

PUBLIC

Code Assessment

of the Plusplus Custody

Smart Contracts

September 19, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Open Findings 12

6 Resolved Findings 13

7 Informational 16

8 Notes 18

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Plusplus Team,

Thank you for trusting us to help Plusplus AG with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Plusplus Custody
according to Scope to support you in forming an opinion on their security risks.

Plusplus AG implements an on-chain custody system intended to centrally hold and administer assets,
with clearly split accounting per id.

The most critical subjects covered in our audit are asset solvency, functional correctness, accounting,
and access control. Security regarding asset solvency and accounting is high. There can be small
accounting mismatches. However, these can be fully mitigated through off-chain processes (see
Tick-accrual Mismatch on New Deposit). Functional correctness is high after Duplicate Inputs Can
Overwrite Storage has been fixed. Security regarding access control is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Corrected 1

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Plusplus Custody repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 08 Sept 2025 32ad18086023f87a241f3b4473e8cc5fc35f23a9 Initial Version

2 12 Sept 2025 ceea30074fcf60a6cde40673e77f98ff575c2c3f Fixes Version

For the solidity smart contracts, the compiler version 0.8.30 was chosen.

As part of version 1, the following contracts are included in scope:

src/
 WBTCDepositManager.sol
 ZCHFSavingsManager.sol

Version 2In , the following contract was added to the scope of the assessment:

src/
 RedemptionLimiter.sol

2.1.1 Excluded from scope
Any file not explicitly listed in the Scope section is out of scope. In particular, external libraries (e.g.
OpenZeppelin), third-party contracts (e.g. WBTC, ZCHF, and its Savings Module), and tests are
excluded.

Additionally, all configurations and operational usage are out of scope, including role assignments,
deployment, and migrations.

2.2 System Overview
Version 2This system overview describes of the contracts, as defined in the Assessment Overview.

At the end of this report section, we have added subsections for each of the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 5

https://github.com/plusplus-ag/plusplus-custody/tree/32ad18086023f87a241f3b4473e8cc5fc35f23a9
https://github.com/plusplus-ag/plusplus-custody/tree/ceea30074fcf60a6cde40673e77f98ff575c2c3f
https://chainsecurity.com

Plusplus AG implements an on-chain custody system intended to centrally hold and administer assets.
The custody system consists of two independent managers with similar operational patterns. The
contracts have full custody of the assets and are managed by a set of privileged roles. Users never
interact directly with the contracts.

2.2.1 WBTCDepositManager
The contract holds WBTC deposits subject to a linear, non-compounding custody fee applied to the
principal.

2.2.1.1 Deposit and Redemption flows
Deposits are initiated by an operator with the createDeposits function. It stores per-deposit records.
Each deposit is represented by a bytes32 identifier and contains two fields: the principal and
startTime.

Redemptions are initiated by an operator with the redeemDeposits function. It computes the value of
each deposit at the time of redemption using depositValue(), transfers the total value to a receiver
address, and deletes the per-deposit record. The receiver address must have the RECEIVER_ROLE.

2.2.1.2 Accounting
From creation onward, a custody fee accrues at a fixed annual rate, currently set to
FEE_ANNUAL_PPM = 9_500 (0.95% p.a.), calculated using a 365-day year. The fee could be configured
differently by redeploying the contract with a different fee constant. Any value is theoretically supported.
The fee is applied linearly in time and without compounding. The helper depositValue(id) returns the
amount owed to the depositor by subtracting the elapsed-time fee from the original principal and capping
the result to at least zero.

Formally, for principal , creation time , and time , the value is:

value(t) = max(0, P − fee(t))
Where the fee is computed as:

fee(t) = P ⋅ FEE_ANNUAL_PPM
1 000 000 ⋅ t − t0

365

2.2.1.3 Global Accounting
To value the entire system in O(1) time, the contract maintains two aggregates that are updated on
every create/redeem:

• totalPrincipal . The sum of active principals.

