

PUBLIC

Code Assessment

of the PoS Portal

Smart Contracts

April 18, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 System Overview 5

4 Limitations and use of report 10

5 Terminology 11

6 Findings 12

7 Resolved Findings 13

8 Informational 17

9 Notes 18

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Polygon with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of PoS Portal according to
Scope to support you in forming an opinion on their security risks.

Polygon PoS Portal is a bridge for assets between the RootChain (Ethereum) and the ChildChain
(Polygon). Additionally a gas-swapper contract which helps users to aquire MATIC while bridging tokens
to Polygon was reviewed.

The most critical subjects covered in our audit are the functional correctness of the bridging mechanism,
security of the locked assets and the validation of withdrawals on the RootChain. Security regarding all
the aforementioned subjects is high.

The general subjects covered are documentation, efficiency and adherance to the implemented
standards. Security regarding all the aforementioned subjects is high. The codebase however could be
more consistent: Multiple similar contracts exist where the implementation of the same functionality
differs slightly.

This review covered a system already deployed. The actual contracts deployed do not exactly
correspond to the version audited, although the changes are mostly of cosmetic nature only. The
compiler version + dependencies used are outdated, however no known bug affects the live contracts.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 5

• Code Corrected 3

• Specification Changed 2

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the respective repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

PoS Portal

V
Date Commit Hash Note

1
13 February 2023 41d45f7eff5b298941a2547afa0073a6c36b2b9c Initial Version

2
17 April 2023 ece4e54546a4e075f3a03b2699bc6bd92a5bc0

65
After Intermediate Report

Gas Swapper

V Date Commit Hash Note

1 13 February 2023 351b8f0097419df1b5174b21bf6685fbd5ca1530 Initial Version

For the solidity smart contracts of the pos portal, the compiler version 0.6.6 was chosen. For the solidity
smart contract of the gas swapper, the compiler version 0.8.17 was chosen.

We assume the deployment and initialization of the contracts is done correctly.

2.1.1 Excluded from scope
All files not in the /contracts directory of the PoS-Portal repository. Notably system contracts of
Polygon, the StateSender, StateReceiver and CheckpointManager(RootChain.sol) are not in scope of
this review. Files in /contracts/test and files used for testing only (Dummy....sol) are out of
scope.

For the gas swapper the exchange (0x) and mock contracts are out of scope, as well as the plasma
bridge which is used to bridge the MATIC tokens.

3 System Overview
Polygon PoS Portal is a bridge for assets between the RootChain (Ethereum) and the ChildChain
(Polygon). Supported are assets of the following standards:

• ERC20 Token Standard

• ERC721 Non-Fungible Token Standard

• ERC1155 Multi Token Standard

• Ether

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Users can bridge enabled assets as what follows:

From Ethereum to Polygon: Users call the respective deposit functions of the RootChainManager. The
asstes will be locked on the RootChain and minted automatically to the receiver on the ChildChain.

From Polygon to Ethereum: Users can claim tokens on the RootChain using the exit function of the
RootChainManager after having withdrawn the tokens from the child chain. Technically, withdrawing
simply requires a transfer event emitted by the ChildToken certifiying the tokens have been burned.

The RootChainManager and the ChildTokens contracts support MetaTransactions: Users can provide
signatures for their transaction which can then be executed by any relayer.

3.1 RootChain

3.1.1 RootChainManager
The RootChainManager is the main contract. Communicating messages from Ethereum to Polygon is
done using the StateSender contract of Polygon. This contract emits an event containing the message
to be bridged. Validators of Polygon will pick this event up and add the message to the list of pending
state syncs. These messages are automatically executed in sequence on Polygon. The recipient's
(ChildChainManager) onStateReceive function is executed, receiving the data as input. This call
has up to 5 000 000 gas available. If its execution fails for any reason, the message is lost and
cannot be re-executed.

The contract implements role-based access control. There are two privileged roles, admin and mapper.

Addresses holding the admin role can fully configure the contract using the following functions:

• setupContractId()

• initializeEIP712()

These functions are intended to be used for initialization only.

• setStateSender()

• setCheckpointManager()

• setChildChainManagerAddress()

These functions allow to update the addresses of the respective contracts.

