PUBLIC

Code Assessment

of the POSDAO
Smart Contracts

June 25, 2021

Produced for

by

ri POA

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
System Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

o N o o~ W N PP

Notes

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG

13
14
15
21
26

https://chainsecurity.com

1 Executive Summary

Dear Sir or Madam,

First and foremost we would like to thank POA Network for giving us the opportunity to assess the current
state of their POSDAO system. This document outlines the findings, limitations, and methodology of our
assessment.

Throughout the project, we greatly appreciated working with your team, whom are both collaborative and
available to discuss the issues at hand. It was clear from our interactions that your team is committed to
quality, and this shows in the smart contract code which favors security above efficiency. We were
impressed with the well structured documentation your team provided, and suggest in the future to invest
further in the corner case specifications as this would help to clarify the expected behavior of the system.
Our assessment uncovered a few issues, but no "“critical" severity security flaws which would prevent the
launch of the smart contracts. We found one "high" severity security flaw: 6.1 - EIP-170 Mix Up /
Unlimited Contract Size.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EXTED-Severity Findings 0
(C)-Severity Findings 1
: 1
(Medium)-Severity Findings 7
: 1
: 2
: 2
W Acknowiedged 2
(Low)-Severity Findings 11
: 7

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

¥ Risk Accepted

J Acknowledged

POA Network - POSDAO - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the POSDAO repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

Date Commit Hash Note
Vv

30 April 2021 | 34552ccdbfc148ae48a7a6ded44elb435ff21f5f8 Initial Version
1

10 June 2021 | 9de3a94be98d9553c6ac72916221b42fc56daec2 | After Intermediate Report
2

The smart contracts allow for a custom configuration of the network. All production smart contracts in the
repository and the commits listed above were part of the audit scope, however, the main focus was on
the configuration for the xDAI POSDAO AuRa implementation.

2.1.1 Excluded from scope

For the solidity smart contracts, the compiler version 0. 5. 10 was chosen. The outdated compiler version
has been explicitly used by POA Network so the compiler version to remain consistent across the project
and is not subject of the audit.

We checked that the random aura smart contract implements the algorithm. However, the guarantees
provided by the alogirthm and in particular the randomness provided by the algorithm is out of scope. The
technical implementation of the RandomAur a smart contract was in scope, the RANDAO methodology
however is out of scope.

The Gover nance contract has been added to the repository after the intermediate report and is not part
of this assessement.

3 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Introduction

The smart contracts reviewed implement the configurable logic for the operation of a POSDAO network.
The actual configuration implemented corresponds to the settings for the xDAI POSDAO AuRa network.
These smart contracts are used by the client software (currently OpenEthereum or Nethermind) to
determine how to run the proof of stake network. Amongst others, this includes the logic to determine the
set of active validators and the block rewards. The client software is configured accordingly through the
genesis configuration of the chain and the core smart contracts expose standardized functions which the

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

client queries. A staking contract deployed on chain allows participants to stake (either the native coin of
the chain or tokens, depending on configuration) and to participate in the consensus.

Further utility contracts are:
* Registry: Matches addresses with human readable keys

» TxPriority: Individual smart contracts at each node, allow each node to configure the priority of
transactions to be included.

Most of the smart contracts function independently, some have a loose connection. Following, all
deployed smart contracts are presented in detail:

3.1 Regqistry

DNS-Like registry associates human readable information with addresses.

Anyone may reserve any free name. Reserving a name costs a fixed fee. The owner of an entry can set
it's data, drop or transfer the ownership to another address. To set an address for an entry (called the
reverse) the owner first proposes the address using pr oposeReser ve() before the address confirms it
by calling confirnmReserve(). As contracts may be unable to do software confi rnReserveAs()
allows the owner of the contract (not the owner of the entry) to manually confirm an entry.

The contract's owner can set the fee & collect the Ether collected.

3.2 TxPriority

This is a non-consensus feature. Every Validator node may run their own TxPri ori ty contract in order
to determine the order of transactions to be included at their node. A priority may be set based on the t o
and dat a field of a transaction. Additionally, a minimum gas price for destination / function signature
combination may be set.

There is a whitelist for sender addresses, transactions originating from such an address have highest
priority to be included irregardless of other settings.

