ W DN PP

Notes

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG

10
11
12
13
17
18

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Polygon with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of PoS Portal according to
Scope to support you in forming an opinion on their security risks.

Polygon PoS Portal is a bridge for assets between the RootChain (Ethereum) and the ChildChain
(Polygon). Additionally a gas-swapper contract which helps users to aquire MATIC while bridging tokens
to Polygon was reviewed.

The most critical subjects covered in our audit are the functional correctness of the bridging mechanism,
security of the locked assets and the validation of withdrawals on the RootChain. Security regarding all
the aforementioned subjects is high.

The general subjects covered are documentation, efficiency and adherance to the implemented
standards. Security regarding all the aforementioned subjects is high. The codebase however could be
more consistent: Multiple similar contracts exist where the implementation of the same functionality
differs slightly.

This review covered a system already deployed. The actual contracts deployed do not exactly
correspond to the version audited, although the changes are mostly of cosmetic nature only. The
compiler version + dependencies used are outdated, however no known bug affects the live contracts.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

(¥ Specification Changed

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the respective repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

PoS Portal
Date Commit Hash Note
Vv
13 February 2023 | 41d45f7eff5b298941a2547afa0073a6¢c36b2b9c | Initial Version
1
17 April 2023 ece4e54546a4e075f3a03b2699bc6bd92a5bcO | After Intermediate Report
2 65

Gas Swapper

V | Date Commit Hash Note
1 | 13 February 2023 351b8f0097419df1b5174b21bf6685fbd5cal530 Initial VVersion

For the solidity smart contracts of the pos portal, the compiler version 0. 6. 6 was chosen. For the solidity
smart contract of the gas swapper, the compiler version 0. 8. 17 was chosen.

We assume the deployment and initialization of the contracts is done correctly.

2.1.1 Excluded from scope

All files not in the / contracts directory of the PoS-Portal repository. Notably system contracts of
Polygon, the StateSender, StateReceiver and CheckpointManager(Root Chai n. sol) are not in scope of
this review. Files in /contracts/test and files used for testing only (Dumy. ... sol) are out of
scope.

For the gas swapper the exchange (0x) and mock contracts are out of scope, as well as the plasma
bridge which is used to bridge the MATIC tokens.

3 System Overview

Polygon PoS Portal is a bridge for assets between the RootChain (Ethereum) and the ChildChain
(Polygon). Supported are assets of the following standards:

* ERC20 Token Standard

* ERC721 Non-Fungible Token Standard
* ERC1155 Multi Token Standard

* Ether

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Users can bridge enabled assets as what follows:

From Ethereum to Polygon: Users call the respective deposit functions of the RootChainManager. The
asstes will be locked on the RootChain and minted automatically to the receiver on the ChildChain.

From Polygon to Ethereum: Users can claim tokens on the RootChain using the exi t function of the
RootChainManager after having withdrawn the tokens from the child chain. Technically, withdrawing
simply requires a transfer event emitted by the ChildToken certifiying the tokens have been burned.

The RootChainManager and the ChildTokens contracts support MetaTransactions: Users can provide
signatures for their transaction which can then be executed by any relayer.

3.1 RootChain
3.1.1 RootChainManager

The RootChainManager is the main contract. Communicating messages from Ethereum to Polygon is
done using the St at eSender contract of Polygon. This contract emits an event containing the message
to be bridged. Validators of Polygon will pick this event up and add the message to the list of pending
state syncs. These messages are automatically executed in sequence on Polygon. The recipient's
(Chi | dChai nManager) onSt at eRecei ve function is executed, receiving the data as input. This call
has up to 5 000 000 gas available. If its execution fails for any reason, the message is lost and
cannot be re-executed.

The contract implements role-based access control. There are two privileged roles, adm n and napper.
Addresses holding the admin role can fully configure the contract using the following functions:
esetupContract!d()
einitializeEl P712()

These functions are intended to be used for initialization only.
*set St at eSender ()
* set Checkpoi nt Manager ()
e set Chi | dChai nManager Addr ess()

These functions allow to update the addresses of the respective contracts.

eregi sterPredicate()

Used to set the address of the predicate contract for a token type. Bridged assets are held at the
predicate.