• registerPredicate()

Used to set the address of the predicate contract for a token type. Bridged assets are held at the
predicate.

They can access the following very privileged functionality editing the mapping of tokens:

• cleanMapToken() Clears a mapping on the RootChain only

• remapToken() Remaps a tokens

Furthermore, the admin can manage the roles for addresses.

Addresses with the mapper role can map tokens to enable the movement of this asset via the PoS Portal.

Users can deposit assets using the following functions:

• depositEtherFor()

• depositFor()

There is a payable fallback function receive which invokes depositEtherFor(__msgSender).

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The deposit functionality ensures the token is mapped and locks the asset at the predicate contract
before bridging the message using the StateSender contract. When the message is received on the
ChildChain, the respective assets are automatically minted for the receiver.

After having initiated a withdrawal on the Childchain, a user can exit his tokens on the Rootchain using
the RootChainManagers exit function. Messages from the Polygon are read on Ethereum by parsing
events emitted by the Child chain. To exit assets, the corresponding transfer event is evaluated and the
assets are released from the respective predicate contract to the user.

3.1.2 TokenPredicates
Bridged assets are locked at their respective predicate contract on the RootChain. These predicate
contracts must implement functions lockTockens and exitTokens. Different predicate contract
implementations are available depending on the type of token / use case.

• ERC20Predicate: Handles ERC20 tokens.

• ERC721Predicate: Handles ERC721 NFT tokens.

• ERC1155Predicate: Handles ERC1155 tokens.

• EtherPredicate: Handles the locking and release of Ether. lockTockens() only tracks the
expected amount to be received, the RootChainManager must ensure the actual transfer of Ether.

• MintableERC20/ERC721/ERC115Predicate: exitTokens() mints tokens in case of insufficient
balance. These predicates hence require miniting rights on the token contract.

• ChainExitERC1155Predicate: Handles ERC1155 emitting the ChainExit() event upon withdrawal
from the Child chain.

3.2 ChildChain

3.2.1 ChildChainManager
It is the main contract on the ChildChain implementing onStateReceive(), which can only be invoked
by the system when bridging message. Two kind of messages are supported, DEPOSIT and
MAP_TOKEN.

• DEPOSIT: completes the deposit initiated on the RootChain by invoking
childTokenContract.deposit().

• MAP_TOKEN: completes the mapping of a token initiated on the RootChain by storing the
addresses in the respective mappings.

The contract implements role-based access control. There are two privileged roles, mapper and
state_syncer_role.

Addresses with the mapper role can access:

• cleanMapToken() Clears a mapping on the ChildChain only

• mapToken() Maps a tokens on the ChildChain only

3.2.2 ChildTokens
To represent the assets from the RootChain, token contracts are deployed on the Child chain. Note that
the deployment of these tokens must be done manually. Then, to enable a token in the PoS Bridge a
mapper must add the token with its corresponding child token to the RootChainManager.

The following token template contracts exist:

• ChildERC20, ERC721, ERC1155

• ChildMintableERC20, ERC721, ERC1155

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• MATICWETH (Used to map native Ether of the RootChain)

• UpgradeableChildERC20

• UChildDAI

3.3 Trust Model & Roles
Main contracts such as the Root/ChildChainManager and the TokenPredicates are deployed behind an
upgradeable proxy. The owner of the proxy (assumed to be appropriately choosen, e.g. a timelocked or
limited multisig) is fully trusted to act honestly and correctly at all time.

The admin role is fully trusted to act honestly and correctly at all time. Misconfigurations may break the
system and may result in the loss of assets.

Manager role: fully trusted to map tokens correctly. Incorrect mappings may break the system.

StateSender: Fully trusted system contract.

CheckPointManager: Fully trusted system contract. Source of truth on Ethereum for Polygon blocks.

Polygon Validators: Fully trusted, e.g. not to censor transactions. Must trigger the system call to
StateReceiver with correct arguments, which triggers onStateReceive().

Users: Untrusted

Tokens: Any external tokens are expected to correctly follow their standards. Tokens are expected not to
have non-standard functionalities such as fees on transfer, blacklists, etc. Rebasing tokens specifically
are not supported.

