PUBLIC

Code Assessment

of the Fx Portal
Smart Contracts

December 14, 2022

Produced for

by

CH polygon

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Security monitoring
Limitations and use of report
Terminology

Findings

Resolved Findings

o N o o~ W N PP

Notes

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG

10
11
12
14
19

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Polygon with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Fx Portal according to Scope
to support you in forming an opinion on their security risks.

The Fx-Portal allows to seamlessly bridge data between Ethereum and Polygon. Projects can simply
build on the provided base contracts and use the provided functions to send/receive messages. Several
example implementations are part of the repository, demonstrating the use for a simple state transfer or
for bridging tokens.

The most critical aspects covered in our audit are security and functional correctness. For the core part,
the mechanism and base contracts of the Fx-Portal, security regarding all the aforementioned aspects is
high. The examples, while they showcase the use of the Fx-Portal contracts, lack documentation.
Considering that projects may build on top of such example contracts, their functionality / limitations
should be properly documented.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

¥ Specification Changed

(Medium)-Severity Findings

¥ Code Corrected

¥ Specification Changed

°
o
|\

¥ Risk Accepted

(Low)-Severity Findings

¥ Code Corrected

¥ Specification Changed

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the / cont ract s directory of the Fx
Portal repository based on the documentation files. The table below indicates the code versions relevant
to this report and when they were received.

Date Commit Hash Note
V

11 August 2022 | 31ldablee3da33254a6e6f0c23f3c31a79880e22 | Initial Version
1 6

20 October 2022 | dc41712bh802a65a0cc2d00ec0833da741dd5ba | After Intermediate Report
2 7c

4 November 6ed54a32317afed84d8cb99cfcce8c4fd03b099b | Final Changes
3 | 2022

For the solidity smart contracts, the compiler version 0. 8. 0 was chosen. After the intermediate report
the compiler version was updated to 0. 8. 17.

2.1.1 Excluded from scope

All files not in the / contracts directory of the Fx-Portal repository. Notably system contracts of
Polygon, the StateSender, StateReceiver and CheckpointManager(Root Chai n. sol) are not in scope of
this review.

2.2 System Overview

Polygon Fx-Portal is a set of smart contracts that enables easy communication between Ethereum and
Polygon. It can be thought of as a collection of wrappers for Polygon's st at e- sync mechanism. The
repository includes an example use of the Fx-Portal for a generic state-transfer as well as rough
examples to implement a bridge for ERC-20, ERC-721 and ERC-1155 tokens.

Contracts FxRoot (on Ethereum) and FxChi | d (on Polygon) are used as wrappers for the underlying
st at e- sync from Ethereum to Polygon since only whitelisted addresses may call syncSt at e() of the
St at eSender contract on Ethereum.

Abstract contracts FxBaseRoot Tunnel (for Ethereum) or FxBaseChi | dTunnel (for Polygon)
implement the tunnel logic and can be inherited by smart contracts wishing to use the FxPortal to bridge
data.

1. Sending data from Ethereum to Polygon

FxBaseRoot Tunnel implements _sendMessageToChil d(bytes nenory nessage)
which can be used to initiate a message to be sent to Polygon. From a user/implementor
perspective the message is automatically executed on Polygon.

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Technically, this function forwards the message and recipient to the external FxRoot contract.
This FxRoot contract encodes and forwards the message to the main st at eSender contract
where an event containing the message and the address of FxChi | d is emitted.

Validators of Polygon will pick this event up and add the message to the list of pending state
syncs. These messages are automatically executed in sequence on Polygon. The recipient's
(FxChi I d) onSt at eRecei ve function is executed, receiving the st at el d and message as
input. This call has up to 5 000 000 gas available. If its execution fails for any reason the
message is lost and cannot be re-executed.

The FxChi | d contract decodes the message and forwards the data to the intended recipient
by calling processMessageFr onRoot (), which FxBaseChi | dTunnel implements. This
triggers _pr ocessMessageFr onRoot () which the implementation must implement. Note that
the implementation must validate the original sender of the message.