3.3 TxPermissioning

Controls the use of zero gas price in service transactions alongside the Certi fi er contract. It defines a
function al | owedTxTypes. Two version exists:

TxPermissioningV3: The allowed Tx types depend on: _sender, to, val ue, gasPri ce and _dat a.
TxPermissioningV4: In preparation for EIP-1559, the allowed tx types additionally may depend on
_maxFeePer Gas, _maxl ncl usi onFeePer Gas and _gasLi ni t instead of the gas price.

3.4 Certifier

This upgradable contract allows validators to use a zero gas price for their service transactions.

The contract owner can set addresses to be whitelisted. The function certifi ed() can be used to
guery the status of an address. The function returns true if either the address has been explicitly
whitelisted by the owner or val i dat or Set Cont ract . i sReport Val i dat orVal i d(_who, true)
returnst r ue.

3.5 ValidatorSetAuRa

Stores the current validator set and contains the logic for choosing new validators at the beginning of
each staking epoch.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3.6 StakingAuRa

Contains staking logic including pool management withdrawing moving stakes.

3.7 BlockRewardAuRa

Generates and distributes rewards (block rewards and bridge rewards) to the pools and splits it for
delegators and validators.

3.8 RandomAuRa

Allows validators to commit and reveal random numbers generated off-chain. Aggregates and these
numbers in a RANDAO manner.

3.9 Configurations

Albeit the reviewed smart contracts where configured for the operation of the xDai POSDAO AuRa
implementation, the smart contracts allow the configuration to be heavily customized.

Staking can be done in either Tokens or the native coin, depending on the configuration in contract
St aki ngAuRa. Block reward can be paid in either Tokens or the native coin, depending on the
configuration in contract Bl ockRewar dAur a

The repository contains implementation code for these different options.

The chain may be started from genesis or forking of an already existing AuRa chain.

3.10 Roles

Most functions are permissioned and require the caller to bear a specific role. Due to the complexity and
upgradeability of the projects, the admin role need to be carefully distinguished as their are multiple
contracts that can have an admin. The admin is supposed to be a multi signature contract with
accordingly well chosen signers.

The ERC677Bri dgeTokenRewar dabl e contract has an owner which is the account deploying the
contract. This account can mint directly and indirectly by setting a malicious. Hence, the owner needs to
be fully trusted. The owner needs to either the TokenM nt er contract or another address that only
temporarily has the owner power. This is because some of the functions are not callable from the
TokenM nt er contract if it is not the owner but simultaneously some of the functions cannot be called
but the TokenM nt er and require another address to which the admin power is transferred temporarily.

The TokenM nt er contract has a owner that is defined when the contract is deployed. cl ai mTokens,
set Bri dgeCont ract and transfer TokenOaner shi p fail if the contract is not also the owner of the
token contract. Hence, transfer TokenOaner shi p renders the TokenM nt er functions useless
unless ownership is transferred back to the minter contract. The owner can also define minting addresses
that are allowed to call m nt which is called in the token contract and also only works as long as the
TokenM nt er contract is the owner of the token contract.

TxPriority has an owner which is set when the contract is deployed and no proxies.

All other contracts listed with a * are the implementation contract for a proxy contract. The proxy has an
admin which, by default, is the deployer. The functions with an added * are functions of the proxy
contract.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Contract

Role

Power to call

ERC677BridgeTokenRewardable

owner

* transferOwnership

* claimTokens
 addBridge

* removeBridge

* setBlockRewardContract
* setStakingContract

e mint (indirectly)

« stake (indirectly)

e mint (directly)

