PUBLIC

Code Assessment

of the POL Transition
Smart Contracts

August 28, 2024

Produced for
o polygon

by

(S: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG

10
11
12
13
16
17

https://chainsecurity.com

1 Executive Summary

Dear Polygon team,

Thank you for trusting us to help Polygon with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of POL Transition according to
Scope to support you in forming an opinion on their security risks.

Polygon implements several changes to the Polygon ecosystem that consolidate the transition to the
POL token, the native token for Polygon 2.0 and the successor to the MATIC token.

The most critical subjects covered in our audit are correctness of the proxy upgrade and the overall
functional correctness. Security regarding both subjects is high after Storage Collisions have been
mitigated.

The documentation of the codebase is improvable.
In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

¥ Code Corrected

(CL:0)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the POL Transition repository based on
the documentation files.

This report analyzes the impact of three different Pull Requests (PRs) on the following contracts. In
particular, this security review was performed only over the changes introduced by the PRs, assuming
the underlying codebase (without the PRs) to be bug-free. No other contracts have been examined.

* pos-contracts:
* IStakeManager.sol
» StakeManager.sol
» StakeManagerStorage.sol

« ValidatorShare.sol

* pol-token:
« |DefaultEmissionManager.sol

« DefaultEmissionManager.sol

The table below indicates the code versions relevant to this report and when they were received.

pos-contracts (PR 4)

Date Commit Hash Note

V

1 | 03 June eafb462c3b0ae5b63408dcff15b028ee07c0b606 Initial Version
2024

2 | 24 July 2024 | f6cc0d864dclf7dacad378301b9c527¢c10fa03c7 After Intermediate Report
3 | 25 July 2024 | 39abd8808bcf404726593c3fel0f2bfd4abebfea After Bug Report

pol-token (PR 58)

Date Commit Hash Note

Vv

1 | 03 June ea925aal11c5243a7f49b8f67c78d60e54a399622 Initial Version
2024

2 | 07 June 91d48fbe8a63a9c647d289e4116e34c96fc835f After Intermediate Report
2024

pol-token (PR 60)
V | Date Commit Hash Note
1 | 03 June 2024 8b0alb6a7c9a41e0a4ed8fc7961c10d6a5b9cefb Initial Version

For the solidity smart contracts, the compiler version 0. 5. 17 (pos-contracts) and 0. 8. 21 (pol-token)
was chosen.

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.1 Excluded from scope

Any other file not explicitty mentioned in the scope section. In particular, tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Polygon implements several changes to the Polygon PoS ecosystem that consolidate the transition to the
POL token, the native token for Polygon 2.0 and the successor to the MATIC token. To achieve the
transition, the POL token has been set as the default token for all functionalities in the staking contract. In
addition, the emission rates of POL have been adjusted to conform with the current MATIC reward
schedule.

Overall, the audit was carried out on the differences introduced by the following Pull Requests (PR):
* pos-contracts/PR4: Sets POL as the default token for all operations.

« pol-token/PR58: Lowers the emission rate of POL according to PIP-26 (Archived version as of June
07 2024: Link).

« pol-token/PR60: Sends the emissions to the StakeManager in POL instead of MATIC.

Below, we give an overview of the contracts involved in the mentioned modifications.

2.2.1 StakeManager

Polygon's Proof of Stake network (Polygon PoS) works with smart contracts on Ethereum for staking
management. Stakers of POL tokens (Validators) sign on checkpoints of Polygon PoS. The RootChain
contract submits checkpoints and signatures to the StakeManager contract for verification. Afterwards,
the successful verification rewards are distributed to the active validators.

At the core, this is managed by the StakeManager contract, which is deployed behind an upgradeable
proxy (StakeManagerProxy).

This contract exposes the checkSi gnat ur es() function used by the RootChain contract. Users can
stake/unstake POL tokens in order to participate as a validator in the consensus. A validator's task is to
run a full node, produce and validate blocks. Based on this, a validator can create/sign checkpoints over
a set of blocks.

Active validators signing on a checkpoint are eligible for a reward in that epoch. The total reward of the
epoch to be distributed depends on the amount of blocks in the checkpoints. If there are more blocks
than expected, the reward is reduced for the extra blocks. The reduction increases with more full intervals
and there is a limit to how many intervals can be rewarded at all. The reward is also proportional to the
percentage of stake power signing on that checkpoint. This is done to incentivize reaching the target
amount of blocks within a checkpoint so that the proposer is rewarded for submitting all signatures
(without omissions).