2. Sending data from Polygon to Ethereum.

FxBaseChi | dTunnel implements _sendMessageToRoot (bytes nenory nessage).
This function simply emits an event MessageSent containing the message. In this direction,
the message is not executed automatically on the other chain.

After the Polygon block has been checkpointed on Ethereum, anyone may trigger the execution
of this message on Ethereum:

FxBaseRoot Tunnel implements recei veMessage(bytes nenory inputData). The
input must consist of the following:

RLP encoded data of the reference tx containing following list of fields

0 header Nunber Checkpoi nt header bl ock number containing the reference tx
1 bl ockPr oof Proof that the block header (in the child chain) is a leaf in the subnmitted nmerkle root
2 bl ockNurber Bl ock nunber containing the reference tx on child chain

3 - blockTime - Reference tx block time

4 - txRoot Transactions root of block

5 recei pt Root Recei pts root of block

6 recei pt Recei pt of the reference transaction

7 recei pt Proof Mer kl e proof of the reference receipt

8 br anchMask 32 bits denoting the path of receipt in nerkle tree

9 recei pt Logl ndex Log Index to read fromthe receipt

Using this data, it is ascertained that this message was emitted in a valid transaction on
Polygon and its consumption is recorded to avoid replaying the same message.
FxBaseRoot Tunnel defines _processMessageFr ontChi | d, which must be implemented by
the inheriting contract and process the message.

To use the Fx-Portal to bridge data between Ethereum and Polygon, smart contracts can simply inherit
FxBaseRoot Tunnel or FxBaseChi | dTunnel respectively, implement the functions to process
received messages, and use the provided functions to send messages.

The following examples are available, which demonstrate how these contracts of the Fx Portal can be

used:

« state-transfer

* erc20-transfer

* mintable-erc20-transfer

e erc721-transfer

* ercl155-transfer

The examples have the following functionality:

« state-transfer can be used to send arbitrary data

 erc20-transfer can be used to take an existing ERC-20 token on Ethereum, lock it, and mint a

S

corresponding ERC-20 on Polygon, using a token-template. By burning the Polygon token, the
original tokens can be reclaimed.

Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

» erc721-transfer is the same as erc20-transfer, but for ERC-721 tokens.

» ercl155-transfer is the same as erc20-transfer, but for ERC-1155 tokens.

» mintable-erc20-transfer works differently than the other examples. It is used to create a new ERC-20

token on Polygon using a template. This token can be burnt to receive the same amount of a
corresponding template ERC-20 token on Ethereum. The Ethereum tokens can be returned to mint
the same number of tokens of the original Polygon ERC-20.

« All token examples also allow passing arbitrary data alongside bridging the tokens.

We illustrate an example bridging callpath using the ERC-20 example tunnel:

Bridge ERC-20 from Ethereum to Polygon:

1.

. Tokens get transferred from user to FXERC20Root Tunnel

o N o 0o A WODN

10.

11.

12.
13.

User calls deposi t () on FXERC20Root Tunnel

. FXERC20Root Tunnel calls _sendMessage() on FxBaseRoot Tunnel

. FxBaseRoot Tunnel calls sendMessageToChi | d() on FxRoot

. FXRoot calls syncSt at e() on st at eSender

.St at eSender emits St at eSynced event, which Polygon Heimdall validators listen for

. Heimdall validators pass the event to the Bor layer (EVM chain)

. On Bor, a special system address Oxffff FFFf FEffffffffffffffFf FFFfffFFFf FFf E calls

comm t St at e() on St at eRecei ver.

. St at eRecei ver checks nsg. sender and ensures that the messages are sequential and calls

onSt at eRecei ve() on FxChi | d.