They can access the following very privileged functionality editing the mapping of tokens:
e cl eanMapToken() Clears a mapping on the RootChain only

*remapToken() Remaps a tokens

Furthermore, the admin can manage the roles for addresses.
Addresses with the mapper role can map tokens to enable the movement of this asset via the PoS Portal.
Users can deposit assets using the following functions:

e deposit Et her For ()

e deposit For ()

There is a payable fallback function r ecei ve which invokes deposi t Et her For (__nsgSender) .

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The deposit functionality ensures the token is mapped and locks the asset at the predicate contract
before bridging the message using the StateSender contract. When the message is received on the
ChildChain, the respective assets are automatically minted for the receiver.

After having initiated a withdrawal on the Childchain, a user can exit his tokens on the Rootchain using
the RootChainManagers exit function. Messages from the Polygon are read on Ethereum by parsing
events emitted by the Child chain. To exit assets, the corresponding transfer event is evaluated and the
assets are released from the respective predicate contract to the user.

3.1.2 TokenPredicates

Bridged assets are locked at their respective predicate contract on the RootChain. These predicate
contracts must implement functions | ockTockens and exit Tokens. Different predicate contract
implementations are available depending on the type of token / use case.

« ERC20Predicate: Handles ERC20 tokens.
« ERC721Predicate: Handles ERC721 NFT tokens.
*« ERC1155Predicate: Handles ERC1155 tokens.

« EtherPredicate: Handles the locking and release of Ether. | ockTockens() only tracks the
expected amount to be received, the RootChainManager must ensure the actual transfer of Ether.

» MintableERC20/ERC721/ERC115Predicate: exi t Tokens() mints tokens in case of insufficient
balance. These predicates hence require miniting rights on the token contract.

» ChainExitERC1155Predicate: Handles ERC1155 emitting the ChainExit() event upon withdrawal
from the Child chain.

3.2 ChildChain
3.2.1 ChildChainManager

It is the main contract on the ChildChain implementing onSt at eRecei ve() , which can only be invoked
by the system when bridging message. Two kind of messages are supported, DEPOSI T and
MAP_TOKEN.

« DEPOSIT: completes the deposit initiated on the RootChain by invoking
chi | dTokenContract. deposit().

« MAP_TOKEN: completes the mapping of a token initiated on the RootChain by storing the
addresses in the respective mappings.

The contract implements role-based access control. There are two privileged roles, mapper and
state_syncer _role.

Addresses with the mapper role can access:
e cl eanMapToken() Clears a mapping on the ChildChain only
«mapToken() Maps a tokens on the ChildChain only

3.2.2 ChildTokens

To represent the assets from the RootChain, token contracts are deployed on the Child chain. Note that
the deployment of these tokens must be done manually. Then, to enable a token in the PoS Bridge a
mapper must add the token with its corresponding child token to the RootChainManager.

The following token template contracts exist:
* ChildERC20, ERC721, ERC1155
* ChildMintableERC20, ERC721, ERC1155

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

« MATICWETH (Used to map native Ether of the RootChain)
» UpgradeableChildERC20
» UChildDAI

3.3 Trust Model & Roles

Main contracts such as the Root/ChildChainManager and the TokenPredicates are deployed behind an
upgradeable proxy. The owner of the proxy (assumed to be appropriately choosen, e.g. a timelocked or
limited multisig) is fully trusted to act honestly and correctly at all time.

The admin role is fully trusted to act honestly and correctly at all time. Misconfigurations may break the
system and may result in the loss of assets.

Manager role: fully trusted to map tokens correctly. Incorrect mappings may break the system.
StateSender: Fully trusted system contract.
CheckPointManager: Fully trusted system contract. Source of truth on Ethereum for Polygon blocks.

Polygon Validators: Fully trusted, e.g. not to censor transactions. Must trigger the system call to
St at eRecei ver with correct arguments, which triggers onSt at eRecei ve() .

Users: Untrusted

Tokens: Any external tokens are expected to correctly follow their standards. Tokens are expected not to
have non-standard functionalities such as fees on transfer, blacklists, etc. Rebasing tokens specifically
are not supported.