From this total reward, a part is given directly to the validator proposing the checkpoint. The remainder is
distributed proportionally between the validators having signed on the checkpoint according to their total
stake at this time. This reward is not immediately assigned. Instead, a global r ewar dPer St ake variable

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 6

https://forum.polygon.technology/t/pip-26-transition-from-matic-to-pol-validator-rewards/13046
https://web.archive.org/web/20240607095808/https://forum.polygon.technology/t/pip-26-transition-from-matic-to-pol-validator-rewards/13046
https://chainsecurity.com

is updated. The individual reward of a validator is only evaluated and updated later, which must be done
before any change in the validators state.

Reward is paid out in POL tokens. These POL tokens need to be provided to the contract. The
staking contract holds a significant amount of POL tokens (most being stake of the Validators). It
cannot distinguish between POL tokens belonging to stake or reward. If no or insufficient
additional POL tokens are provided to the contract, reward may be paid out using the staked
tokens of the validators. Additionally, the StakeManager holds the POL tokens for the transaction fees
on Heimdall, this amount is negligibly small compared to stake and rewards.

The amount of active validators is limited to val i dat or Thr eshol d, which is currently set to 105.

A validator position is identified and owned by a transferrable NFT. The owner of the NFT has full access
to the validator position, e.g. can update the signer address, withdraw rewards or unstake. This NFT is
minted when staking. After unstaking, there is a cooldown period until the stake can be withdrawn. During
this withdrawal, the NFT is burned.

Users wishing to stake MATIC tokens on behalf of a validator can do so by delegation. If a validator
accepts delegation, a ValidatorShareProxy contract is deployed. This proxy loads the address of the
implementation code that is executed from a central Polygon registry contract.

Users can buy/sell vouchers in this ValidatorShare contract, which means staking/unstaking MATIC
tokens on behalf of a Validator. As representation of their position, users get pool share tokens. These
are transferrable ERC20 tokens, however their appr ove() function has been disabled. Based on the
share amount, a users earns a reward. This reward originates from the delegated stake of the validator in
the StakeManager, of which the validator may deduct a commission up to 100%. Selling shares is subject
to an unbonding period. The tokens may only be withdrawn after the unbonding period ends.

Through the StakeManager, a user can seamlessly migrate his delegation from one Validator to another
without being subject to an unbonding period.

Furthermore, there are the contracts EventHub and Stakinginfo used to emit events. This enables
monitoring of these contracts only to catch all events emitted by contracts of the system.

2.2.2 PolygonEcosystemToken

This contract defines the POL ERC20 token which has built-in integrations for EIP-2612 and Permit2.
The initial supply is 10 billion tokens to match the MATIC supply, but more tokens can be minted through
emissions.

The contract uses role-based access control for permissioned operations. An address with the default
administrator role can grant and remove roles to other addresses. Custom roles are:

« EM SSI ON_ROLE: Can mint a limited amount of tokens per unit of time. It is expected to be the
Def aul t Emi ssi onManager .

« CAP_MANAGER ROLE: Can set the emissions limit. It is expected to be the governance.
*« PERM T2_REVOKER ROLE: Can control the universal allowance granted to Permit2.

The DEFAULT_ADM N_ROLE is expected to be the governance.

The emissions are bounded by the m nt Per SecondCap parameter. It is set to 13.37 POL per second by
default and can be updated arbitrarily by an address granted the CAP_ MANAGER ROLE. When nmi nt () is
called, the number of tokens that can be minted is capped by an amount relative to the time delta since
the last mint event, i.e., (bl ock. timestanp - lastM nt) * m nt Per SecondCap.

If per m t 2Enabl ed is set to true (the default), the Permit2 contract has unlimited allowance from any
account. If it is disabled, then the default behavior applies, and individual accounts can choose to set an
allowance for the Permit2 contract.

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.3 DefaultEmissionManager

This contract defines the fine-grained emission policy for the POL token. It allows the minting of 2.5% of
the total supply of POL, compounding. 1.5% of the minted amount is distributed to the stake manager
and the remaining 1% to the treasury contracts. The stake manager receives the emission in the form of
POL tokens.

The unmigration can be done only if there is enough MATIC token in the migration contract and if the
unmigration is unlocked. The first case is assumed to be met by Polygon that specified:

we anticipate Polygon ecosystem participants will be migrating MATIC to POL in order to provide
sufficient one-way liquidity on PolygonMigration.sol

2.2.4 PolygonMigration

This contract allows users to exchange MATIC for POL and vice versa at a 1-to-1 rate. The contract is
ownable, and the owner can enable and disable the POL-to-MATIC conversion (unmigration) at will. The
owner can also burn POL tokens by sending them to the dead address, so the total supply is not
impacted.