FxChi | d validates that the nsg. sender is StateReceiver and calls
pr ocessMessageFr onRoot () on FxBaseChi | dTunnel

FxBaseChi | dTunnel validates nsg. sender and calls processMessageFronmRoot () on
FXERC20Chi | dTunnel

FxERC20Chi | dTunnel mints ERC-20 tokens to the user

FXERC20Chi | dTunnel calls onTokenTr ansf er () on user address, ignoring errors

Bridge ERC-20 back from Polygon to Ethereum:

1.
. FXERC20Chi | dTunnel burns the user's tokens on Polygon
. FXERC20Chi | dTunnel calls _sendMessageToRoot () on FxBaseChi | dTunnel

. FxBaseChi | dTunnel emits MessageSent event

N o o~ WD

User calls wi t hdr aw() on FXERC20Chi | dTunnel

. Wait until Polygon validators create a checkpoint including the block with the event on Ethereum
. User calls r ecei veMessage() on FxBaseRoot Tunnel

. Validation of the message: val i dat eAndExtract Message() checks if the exit has already

been processed, marks the message as processed, checks that the message comes from the
correct ChildTunnel, checks that the receipt is part of the trie.
CheckBIl ockMenber shi pl nCheckpoi nt () ensures the receiptRoot is part of the block, and the
block is part of a valid checkpoint using checkMenbershi p() with data querried from
Checkpoi nt Manager . header Bl ocks() as trusted source.

. Execution of the message: FxBaseRoot Tunnel calls _processMessageFronChil d() on

Fx ERC20Root Tunnel

. FXERC20Root Tunnel transfers tokens to user

Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.3 Trust Model & Roles

FxRoot: Trustless contract. Assumed to be whitelisted in the st at eSender contract and initialized with
the correct address of FxChi | d.

FxChild: Trustless contract. Assumed to be configured in the st at eSender contract and initialized with
the correct address of FxRoot .

FxBaseRootTunnel: Trustless contract. Assumed to be initialized with its corresponding fxChildTunnel
and the correct address of FxRoot .

FxBaseChildTunnel: Trustless contract. Assumed to be initialized with its corresponding fxRootTunnel
and the correct address of FxChi | d.

StateSender: Fully trusted system contract.
CheckPointManager: Fully trusted system contract. Source of truth on Ethereum for Polygon blocks.

Polygon Validators: Fully trusted, e.g. to not censor transactions. Must trigger the system call to
St at eRecei ver with correct arguments, which triggers onSt at eRecei ve() .

Users: Untrusted

Tokens: Any external tokens are expected to correctly follow their standards. Tokens are expected not to
have non-standard functionality such as fees on transfer, blacklists, etc. ERC-20 tokens that do not have
a return value on transfer are supported. Rebasing tokens specifically are not supported.

3 Security monitoring

Auditing is just one part of a comprehensive smart contract security framework. Next to extensive testing
and auditing pre-deployment, security monitoring of live contracts can add an additional layer of security.
Contracts can be monitored for suspicious behaviors or system states and trigger alerts to warn about
potential ongoing or upcoming exploits.

Consider setting up monitoring of contracts post-deployment. Some examples (non-exhaustive) of
common risks worth monitoring are:

1. Assumptions made during protocol design and development.
. Protocol-specific invariants not addressed/mitigated at the code level.
. The state of critical variables

. Known risks that have been identified but are considered acceptable.

ga b~ W DN

. External contracts, including assets your system supports or relies on, that may change without
your knowledge.

6. Downstream and upstream risks - third-party contracts you have direct exposure to (e.g. a third
party liquidity pool that gets exploited).

7. Privileged functionality that may be able to change a protocol in a significant way (e.g. upgrade the
protocol). This also applies to on-chain governance.

8. Protocols relying on oracles may be exposed to risks associated with oracle manipulation or
staleness.

3.1 Project-specific monitoring opportunities

We have identified some areas in Fx Portal that would be well suited for security monitoring.

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

We classify these into two categories: invariants and suspicious. If an invariant of the system has been
broken, there has likely been unexpected behavior. If a suspicious condition is triggered, something has
happened that is likely worth investigating.

3.1.1 1.In general for projects using the Fx-Portal

Identified invariant: For every message that is consumed by receiveMessage() and
processMessageFr onRoot (), there must be a corresponding event on the other chain.

This invariant could be monitored by listening for events and transactions on both chains and triggering
an alert if there is a transaction without a preceding event.

Identified suspicious condition: Calls to FxChi | d. onSt at eRecei ve() from the system address should
never revert, otherwise messages get irrecoverably lost.