3.4 Root and Child Tunnels

Though not used in PoS bridging, BaseChi | dTunnel and BaseRoot Tunnel provide a mechanism for
arbitrary message bridging (AMB) to enable bi-directional communication between Ethereum and
Polygon. This mechanism basically relies on a loose synchronisation of states between different chains.
The aforementioned contracts implement a bridging logic, which can subsequently be inherited by other
contracts implementing their own version of _processMessageFrontChil d on the root side and
_processMessageFr onRoot on the child side, in order to process received messages from the other
chain.

1. Root to Child chain message passing:

Root Tunnel provides the users with a function named _sendMessageToChil d. This
function calls into an already set st at eSender contract, which publishes the data as an event
on the root chain. Later, validators of Polygon fetch this event, and call into onSt at eRecei ve
of Chi | dTunnel , and a custom _pr ocessMessageFr onRoot gets called.

2. Child to Root chain message passing:

Quite similar to the other direction, _sendMessageToRoot on the contract inheriting from
Chi | dTunnel gets called, which emits a corresponding event on the child chain. After the
block containing this event gets checkpointed on Ethereum, any user can trigger
r ecei veMessage to firstly validate the passed-in message in terms of signature, inclusion in
the block, and inclusion of the block in the claimed checkpoint. To avoid message reply attacks,
the hash of this message gets inserted to a mapping.

These contracts are an early version of the Fx-Portal contracts. It is recommended to use the up to date
Fx-Portal contracts instead of these tunnel contracts.

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3.5 Trust Model & Roles

RootTunnel: Trustless contract. It has to be initialised with a correct end-point on the child chain and
whitelisted in the st at eSender .

ChildTunnel: Trustless contract. Assumed to be initialised with a correct end-point of the rootchain and be
whitelisted in the st at eSender .

StateSender: Fully trusted.

CheckPointManager: Fully trusted.

Polygon Validators: They are taken as trusted. While due to their authority they can censor transactions.
Admin: Fully trusted.

State Synchroniser: Fully trusted.

Users: Untrusted

3.6 GasSwapper

MATIC is required to pay the transaction fees on Polygon. GasSwapper allows user to swap (Ether for
Matic) and bridge (a token): Using 0x Ether will be converted in to MATIC.

The token will be bridged via the PoS bridge (part of this review), while the Matic will be bridged via the
Plasma bridge. Any excess Ether (e.g. from the swap) will be refunded to the caller.

3.7 Trust Model & Roles

Trustless contract without privileged roles.

The exchange is expected to behave as expected, the user is fully responsible for the swapCal | Dat a
passed.

The Plasma bridge is expected to work as documented.

Tokens are expected not to have non-standard functionalities such as fees on transfer, blacklists, etc.

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(C2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 0

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

/ Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 0

y g

(CL:0)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 2
ty g

» ChainExitERC1155Predicate No Exit Event il bl N el LT
« ChildChainManager cleanMapToken Emits Wrong Event
» Unused ExitedERC721Batch Event

e _processMessageFromChild Comment Incorrect @il T eET Tl
« MetaTransactionExecuted Event Has No Indexed Arguments

7.1 ChainExitERC1155Predicate No Exit Event
(Design | ETINEETIRY] Specification Changed

No Exit event is defined in Chai nExi t ERC1155Pr edi cat e. Hence, upon calling exi t Tokens no
useful and informative event gets emitted. Furthermore this behavior is inconsistent with the other
predicates.

Specification changed:
Polygon has acknowledged lack of an exit event in Chai nExi t ERC1155Pr edi cat e mentioning that:

"Contract is deprecated and was never deployed.”

7.2 ChildChainManager cleanMapToken Emits

Wrong Event
D (Low) (Version 1) (YRR

By calling cl eanMapToken, a certain bijection mapping between root and child tokens gets removed.
However, the event emitted wrongly indicates a mapping has taken place.

Code corrected:

Polygon defined a new event TokenUnmapped which gets emitted once a certain mapping between a
root and a child token gets removed.

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7.3 Unused ExitedERC721Batch Event
D) (Low) (Version 1) (XTI

ERC721Pr edi cat e defines event Exi t edERC721Bat ch, however; exi t Tokens does not support
batch exiting of tokens and this event is not used at all.

Code corrected:
Polygon has removed the definition of Exi t edERC721Bat ch from their codebase.