• principalTimeProductSum . The sum of each principal multiplied by its start
time.

At time , these let the contract derive the total elapsed principal-time , which converts directly
to total fees at the annual ppm rate, and then to total value owed to depositors:

totalFees(t) = (t ⋅ Ptot − S) ⋅ FEE_ANNUAL_PPM
106 ⋅ 1

365 days ,

totalValue(t) = max(0, Ptot − totalFees(t)).
The accumulated fees currently held by the contract (i.e., not owed to depositors) are computed as the
on-chain WBTC balance minus the total value:

accumulatedFees(t) = WBTCbalance(this) − totalValue(t).
As the fees are calculated on-chain, the contract can ensure that it always holds enough WBTC to cover
the total value owed to depositors. The only exception is if the admin has used moveWBTC() to withdraw
funds.

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.1.4 Additional Management functions
The contract exposes the following additional management functions:

• collectFees(receiver): Transfers accumulatedFees() to receiver. Callable by
OPERATOR_ROLE. receiver must have RECEIVER_ROLE.

• rescueTokens(token, receiver, amount): Recovers ERC-20 tokens (except WBTC) or
ETH accidentally sent to the contract. Callable by OPERATOR_ROLE. receiver must have
RECEIVER_ROLE.

• moveWBTC(receiver, amount): Raw WBTC transfer that bypasses any accounting (intended for
migrations). Callable by DEFAULT_ADMIN_ROLE only. receiver must have RECEIVER_ROLE.

2.2.2 ZCHFSavingsManager
The contract batches ZCHF into the Frankencoin Savings module and tracks each user deposit
independently. Interest accrues via a tick-based mechanism after a fixed delay. A yearly fee is applied
and is capped by the actual earned interest. Each ID always receives at least their principal back.

2.2.2.1 Deposit and Redemption flows
The createDeposits(identifiers, amounts, source) function batch-creates deposits, pulls
ZCHF from source (single transfer), calls the Savings module once (save(total)), and records the
deposit for each identifier. All items in the batch share the same createdAt and a pre-shifted tick
baseline (see below).

The redeemDeposits(identifiers, receiver) function computes each deposit’s net interest at
the current block time, deletes records, and performs a single Savings module withdrawal
(withdraw(receiver, total)). The receiver must have the RECEIVER_ROLE.

2.2.2.2 Accounting
The savings module exposes a tick counter measured in ppm * seconds. When a deposit is created,
the manager records a baseline tick that records the start of interest accrual based on the Savings
module's fixed delay. Concretely, it takes the current tick value and adds the product of the module’s
current rate and the INTEREST_DELAY. From that point on, only tick growth after this baseline counts
toward interest earned by this id.

After the delay has elapsed, gross interest increases whenever the Savings module’s tick counter
advances. The amount is proportional to both the deposit’s initial principal and the number of ticks
accumulated since the baseline.

The management fee is applied to the principal. It accrues linearly with time from the deposit’s creation at
FEE_ANNUAL_PPM , which is currently set to 12_500 (1.25% p.a.). The fee is then capped, so that it can
never exceed the gross interest that actually accrued. This cap guarantees that net interest is never
negative and that principal is never reduced. The fee could be configured differently by redeploying the
contract with a different fee constant. Any value is theoretically supported.

On redemption, the contract returns the sum of the principal plus net interest (i.e., gross interest minus
the capped fee). Before the interest delay expires, there is no interest and, due to the cap, no fee.

As the fee to be claimed with moveZCHF() is calculated off-chain by the operator, the contract cannot
guarantee that it always holds enough ZCHF to cover all deposits. However, it is assumed that the
operator will deposit additional ZCHF using addZCHF() in case the balance ever becomes insufficient.

2.2.2.3 Administrative Functions
The contract exposes the following additional management functions:

• addZCHF(source, amount): Saves ZCHF in the savings module without creating deposits (e.g.,
to correct underfunding).