Monitoring for reverts of onSt at eRecei ve() could detect messages that get lost, for example because
of running out of gas.

3.1.2 2. Specific to the examples:

Identified invariant: The r oot Token balances of the
FxERC20Root / FXERC721/ FXERC1155Ro0t Tunnel contract must always be greater or equal than the
t ot al Suppl y() of the chi | dTokens on the child chain.

This invariant can be monitored by querying the r oot Token balance of the FXERC20Root Tunnel
contract and calling chil dToken. total Suppl y() in every block, then triggering an alert if
t ot al Suppl y() is smaller.

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C)-Severity Findings 0
(Medium)-Severity Findings 2
» Public Setter Functions Can Be Frontrun
« Use (Up to Date) Dependencies ()
(Low)-Severity Findings 0

6.1 Public Setter Functions Can Be Frontrun

(D) (Vistium) (Version 1) (D)

The following functions can only be executed once and have no access controls:

1. FxBaseRoot Tunnel . set FxChi | dTunnel
. FxBaseChi | dTunnel . set FxRoot Tunnel
. FXxRoot . set FxChi | d

. FxChi | d. set FxRoot
.FXERC20.initialize
.FXERC721.initialize
.FXERC1155.initialize

N o O b~ WN

If deployment and initialization is not done within one transaction it would be possible for a malicious
actor to frontrun the deployer's call to the functions and instead call them with malicious values first. This
will cause the deployer's function call to revert.

FxBaseRoot Tunnel and FxBaseChi | dTunnel are to be inherited by contracts in order to use the
bridging functionality of the Fx Portal. This may lead to problems with their deployment. Implementors
should be aware of this behavior, mitigate this and ensure/verify that initialization is done correctly. If their
setTunnel functions are frontrun, the contract will need to be redeployed. This can be expensive in terms
of gas.

The Wrapper contracts FxRoot and FxChi | d for the interaction with the St at eSender have already
been deployed and initialized correctly. If a new instance of one of these contracts is deployed, the
deployer must verify that the functions are called -correctly. For the Token contracts
FXERC20/ERC721/ERC115 used in the examples minimal proxy contracts are deployed the
initialize() function is called from contracts within the same transactions.

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Risk accepted:

Polygon states:

It is a known risk that initialization functions can be frontrun, but this
is lowrisk since there is no incentive for a malicious actor to do so.

6.2 Use (Up to Date) Dependencies
(Medium)[Version 1][]

Several contracts present in |ib or tokens are copy & pasted from third party repositories. An
exception to this pattern is the Saf eERC20 library which is imported from a dependency listed in the
package. j son file. This pattern is generally preferable. Note that several of the copy & pasted
dependencies are also from this OpenZeppelin contracts dependency, hence could simply be imported
from there.

Package.j son lists the dependencies and the requirements on the version, while
package- | ock. j son allows to fix specific version.

This allows to effortlessly update to newer versions of these contract which may include bug fixes. Note
that this must be done with due care as functionality could change. Once a new version has been
deemed suitably safe, the new version can be fixed in package- | ock. j son.

Most copy & pasted contracts are old versions, furthermore the version of the OpenZeppelin dependency
is outdated. Notably, the implementation of ERC721 contains several changes reloading state after
bef or eTokenTr ansf er (), which may have updated this data.

Code partially corrected:

The dependencies in package.j son were changed to more recent versions. ERC20. sol and
| ERC20. sol were updated to OpenZeppelinv4. 7. 3.

The other copy & pasted contracts in | i b have not been updated.

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

/ Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(&EIED-severity Findings 0

(CL:0)-Severity Findings 1
» mapToken() Callable Only by Mappers

(Medium)-Severity Findings 2

» Description of toBoolean() Is Incorrect
+ FxMintableERC20RootTunnel connectedToken Initialized Incorrectly

(Low)-Severity Findings 8
« Codehash Variable Type Could Be Set to Immutable
* FxMintableERC20ChildTunnel Has No withdrawTo Function
* FxMintableERC20RootTunnel Events Missing
« Outdated Compiler Version
* Return Value of _checkBlockMembershipInCheckpoint()
» SafeMath Library Is Redundant
» Unused Variable in FxMintableERC20RootTunnel

e _processMessageFromChild Comment Incorrect @il T e ETT-l

7.1 mapToken() Callable Only by Mappers
(Correctness | High \ZIEXABY| Specification Changed

In FXERC20Root Tunnel and FXERC721Root Tunnel , the mapToken function is annotated as follows:

function mapToken(address root Token) public {

The function however has no access control, anyone may map a token.