7.4 _processMessageFromChild Comment
Incorrect

[Low] [Version 1) Specification Changed

The comment of _processMessageFr ontChi | d() in BaseRoot Tunnel says that is called from the
onSt at eRecei ve function. This is incorrect. It is actually called from r ecei veMessage() .

Specification changed:

Polygon has corrected the comments on the function _pr ocessMessageFr onChi | d saying that it is
called from r ecei veMessage() .

7.5 MetaTransacti onExecut ed Event Has No
Indexed Arguments

(D (Low) (Version 1) ISR

The aforementioned event is defined as

event MetaTransacti onExecut ed(
addr ess user Addr ess,
address payabl e rel ayer Addr ess,
byt es functionSi gnature

),

None of its arguments are marked as indexed, which could degrade user experience. Indexing fields of
events, e.g. addresses, allows to search for them easily.

Code corrected:

Polygon defined userAddress and relayerAddress as indexed fields of the event
Met aTr ansact i onExecut ed.

event MetaTransacti onExecut ed(
address i ndexed user Addr ess,
address payabl e i ndexed rel ayer Addr ess,

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

byt es functionSi gnature

),

7.6 Gas Optimisation Issues Informational

The codebase has several inefficiencies in terms of gas costs when deploying and executing smart
contracts. Here, we report a list of non-exhaustive possible gas optimizations:

1.

10.

11.

12.

13.

Chi | dM nt abl eERC1155. deposi t performs a sanity check on user != address(0) after
decoding deposi t Dat a. This check however has already been done by the RootChainManager.

.Nati veMet aTr ansacti on. execut eMet aTransacti on has a visibility of public. As this

function in the current implementation gets called only externally, it ca be defined as external, which
subsequently lets memory location of functionSi gnature be calldata. In this way, gas
consumption can be reduced.

. Upgr adabl ePr oxy. updat el npl enment at i on checks _newPr oxyTo is non-zero. However, the

exact same check is done when calling into i sCont r act .

. Upgr adabl ePr oxy. updat eAndCal | is a public function. Its visibility can be changed to

ext er nal letting its argument dat a be defined as calldata.

. Root Chai nManager . recei ve calls into _deposi t Et her For with _nsgSender as the input

argument. However, given the fact that sending ETH does not happen through a meta transaction,
simply using nsg. sender can be used.

.| TokenPr edi cat e. exi t Tokens takes an address as its first argument (sender). However, this

argument is never used in any implementation of the token predicates.

. exi t Tokens function for tokens with multiple transfer signatures is implemented as an if-else

body, and in each branch same flow of subfield extractions is done. To reduce code footprint, these
operations can be moved out of if-else and only logic be kept in each branch.

. exi t Tokens function in call predicates can have an external visibility and calldata memory

location for it | og argument.

. In mintable version of each token, inside an if-else statement, it checks whether an excessive

amount should be minted and then transfers the actual amount to the receiver. Calling transfer
functions can be done outside of if-else to decrease code footprint and reduce deployment cost.

Nat i veMet aTr ansact i on. get Nonce, which returns current valid nonce of each user. As this
view function gets called only externally, its visibility can be changed to external.

Chai nExi t ERC1155Pr edi cat e. exi t Tokens checks the wi t hdr awer is not address zero.
However, as the log data fed to it comes from a valid burn event on the child chain, f r omcannot be
Zero.

BaseChi | dTunnel . onSt at eRecei ve can be defined as external with nessage having calldata
type.

BaseRoot Tunel . recei veMessage is never called internally. Therefore, it can be define as
external with i nput Dat a being calldata.

Code corrected:

Polygon has addressed most of the gas optimisation issues. However, for those below they have decided
to keep the code as-is:

S

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

11.

. "That is correct but we are in favour of retaining this as an assertion."
. "some relayers support ETH metatxs, retaining for backwards compatibility."
. No further explanations.

. No further explanations.

"That is correct but we are in favour of retaining this as an assertion."