BlockRewardContract

* mintReward

StakingAuRaContract

« stake

TokenMinter

owner

» addMinter

* removeMinter

* claimTokens

* setBlockRewardContract
* setBridgeContract

* transferOwnership

* transferTokenOwnership

BlockRewardContract

* mintReward

minter « mint
P .
Certifier admin . certify
* revoke

e changeAdmin*
e upgradeTo*
e upgradeToAndCall*

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

RandomAura*

admin

* setPunishForUnreveal
» changeAdmin*

e upgradeTo*
 upgradeToAndCall*

miningAddress

e commitHash
* revealNumber

* revealSecret

ValidatorSetContract

* clearCommit

BlockRewardContract

* onFinishCollectRound

TxPriority

owner

* transferOwnership

* setPriority

» removePriority

* setSendersWhitelist
* setMinGasPrice

* removeMinGasPrice

ValidatorSetAuRa*

owner

* clearUnremovableValidator
» changeAdmin*

* upgradeTo*

* upgradeToAndCall*

blockRewardContract

* newValidatorSet

randomContract

* removeMaliciousValidators

stakingContract

» addPool

System

* finalizeChange

unremovableStakingAddr

« clearUnremovableValidator

stakingAddress

» changeMiningAddress
» changeStakingAddress

» changeMetadata

POA Network - POSDAO - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

BlockRewardAuRaTokens*

owner

« setErcToNativeBridgesAllowed
* setTokenMinterContract

* setErcToErcBridgesAllowed

« setNativeToErcBridgesAllowed
» changeAdmin*

e upgradeTo*
 upgradeToAndCall*

ErcToNativeBridge

» addBridgeNativeFeeReceivers
» addBridgeNativeRewardReceiver

« addExtraReceiver

System

» reward

ValidatorSetContract

« clearBlocksCreated

stakingContract

« transferReward

XToErcBridge

» addBridgeTokenFeeReceivers
» addBridgeTokenRewardReceiver

BlockRewardAuRaCoins*

owner

« setErcToNativeBridgesAllowed
» changeAdmin*

e upgradeTo*
 upgradeToAndCall*

ErcToNativeBridge

» addBridgeNativeFeeReceivers
» addBridgeNativeRewardReceiver

» addExtraReceiver

System

* reward

ValidatorSetContract

« clearBlocksCreated

stakingContract

« transferReward

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 10

[72)

https://chainsecurity.com

StakingAuRaTokens*

owner

« initialValidatorStake

* setCandidateMinStake

* setDelegatorMinStake

* setErc677TokenContract
» changeAdmin*

e upgradeTo*
 upgradeToAndCall*

ValidatorSetContract

* clearUnremovableValidator
* incrementStakingEpoch

* removePool

» removePools

» setStakingEpochStartBlock

stakingAddress « removeMyPool
erc677TokenContract i Tl e
StakingAuRaCoins* owner

« initialValidatorStake

* setCandidateMinStake
« setDelegatorMinStake
» changeAdmin*

e upgradeTo*
 upgradeToAndCall*

ValidatorSetContract

* clearUnremovableValidator
* incrementStakingEpoch

* removePool

» removePools

» setStakingEpochStartBlock

stakingAddress

* removeMyPool

erc677TokenContract

e onTokenTransfer

TxPermission*

owner

* addAllowedSender

* removeAllowedSender

« setDeployerinputLengthLimit
* setSenderMinGasPrice

» changeAdmin*

e upgradeTo*
 upgradeToAndCall*

POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Registry has an own owner implementation no Proxy and no special owner permissions.

3.11 Assumptions

* All software (not including the reviewed smart contracts) and hardware on the machine works as
intended, acts non-malicious and is secure

» The proxy owner role of the smart contracts is fully trusted
* Correct deployment of the smart contracts

» The randomness created by the node is sufficient

3.12 Address Setup

Each validator controls two addresses with the correponding private keys. These are:

* Mining keys
» Staking keys

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

4 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Findings

In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

(EED-Severity Findings 0

(C)-Severity Findings 1
« EIP-170 Mix Up / Unlimited Contract Size

(Medium)-Severity Findings 4

« Changing Mining and Staking Addresses While Banned
« Incoherent Event ChangedMiningAddress Emitted ()
» Limitations of the TxPermissions Contract

* Role Switch Needed ()

(Low)-Severity Findings 4
» Gas Inefficiency During Removal From Array ()
» Inconsistent Use of Safemath
« Potentially Compromised Key Needed to Change Key ()
» Superfluous Call of _finalizeNewValidators (=)

6.1 EIP-170 Mix Up / Unlimited Contract Size
(Correctness [High VZZTT) Risk Accepted

EIP-170 has been introduced into the Ethereum mainnet with the Spurious Dragon hardfork in order to
limit the maximum codesize of a contract.

The short specification of the EIP reads:

... iIf contract creation initialization returns data with length of more than 0x6000 (2**14 + 2**13) bytes,
contract creation fails with an out of gas error.

The data returned by the contract creation initialization is the code of the newly deployed smart contract
that will be stored as the code of the smart contract. This is valid regardless wether the contract has been
deployed directly from a transaction or a during code execution of a CREATE / CREATE2 opcode. For
more details please refer to chapter 7 of the Ethereum Yellowpaper.