The same function in FXERC1155Root Tunnel lacks a function description. It also has no access
control.

Specification changed:

The comment has been changed to:

/1 @otice Map a token to enable its novenent via the PoS Portal, callable by anyone

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7.2 Description of t oBool ean() Is Incorrect

[Medium] [Version 1] Specification Changed

In RLPReader , the description of t oBool ean() states that "any non-zero byte is considered true". The
function takes an RLPItem as input.

In RLP encoding, byte values in the range [O0x80-0xff] are encoded as 2 bytes like this:
[0x81, the_byte]. For RLPItems encoding such values, t oBool ean() will revert, since it enforces
that the length of the RLPItem is 1. This is a mismatch, as these values are non-zero and should return
t r ue according to the comment.

Specification changed:
The comment has been changed to:

/l any non-zero byte < 128 is considered true

7.3 FxMintableERC20RootTunnel
connectedToken Initialized Incorrectly

[Medium] \ZEEEN Code Corrected

In the _depl oyRoot Token function of FxM ntabl eERC20Root Tunnel, the rootToken's
_connect edToken field is initialized as r oot Token. This means the rootToken's _connect edToken
will be itself, not the childToken on the other chain.

Code corrected:

The _connect edToken is now correctly initialized with the chi | dToken.

7.4 Codehash Variable Type Could Be Set to
Immutable

(Design {(ETO VTR Code Corrected

In the following contracts the variable chi | dTokenTenpl at eCodeHash could be changed to an
immutable:

1. FXERC20Roo0t Tunnel . sol
2. FXERC721Root Tunnel . sol
3. FXERC1155Ro00t Tunnel . sol

This avoids unnessesary and expensive reads from storage, hence reduces the gas consumption.

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Code corrected:
These and more variables have been declared i mmut abl e.

7.5 FxMintableERC20ChildTunnel Has No
withdrawTo Function

(D (Cow) (Version 1) CRIEEIEED)

The FxM nt abl eERC20Chi | dTunnel has no wi t hdrawTo function, unlike the other example
contracts. Tokens can only be withdrawn to the same address on the RootChain as the calling address
on the ChildChain.

This may make it impossible for some smart contract wallets to bridge tokens, since the user may not be
able to deploy the smart contract wallet at the same address on the other chain.

Code corrected:

A wi t hdrawTo() function has been added, which takes a r ecei ver argument. It calls an internal
function _wi t hdraw(), which is identical to the previous wi t hdraw() function, except that it calls
_sendMessageToRoot () with the recei ver address instead of msg. sender .

The public wi t hdr aw() function's functionality is unchanged.

7.6 FxMintableERC20RootTunnel Events Missing
(Correctness JETINZIEIT) Code Corrected

The FxM nt abl eERC20Root Tunnel contract emits no events when tokens are deposited or
withdrawn, which is different behavior than all other example contracts.

Code corrected:

The missing events have been added.

7.7 Outdated Compiler Version
7D (Low) (Version 1) CXESIZET)

The project's hardhat config specifies an outdated version of the Solidity compiler.

solidity: {

version: "0.8.0",
Known bugs in version 0.8.0 are:
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by version.json#L1685
More information about these bugs can be found here: https://docs.soliditylang.org/en/latest/bugs.html|

At the time of writing, the most recent Solidity release is version 0. 8. 16.

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 16

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1685
https://docs.soliditylang.org/en/latest/bugs.html
https://chainsecurity.com

Code corrected:
The compiler version has been updated to 0. 8. 17.