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG

16

https://chainsecurity.com

8 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

8.1 Enhance Documenation of Inline Assembly
(Informational] [Version 1]

Code forked from Biconomy is used to implement support for Meta Transactions. The assembly in
function nsgSender () used to retrieve the sender of the message is not as trivial as it might look. The
comment documenting the code section is not appropriately describing what's happening.

if (nmsg.sender address(this)) {
bytes nmenory array nsg. dat a;
ui nt 256 i ndex neg. dat a. | engt h;
assenbly {

sender : = and(
m oad(add(array, index)),
OXffffffffffffffffffffffffffffffffffffeeee

}
Intuitively the code seems to read 32 bytes past the end of nsg. dat a. However, note that for variable
length data in memory solidity uses the first 32 bytes to store the length of the data. Hence,

m oad(add(array, index)) loads the last 32 bytes of msg. dat a and the code works correctly. Due
to the delicate nature of assembly within Solidity, this might be documented appropriately.

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

9 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

9.1 ChildERC721 Static domainSeparator

In all variants of ChildERC721, once and only once upon deployment, donai nSepar at or gets
calculated using the name of token and chain ID:

domai nSeper at or keccak256(
abi . encode(
El P712_DOVAI N_TYPEHASH
keccak256(byt es(nane)),
keccak256(byt es(ERC712_VERSI ON))
address(this),
byt es32(get Chainld())

),

However, in Root Chai nManager and UChi | dERC20, a functionality is devised to let recomputation of
domai nSepar at or, e.g. when name of token gets updated. Despite the fact, that forking and a
consequent change of chain ID may not be very possible, implementing this functionality in derivations of
ERC721Child could make the system more robust.

9.2 Exiting MintableERC721

MintableERC721Predicate offers several exit possibilities:
* TRANSFER_EVENT_SIG
* WITHDRAW_BATCH_EVENT_SIG
« TRANSFER_WITH_METADATA_EVENT_SIG

Due to the uniqueness of an NFT (t okenl D) a token can only exist once. However, please consider all
withdrawal options emit the Transfer event on the child chain and hence all can be exited using the
TRANSFER_EVENT_SIG. This has the following consequences:

For an exit initiated using:

« withdrawBatch: If one transfer has been exited using the TRANSFER_EVENT _SIG, all transfers of
the batch must be individually exited using their individual transfer event.

« withdrawWithMetadata: If the TRANSFER_EVENT_SIG is used for the exit, the metadata is lost.

9.3 Minting of ERC721 Tokens

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

When using Chi | dM nt abl eERC721 and M nt abl eERC721Pr edi cat e, it is important that only the
predicate has minting rights for the token on the root chain.

On the child chain Chi | dM nt abl eERC721 allows addresses holding an admin role to mint tokens with
arbitrary token ID's given they do not exist on the child chain and have not been withdrawn to the root
chain yet.

This protection is only effective when no arbitrary token can be minted on the root chain.

9.4 Recipient of Withdrawn Tokens
(D) (Version 1)

None of the withdraw functions of the child tokens allows to specify the recipient on the root chain. The
recipient address is the token owner on the child chain.

It is important to ensure one can access these tokens on the root chain before initiating the withdrawal.
Although this generally is not an issue for EOASs, special care must be taken for contracts.

For ERC721/ERC1155 if the recipient is a contract, the contract must implement the appropriate interface
or the tokens may be stuck in the bridge as they cannot be exited successfully.

@ Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 RootChain
	3.1.1 RootChainManager
	3.1.2 TokenPredicates

	3.2 ChildChain
	3.2.1 ChildChainManager
	3.2.2 ChildTokens

	3.3 Trust Model & Roles
	3.4 Root and Child Tunnels
	3.5 Trust Model & Roles
	3.6 GasSwapper
	3.7 Trust Model & Roles

	4 Limitations and use of report
	5 Terminology
	6 Findings
	7 Resolved Findings
	7.1 ChainExitERC1155Predicate No Exit Event
	7.2 ChildChainManager cleanMapToken Emits Wrong Event
	7.3 Unused ExitedERC721Batch Event
	7.4 _processMessageFromChild Comment Incorrect
	7.5 MetaTransactionExecuted Event Has No Indexed Arguments
	7.6 Gas Optimisation Issues Informational

	8 Informational
	8.1 Enhance Documenation of Inline Assembly

	9 Notes
	9.1 ChildERC721 Static domainSeparator
	9.2 Exiting MintableERC721
	9.3 Minting of ERC721 Tokens
	9.4 Recipient of Withdrawn Tokens