The migration contract is assumed to be initialized during the proxy deployment.

2.2.5 Changes in the reviewed PRs

Currently, StakeManager and ValidatorShare expose several functions that can be called by validators
and delegators to transfer MATIC tokens between themselves and the contracts. The new revision of the
contracts changes this in favor of the POL token. Since POL is a 1:1 translation of MATIC, the
functionality does not change and variables containing MATIC amounts are now re-purposed for POL
amounts.

To allow for a smooth transition, for most of the functions an equivalent function has been added that still
allows to transact with MATIC. These are typically suffixed by the term Legacy. For example,
st akeFor () now accepts POL tokens and the new function st akeFor Legacy() exposes the same
functionality but accepts MATIC tokens.

The POL token's DefaultEmissionsManager emits less hew POL tokens to the StakeManager as the
token emissions are being reduced according to the plan in the respective PIP-26 (Archived version as of
June 07 2024: Link).

2.2.6 Changes in Version 2 of the POS contracts

St akeManager and Val i dat or Shar e no longer contain the Legacy suffix in the names of functions
transacting with MATIC. Instead, functions transacting with POL now contain the suffix POL in their name.
This is, however, not the case for functions that do not have two versions: det hr oneAndSt ake(), for
example, handles POL tokens even though it does not contain the PCL suffix.

Additionally, the functionality of St akeManager . sl ash() has been removed.

2.2.7 Trust Model

Users of the system are generally untrusted and expected to behave unpredictably.

The following roles are fully trusted and expected to behave honestly and correctly.
» The administrator, the cap manager, and the Permit2 revoker of the POL token contract.
» The owner of the migration contract.
» The Governance in the StakeManager.

» The owner of the proxy contracts.

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 8

https://forum.polygon.technology/t/pip-26-transition-from-matic-to-pol-validator-rewards/13046
https://web.archive.org/web/20240607095808/https://forum.polygon.technology/t/pip-26-transition-from-matic-to-pol-validator-rewards/13046
https://chainsecurity.com

Within the StakeManager, the Governance has privileges including but not limited to:
* Force unstake any validator immediately.
* Change the current epoch arbitrarily.
* Change the staking token.
* Reinitialize the contract.

* Drain all staked tokens.

The Governance is trusted to act honestly and correctly at all times. Incorrect actions may break the
system.

The addresses granted the pauser role in the MATIC contract are also relevant. Migration/unmigration
can be indirectly paused by pausing the MATIC token.

Moreover, the EM SSI ON_ROLE of the Pol ygonEcosyst eniffoken is assumed to be granted to the
Def aul t Em ssi onManager .

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors

o CEEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings E
(CD-Severity Findings ¢
(Medium)-Severity Findings 0
(Low)-Severity Findings ¢

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E=)-Severity Findings 1
y g
» Storage Collisions
(C)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings)
ty g

« Fee Claiming in MATIC Only

¢ Unused Functions {Ele eIl

Informational Findings 3

» Unreachable Initializer (XL
* Typographical Errors (e L)
* Missing Gap Change (LS

6.1 Storage Collisions

Code Corrected

The StakeManager contract is deployed behind the upgradeable proxy StakeManagerProxy.
StakeManager inherits from the following contracts:

CS-POLY_TO_POL-001

» StakeManagerStorage

* Initializable

« |IStakeManager

» DelegateProxyForwarder

» StakeManagerStorageExtension

Therefore, the storage of the proxy is laid out according to the storage variables in the above contracts. It
is worth mentioning that the Initializable contract holds the inited variable that prevents the
StakeManager from being reinitialized.

During the changes under review, two new storage variables were added to the StakeManagerStorage
contract: t okenLegacy and ni gr ati on.

The addition of these variables in StakeManagerStorage creates a storage collision in
StakeManagerProxy. In particular, after the upgrade, inited will be read from the slot in which
r ewar dPer St ake is stored. Due to the new storage layout, i ni t ed and mi gr ati on are now read from
the same slot, using an offset of 160 bytes for i ni t ed. As long as the number in r ewar dPer St ake is
less than 160 bytes long (which it currently is on-chain), i ni t ed will be read as O.

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The consequences of this are dire: right after the upgrade, anyone can reinitialize the contract, making
themselves (or any arbitrary address) both owner and governor of the StakeManager. After that, this
adversary could perform any privileged function of the StakeManager. This includes, but it is not limited
to, completely draining the StakeManager of all its POL.