3.4 Root and Child Tunnels
Though not used in PoS bridging, BaseChildTunnel and BaseRootTunnel provide a mechanism for
arbitrary message bridging (AMB) to enable bi-directional communication between Ethereum and
Polygon. This mechanism basically relies on a loose synchronisation of states between different chains.
The aforementioned contracts implement a bridging logic, which can subsequently be inherited by other
contracts implementing their own version of _processMessageFromChild on the root side and
_processMessageFromRoot on the child side, in order to process received messages from the other
chain.

1. Root to Child chain message passing:

RootTunnel provides the users with a function named _sendMessageToChild. This
function calls into an already set stateSender contract, which publishes the data as an event
on the root chain. Later, validators of Polygon fetch this event, and call into onStateReceive
of ChildTunnel, and a custom _processMessageFromRoot gets called.

2. Child to Root chain message passing:

Quite similar to the other direction, _sendMessageToRoot on the contract inheriting from
ChildTunnel gets called, which emits a corresponding event on the child chain. After the
block containing this event gets checkpointed on Ethereum, any user can trigger
receiveMessage to firstly validate the passed-in message in terms of signature, inclusion in
the block, and inclusion of the block in the claimed checkpoint. To avoid message reply attacks,
the hash of this message gets inserted to a mapping.

These contracts are an early version of the Fx-Portal contracts. It is recommended to use the up to date
Fx-Portal contracts instead of these tunnel contracts.

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3.5 Trust Model & Roles
RootTunnel: Trustless contract. It has to be initialised with a correct end-point on the child chain and
whitelisted in the stateSender.

ChildTunnel: Trustless contract. Assumed to be initialised with a correct end-point of the rootchain and be
whitelisted in the stateSender.

StateSender: Fully trusted.

CheckPointManager: Fully trusted.

Polygon Validators: They are taken as trusted. While due to their authority they can censor transactions.

Admin: Fully trusted.

State Synchroniser: Fully trusted.

Users: Untrusted

3.6 GasSwapper
MATIC is required to pay the transaction fees on Polygon. GasSwapper allows user to swap (Ether for
Matic) and bridge (a token): Using 0x Ether will be converted in to MATIC.

The token will be bridged via the PoS bridge (part of this review), while the Matic will be bridged via the
Plasma bridge. Any excess Ether (e.g. from the swap) will be refunded to the caller.

3.7 Trust Model & Roles
Trustless contract without privileged roles.

The exchange is expected to behave as expected, the user is fully responsible for the swapCallData
passed.

The Plasma bridge is expected to work as documented.

Tokens are expected not to have non-standard functionalities such as fees on transfer, blacklists, etc.

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 5

• Specification ChangedChainExitERC1155Predicate No Exit Event

• Code CorrectedChildChainManager cleanMapToken Emits Wrong Event

• Code CorrectedUnused ExitedERC721Batch Event

• Specification Changed_processMessageFromChild Comment Incorrect

• Code CorrectedMetaTransactionExecuted Event Has No Indexed Arguments

7.1 ChainExitERC1155Predicate No Exit Event
Design Low Version 1 Specification Changed

No Exit event is defined in ChainExitERC1155Predicate. Hence, upon calling exitTokens no
useful and informative event gets emitted. Furthermore this behavior is inconsistent with the other
predicates.

Specification changed:

Polygon has acknowledged lack of an exit event in ChainExitERC1155Predicate mentioning that:

"Contract is deprecated and was never deployed."

7.2 ChildChainManager cleanMapToken Emits
Wrong Event
Correctness Low Version 1 Code Corrected

By calling cleanMapToken, a certain bijection mapping between root and child tokens gets removed.
However, the event emitted wrongly indicates a mapping has taken place.

Code corrected:

Polygon defined a new event TokenUnmapped which gets emitted once a certain mapping between a
root and a child token gets removed.

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7.3 Unused ExitedERC721Batch Event
Design Low Version 1 Code Corrected

ERC721Predicate defines event ExitedERC721Batch, however; exitTokens does not support
batch exiting of tokens and this event is not used at all.