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• moveZCHF(receiver, amount): Withdraws exactly amount from the module to receiver.
receiver must hold RECEIVER_ROLE. This function bypasses any accounting and is intended to
collect fees or migrate funds.

• rescueTokens(token, receiver, amount): Recovers ERC-20 tokens or ETH held by the
manager contract. receiver must hold RECEIVER_ROLE.

2.2.2.4 Changes in Version 2
Version 2The following changes were made in of the codebase:

• Version 2To mitigate Operator Could Break Accounting, introduces an on-chain, per-operator
redemption rate limit. The shared logic is defined in the abstract contract RedemptionLimiter.
The contract provides functions to enforce a rolling 24-hour quota for redemptions. The quota is
set in asset units and refills linearly with time. It never reaches a value higher than the daily cap.

Both managers extend RedemptionLimiter and enforce it. Calls to redeemDeposits() use the
operator’s current allowance. If no limit is set, the call reverts. If the amount exceeds the available
allowance, the call reverts. A view helper, availableRedemptionQuota(), exposes how much
can be redeemed at the current time. Administrators can configure the limit per operator using
setDailyLimit(). Setting a limit also refills the quota to the new daily limit.

•

Version 2

The moveZCHF function previously allowed passing an amount greater than the
ZCHFSavingsManager's balance in the savings module. In this case, it would just transfer the
entire balance. In , the behavior was changed to revert in case the full amount is not
available to be transferred.

2.3 Trust Model

2.3.1 Roles and Privileges

2.3.1.1 Admin
Trust Level: Fully trusted.

Capabilities: Grants and revokes roles. In the worst case, it could steal all the funds and transfer them to
an arbitrary address.

2.3.1.2 Receiver
Trust Level: Fully trusted.

Capabilities: Receives redemptions, fees, and rescues. In the worst case, it could steal all the funds that
the operator decides to send it.

2.3.1.3 Operator
Trust Level: Partially trusted.

Capabilities: Executes all operational flows. It is not able to extract, lock, or lose deposited value. In the
worst case, it could break the accounting by withdrawing funds to a Receiver and cause delays in interest
accrual. See Operator Could Break Accounting. The operator is assumed to correctly calculate the fees
taken via moveZCHF().

2.3.1.4 Frankencoin Governance
Trust Level: Fully trusted (only by ZCHFSavingsManager).

Capabilities: Frankencoin governance is responsible for the parameters of the Frankencoin system,
such as available minters and collaterals. In the worst case, it could misconfigure the system in such a

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

way that the ZCHF token loses its peg and becomes worthless (all configuration changes take time, so
they can be monitored). Additionally, it could disable the current savings module and replace it with a
new one. In this case, a migration of funds to a new ZCHFSavingsManager would be necessary.

2.3.2 Upgradeability
Both contracts are deployed as non-upgradeable implementations. Fee rates and external addresses are
fixed at construction. Changes require a new deployment and potentially a migration, which could be
done using the provided admin functions.

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code CorrectedDuplicate Inputs Can Overwrite Storage

Informational Findings 3

• Code CorrectedCaching Could Save Gas

• Specification ChangedDeposit Details Can Return Inconsistent Values

• Code CorrectedUnlocked Compiler Version

6.1 Duplicate Inputs Can Overwrite Storage
Correctness Low Version 1 Code Corrected

CS-PPCUS-001

In ZCHFSavingsManager, the createDeposits function checks that none of the identifiers used as
input are already in use. However, it does not check for duplicate identifiers within the input array itself.
This means that if the operator provides the same identifier multiple times in the input array, the last
occurrence will overwrite the previous ones, leading to untracked deposits.

The untracked deposits can be withdrawn by an operator using moveZCHF().

As there will be an event emitted for each duplicate identifier used, the events and storage state will be
inconsistent. The multiple DepositCreated events will never be matched by multiple DepositRedeemed
events, as the deposit can only be redeemed once.