7.8 Return Value of
checkBI ockMenber shi pl nCheckpoi nt ()
D) (Low) (Version 1) (XTI

FxBaseRoot Tunnel . _val i dat eAndExt r act Message() a call to
_checkBI ockMenber shi pl nCheckpoi nt () is made. This internal function has a return value which
however is ignored.

Code corrected:

The return value has been removed.

7.9 SafeMath Library Is Redundant
D) (Low) (Version 1) (XL

An old version of the SafeMath library (made for Solidity <0.8) is used in ERC20 and
FXxERC20M nt abl eRoot Tunnel .

The main use of Saf eMvat h was previously to revert on arithmetic overflow. As of Solidity 0. 8, overflow
checks were introduced into the Solidity compiler.

This makes the use of Saf eMVat h redundant.

Code corrected:
The Saf eMat h library has been removed.

ERC20. sol and | ERC20. sol have been updated to OpenZeppelin v4. 7. 3, which does not use
Saf eMat h. The required | ERC20Met aDat a. sol has also been added.

FxERC20M nt abl eRoot Tunnel no longer uses Saf eMat h.

7.10 Unused Variable in
FxMintableERC20RootTunnel
7D (Low) (Version 1) Y STD)

The chi | dTokenTenpl at eCodeHash variable in FxM nt abl eERC20Root Tunnel is declared but
never used.

Code corrected:

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

The unused variable has been removed.

7.11 processMessageFromChild Comment
Incorrect

[Low] [Version 1) Specification Changed

The comment of _pr ocessMessageFr ontChi | d() in FxBaseRoot Tunnel says that is called from the
onSt at eRecei ve function. This is incorrect. It is actually called from r ecei veMessage() .

Specification changed:
The comment has been changed to

[/ This is called by receiveMessage function.

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 FXERC20RootTunnel Cannot Map All ERC-20
Tokens

mapToken in FXERC20Root Tunnel calls ERC20. deci mal s() .

ERC20 r oot TokenCont ract ERC20(r oot Token) ;

string nmenory nane r oot TokenCont ract . nanme() ;
string nmenory synbol r oot TokenCont ract . synbol () ;
ui nt 8 decimal s r oot TokenContract . deci mal s() ;

In the ERC-20 standard, deci nmal s is optional.

If the r oot Token does not have a deci nmal s function, the call will revert and it will be impossible to map
this token.

8.2 _processMessageFromRoot() Must Succeed

(D) (Version 1)

Messages synced from Ethereum to Polygon via the StateSender are executed only once. This execution
through FxChi | d. onSt at eRecei ved() has 5 million gas available. Should the execution revert for
any reason, the message is lost.

The individual implementation of _processMessageFronRoot () of smart contracts using the
FxSt at eChi | dTunnel of the Fx Portal must respect that. They should not contain external calls or
anything that may revert if lost messages cannot be tolerated.

@ Polygon - Fx Portal - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Trust Model & Roles

	3 Security monitoring
	3.1 Project-specific monitoring opportunities
	3.1.1 1. In general for projects using the Fx-Portal
	3.1.2 2. Specific to the examples:

	4 Limitations and use of report
	5 Terminology
	6 Findings
	6.1 Public Setter Functions Can Be Frontrun
	6.2 Use (Up to Date) Dependencies

	7 Resolved Findings
	7.1 mapToken() Callable Only by Mappers
	7.2 Description of toBoolean() Is Incorrect
	7.3 FxMintableERC20RootTunnel connectedToken Initialized Incorrectly
	7.4 Codehash Variable Type Could Be Set to Immutable
	7.5 FxMintableERC20ChildTunnel Has No withdrawTo Function
	7.6 FxMintableERC20RootTunnel Events Missing
	7.7 Outdated Compiler Version
	7.8 Return Value of _checkBlockMembershipInCheckpoint()
	7.9 SafeMath Library Is Redundant
	7.10 Unused Variable in FxMintableERC20RootTunnel
	7.11 _processMessageFromChild Comment Incorrect

	8 Notes
	8.1 FxERC20RootTunnel Cannot Map All ERC-20 Tokens
	8.2 _processMessageFromRoot() Must Succeed