Code corrected:

The new storage variables have been moved to St akeManager St or ageExt ensi on, resolving the
storage collision.

6.2 Fee Claiming in MATIC Only
D) (Low) (Version 2) (XX

St akeManager . cl ai nFee() transacts using MATIC. There is, however, no alternative that uses POL
tokens.

CS-POLY_TO_POL-009

Code corrected:

cl ai nFee() now transacts using POL.

6.3 Unused Functions

(D (Low) (Version 1) (ISR

Some new legacy functions in the StakeManager are never actually called:

CS-POLY_TO_POL-002

1. det hr oneAndSt akeLegacy() can only be called from the StakeManager itself. There is,
however, no code that actually performs such a call. det hr oneAndSt ake() is called from
confirmAuctionBi d() in the StakeManagerExtension but the function offers no alternative
legacy version.

2. m grateCQutLegacy() and ni gratel nLegacy() in ValidatorShare are never called from the
StakeManager (the only contract allowed to call the functions). StakeManager exposes a function
nm gr at eDel egati on() that calls m grat eout () and ni gratel n() but offers no alternative
legacy version.

Code corrected:

The mentioned functions have been removed.

6.4 Missing Gap Change
[Informationalj [Version 1]

CS-POLY_TO_POL-005

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

The new storage variable START_SUPPLY_1 2 0 is added to DefaultEmissionManager. The contract
defines a _gap at the end of its storage layout that is supposed to keep the storage layout for inheriting
contracts in order. Since a new variable is added before the gap, the gap should be reduced by 1.

Because no other contracts inherit from DefaultEmissionManager, this missing change does not
represent a problem.

Code corrected:
The _gap has been updated correctly.

6.5 Typographical Errors
[Informational] [Version 1]

The following is a hon-exhaustive list of typographical errors in the code:

CS-POLY_TO_POL-007

1. St akeManager . _unst ake() contains a comment stating "if validators unstake and slashed to O,
he will be forced to unstake again”.

2. Val i dat or Shar e contains a comment stating "all matic will be staken in one go".
3. Val i dat or Share. __sel | Voucher () contains a comment stating "undond period".

Code corrected:

Errors #2 and #3 have been fixed.

6.6 Unreachable Initializer

(Informational] [Version 1]

StakeManager adds two new storage variables t okenLegacy and mi grati on. The variables are
initialized in the function i niti alize() of the contract. Since the contract is already live behind a
proxy, and the i nitialize() function has already been called on the proxy, the function can not be
called again after an implementation update as it is only callable once (i.e., the related i ni t ed variable
must be f al se to be able to call the function but it is currently setto t r ue).

CS-POLY_TO_POL-008

The variables can, however, still be set via their respective setter functions.

Code corrected:

The variables can now be set with the new initializeri ni ti al i zePOL() .

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Inconsistent Naming
(Informational] [Version 1]

CS-POLY_TO_POL-003

The function name updat eTi el i ne() in the StakeManager is i nt er nal but does not start with an
underscore. This is not consistent with the naming of other functions in the contract.

7.2 Missing Events

(Informational] [Version 1]

CS-POLY_TO_POL-004

Some state-changing functions in StakeManager do not emit events. This is particularly true for most
setter functions such as set LegacyToken() or set M grati on().

7.3 Missing NatSpec / Code Documentation
(Informational] [Version 1]

CS-POLY_TO_POL-006

Neither StakeManager nor ValidatorShare provide any code documentation besides notes that simply
state the function name (in some cases).

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Ambiguous Naming

The contract upgrade introduces several new functions that allow users to interact with the contracts
using POL tokens instead of MATIC tokens. These new functions' names are composed of the name of
the function that transacts using MATIC and the suffix POL.

However, some functions (e.g., St akeManager . t opUpFor Fee()) don't have a second version and are
transacting with POL while their name does not contain the PCL suffix.

@ Polygon - POL Transition - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 StakeManager
	2.2.2 PolygonEcosystemToken
	2.2.3 DefaultEmissionManager
	2.2.4 PolygonMigration
	2.2.5 Changes in the reviewed PRs
	2.2.6 Changes in Version 2 of the POS contracts
	2.2.7 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Storage Collisions
	6.2 Fee Claiming in MATIC Only
	6.3 Unused Functions
	6.4 Missing Gap Change
	6.5 Typographical Errors
	6.6 Unreachable Initializer

	7 Informational
	7.1 Inconsistent Naming
	7.2 Missing Events
	7.3 Missing NatSpec / Code Documentation

	8 Notes
	8.1 Ambiguous Naming