Code correct:

Version 2In , createDeposits() now checks each identifier before writing, not just during the
pre-validation pass. After the first occurrence of an ID is stored, its createdAt is non-zero. A second
occurrence in the same batch would therefore pass if (deposits[id].createdAt != 0) and the
transaction would revert.

6.2 Caching Could Save Gas
Informational Version 1 Code Corrected

CS-PPCUS-002

Some functions read the same storage variable multiple times. Caching these values in memory
variables could save gas.

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

For example:

uint64 deltaTicks = currentTicks > deposit.ticksAtDeposit ? currentTicks - deposit.ticksAtDeposit : 0;

This could be cached as follows:

uint64 ticksAtDeposit = deposit.ticksAtDeposit;
uint64 deltaTicks = currentTicks > ticksAtDeposit ? currentTicks - ticksAtDeposit : 0;

By assigning the read storage value to memory, it can be ensured that the storage is only read once.

This optimization could be applied in the following locations:

1. In ZCHFSavingsManager getDepositDetailsAt(), deposit.initialAmount and
deposit.ticksAtDeposit are read multiple times.

2. In ZCHFSavingsManager redeemDeposits(), deposit.initialAmount is read multiple
times.

3. In WBTCDepositManager redeemDeposits(), deposit.principal is read multiple times.

For each optimization made, it is recommended to measure the gas savings with the specific compiler
and optimizer settings used in production. This will ensure that the optimization is not redundant due to
compiler optimization.

Code corrected:

Version 2In , repeated storage reads are cached in local variables.

6.3 Deposit Details Can Return Inconsistent
Values
Informational Version 1 Specification Changed

CS-PPCUS-003

In ZCHFSavingsManager, getDepositDetailsAt function can return inconsistent values when used
with past or future timestamps. This includes the following behaviors:

1. If the function is queried for a timestamp that was before the last Frankencoin savings rate
change, it will revert.

2. If the function is queried for a timestamp that was before the deposit was created, it will return
(initialAmount, 0), even though there was no amount deposited at this time.

3. If the function is queried for a timestamp at which an old deposit existed, but the identifier has
since been reused for a new deposit, it will return (initialAmount,0), where
initialAmount is the amount of the new deposit, not the old one that existed at the time.

4. If the function is queried for a timestamp at which the deposit existed, but the deposit has since
been redeemed, it will return (0,0).

5. If the function is queried for a timestamp that is in the future, it will return an amount that
assumes the Frankencoin savings rate will remain constant until that time, which is not
guaranteed.

Specification changed:

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Version 2In , getDepositDetailsAt was removed. All callers now use getDepositDetails, which
computes accrual strictly at the current block (block.timestamp with
savingsModule.currentTicks()). As past and future timestamps are no longer supported, the
above inconsistent behaviors are no longer present.

6.4 Unlocked Compiler Version
Informational Version 1 Code Corrected

CS-PPCUS-005

The contracts use the pragma solidity ^0.8.30 directive to specify a minimum compiler version,
but do not specify a maximum version. This means that the contracts can be compiled with future
compiler versions, which may introduce changes that could affect the contract's behavior. Contracts
should be deployed with the same compiler version and flags that they have been tested with thoroughly.
Locking the pragma helps to ensure that contracts do not accidentally get deployed using a different
version than they were tested with.

Code corrected:

The pragma directives in the Solidity files have been fixed to 0.8.30.

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Tick-accrual Mismatch on New Deposit
Informational Version 1 Acknowledged

CS-PPCUS-004

The Savings module is account-based, not position-based. The manager contract
(ZCHFSavingsManager) has one single savings account in the module: savings[address(this)].

Each time additional funds are deposited, the module advances the account’s ticks by a weighted
delay (currentRatePPM * INTEREST_DELAY) so that the new money effectively waits
INTEREST_DELAY days before earning interest:

uint64 weightedAverage = uint64(
 (saved * (balance.ticks - ticks) + uint256(amount) * currentRatePPM * INTEREST_DELAY)
 / (saved + amount)
);
balance.ticks = ticks + weightedAverage; // ticks == currentTicks()

Because balance.ticks becomes greater than currentTicks() right after a deposit, the entire
pooled account earns zero new interest until currentTicks() catches up again.