Code corrected:

Polygon has removed the definition of ExitedERC721Batch from their codebase.

7.4 _processMessageFromChild Comment
Incorrect
Correctness Low Version 1 Specification Changed

The comment of _processMessageFromChild() in BaseRootTunnel says that is called from the
onStateReceive function. This is incorrect. It is actually called from receiveMessage().

Specification changed:

Polygon has corrected the comments on the function _processMessageFromChild saying that it is
called from receiveMessage().

7.5 MetaTransactionExecuted Event Has No
Indexed Arguments
Design Low Version 1 Code Corrected

The aforementioned event is defined as

event MetaTransactionExecuted(
 address userAddress,
 address payable relayerAddress,
 bytes functionSignature
);

None of its arguments are marked as indexed, which could degrade user experience. Indexing fields of
events, e.g. addresses, allows to search for them easily.

Code corrected:

Polygon defined userAddress and relayerAddress as indexed fields of the event
MetaTransactionExecuted.

event MetaTransactionExecuted(
 address indexed userAddress,
 address payable indexed relayerAddress,

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

 bytes functionSignature
);

7.6 Gas Optimisation Issues Informational
Version 1 Code Corrected

The codebase has several inefficiencies in terms of gas costs when deploying and executing smart
contracts. Here, we report a list of non-exhaustive possible gas optimizations:

1. ChildMintableERC1155.deposit performs a sanity check on user != address(0) after
decoding depositData. This check however has already been done by the RootChainManager.

2. NativeMetaTransaction.executeMetaTransaction has a visibility of public. As this
function in the current implementation gets called only externally, it ca be defined as external, which
subsequently lets memory location of functionSignature be calldata. In this way, gas
consumption can be reduced.

3. UpgradableProxy.updateImplementation checks _newProxyTo is non-zero. However, the
exact same check is done when calling into isContract.

4. UpgradableProxy.updateAndCall is a public function. Its visibility can be changed to
external letting its argument data be defined as calldata.

5. RootChainManager.receive calls into _depositEtherFor with _msgSender as the input
argument. However, given the fact that sending ETH does not happen through a meta transaction,
simply using msg.sender can be used.

6. ITokenPredicate.exitTokens takes an address as its first argument (sender). However, this
argument is never used in any implementation of the token predicates.

7. exitTokens function for tokens with multiple transfer signatures is implemented as an if-else
body, and in each branch same flow of subfield extractions is done. To reduce code footprint, these
operations can be moved out of if-else and only logic be kept in each branch.

8. exitTokens function in call predicates can have an external visibility and calldata memory
location for it log argument.

9. In mintable version of each token, inside an if-else statement, it checks whether an excessive
amount should be minted and then transfers the actual amount to the receiver. Calling transfer
functions can be done outside of if-else to decrease code footprint and reduce deployment cost.

10. NativeMetaTransaction.getNonce, which returns current valid nonce of each user. As this
view function gets called only externally, its visibility can be changed to external.

11. ChainExitERC1155Predicate.exitTokens checks the withdrawer is not address zero.
However, as the log data fed to it comes from a valid burn event on the child chain, from cannot be
zero.

12. BaseChildTunnel.onStateReceive can be defined as external with message having calldata
type.

13. BaseRootTunel.receiveMessage is never called internally. Therefore, it can be define as
external with inputData being calldata.

Code corrected:

Polygon has addressed most of the gas optimisation issues. However, for those below they have decided
to keep the code as-is:

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

• 1. "That is correct but we are in favour of retaining this as an assertion."

• 5. "some relayers support ETH metatxs, retaining for backwards compatibility."

• 7. No further explanations.

• 9. No further explanations.

• 11. "That is correct but we are in favour of retaining this as an assertion."