The manager’s per-deposit view function (getDepositDetails{,At}) does not account for this pause
and continues to report increasing interest based on ticks(timestamp), even though the module
accrues none during the delay:

uint64 deltaTicks = currentTicks > deposit.ticksAtDeposit
 ? currentTicks - deposit.ticksAtDeposit
 : 0;

If redemptions are executed within this window, the manager can withdraw the overstated amount. If all
ids were withdrawn at the same time while this is the case, withdraw would not be able to service all the
amounts.

Consider the following example:

1. A deposit of 100 ZCHF is made at time 0.

2. Another deposit of 100 ZCHF is made at time 1.5d. The delay set in the savings module will be
set to the average of 1.5d and 3d = 2.25d.

3. At time 3.5d, the getDepositDetails() function will report that the first deposit has been
earning interest for 0.5d. However, there has been no interest as the manager will only start
earning interest at 1.5 + 2.25d = 3.75d.

4. If there is no redemption until time 4.5d, (3 days after the last deposit) the interest has
equalized and the accounting is now correct.

The small accounting inaccuracy will happen every time there is a new deposit. If there are withdrawals
while the accounting is inaccurate, it may stay inaccurate as the principal that earns interest is reduced.
However, this effect can be fully mitigated by leaving a buffer of unwithdrawn fees in the manager
contract, which generates enough interest to cover any potential over-withdrawals.

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Acknowledged:

Plusplus AG states:

We are okay with there being slight mismatches that sync up later. We can handle this by either waiting
and/or depositing buffer funds to the savings module (Process Change).

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Operator Could Break Accounting
Note Version 1

The operator role is partially trusted. In the worst case, a malicious operator could intentionally delete all
deposits by calling redeemDeposits() on all funds. While it would be possible to recreate the state
off-chain, this would break the accounting model of the on-chain contract. As the fees charged depend on
the principal and deposit time of each deposit, a deleted deposit cannot be simply recreated using
createDeposits(). Recreating the deposit with the redeemed balance and the current timestamp
would lead to different fee calculations than the original deposit.

Note that while this situation would be challenging accounting-wise, it would not lead to a loss of user
funds, as the redeemed balance would be forwarded to a fully trusted receiver address. The worst-case
financial impact would be the loss of interest that would have accrued on the deposits if they had
remained active, as well as the interest of the 3-day delay upon re-depositing to the Frankencoin Savings
contract.

Specification changed:

Version 2In , a daily redemption limit was introduced for operators. This reduces the damages a malicious
operator can do. The above note still applies, but the maximum withdrawable amount is now the limit
configured by the admin instead of all funds.

Plusplus AG - Plusplus Custody - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 WBTCDepositManager
	2.2.1.1 Deposit and Redemption flows
	2.2.1.2 Accounting
	2.2.1.3 Global Accounting
	2.2.1.4 Additional Management functions

	2.2.2 ZCHFSavingsManager
	2.2.2.1 Deposit and Redemption flows
	2.2.2.2 Accounting
	2.2.2.3 Administrative Functions
	2.2.2.4 Changes in Version 2

	2.3 Trust Model
	2.3.1 Roles and Privileges
	2.3.1.1 Admin
	2.3.1.2 Receiver
	2.3.1.3 Operator
	2.3.1.4 Frankencoin Governance

	2.3.2 Upgradeability

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Duplicate Inputs Can Overwrite Storage
	6.2 Caching Could Save Gas
	6.3 Deposit Details Can Return Inconsistent Values
	6.4 Unlocked Compiler Version

	7 Informational
	7.1 Tick-accrual Mismatch on New Deposit

	8 Notes
	8.1 Operator Could Break Accounting