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

8 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

8.1 Enhance Documenation of Inline Assembly
Informational Version 1

Code forked from Biconomy is used to implement support for Meta Transactions. The assembly in
function msgSender() used to retrieve the sender of the message is not as trivial as it might look. The
comment documenting the code section is not appropriately describing what's happening.

if (msg.sender == address(this)) {
 bytes memory array = msg.data;
 uint256 index = msg.data.length;
 assembly {
 // Load the 32 bytes word from memory with the address on the lower 20 bytes, and mask those.
 sender := and(
 mload(add(array, index)), //@okaudit-issue todo investigate calculation here, what data do we read?
 0xff
)
 }

Intuitively the code seems to read 32 bytes past the end of msg.data. However, note that for variable
length data in memory solidity uses the first 32 bytes to store the length of the data. Hence,
mload(add(array, index)) loads the last 32 bytes of msg.data and the code works correctly. Due
to the delicate nature of assembly within Solidity, this might be documented appropriately.

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

9 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

9.1 ChildERC721 Static domainSeparator
Note Version 1

In all variants of ChildERC721, once and only once upon deployment, domainSeparator gets
calculated using the name of token and chain ID:

domainSeperator = keccak256(
 abi.encode(
 EIP712_DOMAIN_TYPEHASH,
 keccak256(bytes(name)),
 keccak256(bytes(ERC712_VERSION)),
 address(this),
 bytes32(getChainId())
)
);

However, in RootChainManager and UChildERC20, a functionality is devised to let recomputation of
domainSeparator, e.g. when name of token gets updated. Despite the fact, that forking and a
consequent change of chain ID may not be very possible, implementing this functionality in derivations of
ERC721Child could make the system more robust.

9.2 Exiting MintableERC721
Note Version 1

MintableERC721Predicate offers several exit possibilities:

• TRANSFER_EVENT_SIG

• WITHDRAW_BATCH_EVENT_SIG

• TRANSFER_WITH_METADATA_EVENT_SIG

Due to the uniqueness of an NFT (tokenID) a token can only exist once. However, please consider all
withdrawal options emit the Transfer event on the child chain and hence all can be exited using the
TRANSFER_EVENT_SIG. This has the following consequences:

For an exit initiated using:

• withdrawBatch: If one transfer has been exited using the TRANSFER_EVENT_SIG, all transfers of
the batch must be individually exited using their individual transfer event.

• withdrawWithMetadata: If the TRANSFER_EVENT_SIG is used for the exit, the metadata is lost.

9.3 Minting of ERC721 Tokens
Note Version 1

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

When using ChildMintableERC721 and MintableERC721Predicate, it is important that only the
predicate has minting rights for the token on the root chain.

On the child chain ChildMintableERC721 allows addresses holding an admin role to mint tokens with
arbitrary token ID's given they do not exist on the child chain and have not been withdrawn to the root
chain yet.

This protection is only effective when no arbitrary token can be minted on the root chain.

9.4 Recipient of Withdrawn Tokens
Note Version 1

None of the withdraw functions of the child tokens allows to specify the recipient on the root chain. The
recipient address is the token owner on the child chain.

It is important to ensure one can access these tokens on the root chain before initiating the withdrawal.
Although this generally is not an issue for EOAs, special care must be taken for contracts.

For ERC721/ERC1155 if the recipient is a contract, the contract must implement the appropriate interface
or the tokens may be stuck in the bridge as they cannot be exited successfully.

Polygon - PoS Portal - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 RootChain
	3.1.1 RootChainManager
	3.1.2 TokenPredicates

	3.2 ChildChain
	3.2.1 ChildChainManager
	3.2.2 ChildTokens

	3.3 Trust Model & Roles
	3.4 Root and Child Tunnels
	3.5 Trust Model & Roles
	3.6 GasSwapper
	3.7 Trust Model & Roles

	4 Limitations and use of report
	5 Terminology
	6 Findings
	7 Resolved Findings
	7.1 ChainExitERC1155Predicate No Exit Event
	7.2 ChildChainManager cleanMapToken Emits Wrong Event
	7.3 Unused ExitedERC721Batch Event
	7.4 _processMessageFromChild Comment Incorrect
	7.5 MetaTransactionExecuted Event Has No Indexed Arguments
	7.6 Gas Optimisation Issues Informational

	8 Informational
	8.1 Enhance Documenation of Inline Assembly

	9 Notes
	9.1 ChildERC721 Static domainSeparator
	9.2 Exiting MintableERC721
	9.3 Minting of ERC721 Tokens
	9.4 Recipient of Withdrawn Tokens