The TxPerni ssionBased contract in the POSDAO system attempts to enforce a
_depl oyer | nput Lengt hLi i t. There is an annotated function for the owner to set this variable:

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

And inside the _al | owedTxTypes function which is annotated with:

there is:

if (_to address(0) && _data.length depl oyer | nput LengthLinit (_sender)) {

return (NONE, false);
}

There is a mixup here: What the TxPer m ssi on contract actually limits with this parameter is the lenght
of the dat a field of the transaction, not the limit of a contract's code size. This has nothing to do with
EIP-170. Hence if the limit is only "enforced" by the TxPer m ssi on contract and there is no further limit
set in the chain specification anyone may deploy a contract of arbitrary size, limited only by the gas limit.
EIP-170 is not activated in the t enpl at e/ spec. j son chain sepcification file available in the repository.

Note that the Ethereum mainnet has no excplicit limit on the data field of a transaction (called input in the
function description in POSDAO). This is only limited by the gas limit of a block.

Ethereum Yellowpaper: https://ethereum.github.io/yellowpaper/paper.pdf
EIP-170 Specification: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md

Risk Accepted:

POA Network accepts this risk and states: Sone popul ar projects on xDai require the abi
lity to deploy contracts with size greater than 24 Kb. The limt on transacti
on size is intended as an easy protection against script kiddies.

6.2 Changing Mining and Staking Addresses
While Banned
(CEED) (Medium) (Version 1) GRS 000)

Val i dat or Set AuRa allows to change the mining and staking address while a pool is banned. This
updates the state, including:

i dBy St aki ngAddr ess[ol dSt aki ngAddr ess] 0;
i dBy St aki ngAddr ess[_newSt aki ngAddr ess] pool | d;

or

i dByM ni ngAddr ess|[_ol dM ni ngAddr ess] 0;
i dByM ni ngAddr ess| _newM ni ngAddr ess] _pool I d;

The available specification does not cover this scenario and it remains unclear if this should be possible
or not.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 16

https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md
https://chainsecurity.com

In case of a change of the mining address while a pool is banned, the return value of following functions
may be unexpected for the caller:

function bannedUntil (address _m ni ngAddress) public view returns(uint256) {
return _bannedUntil [i dByM ni ngAddr ess[_m ni ngAddr ess] | ;

}

bannedUnti | () will return O if the mining address of the banned pool has been changed even though
the pool is banned.

function isValidatorBanned(address _nini ngAddress) public view returns(bool) {
ui nt 256 bn bannedUnti | (_ni ni ngAddress);
if (bn 0) {

return fal se;

}
return _getCurrent Bl ockNunber () bn;

}

This holds similarly for this function which notably is querried by Bl ockRewar dAuRaBase. r ewar d() .

Within the system one such address can only be used once for an unique purpose, e.g. an address that
has been a mining or staking address once cannot be reused anymore.

This is tracked by following mappings:

mappi ng(addr ess ui nt 256) public hasEver BeenM ni ngAddr ess;
mappi ng(addr ess bool) public hasEver BeenSt aki ngAddr ess;

The information to which pool the mining address once belonged to is availabe in this mapping.

Risk accepted:

POA Network states this is expected behavior in order to allow pools to change their staking or mining
address if they are compromised during the ban period.

6.3 Incoherent Event ChangedM ni ngAddr ess
Emitted
(Medium][Version 1](]

To change a mining address, changeM ni ngAddr ess is called from the participants staking address. If
the participant is a current validator, the change is not done immediately. This emits the
I ni ti at eChange. Additionally, the function will always emit the ChangedM ni ngAddr ess event.
Given the name of the event and that it is also emitted when the mining address is changed immediately
because the participant is not part of the current validator set, this seems incoherent. As the event name
suggests, the event should be emitted only when the mining address is changed or maybe renamed.

Acknowledged:

POA Network is aware that the ChangeM ni ngAddr ess event only corresponds to the immediate
change of the mining address when a pool is not a validator. Unfortunately no events can be emitted at

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

the moment of the real change for the delayed case inside the system's fi nal i zeChange function as
events cannot be emitted during execution of this system operation.

6.4 Limitations of the TxPer m ssi ons Contract

(Desig LT TN Risk Aceepted

The _al | owedTxTypes function of the TxPer m ssi ons contract is applied to all transactions to be
include into a block. However this means all checks are only done on external transactions created from
externally owned accounts, internal transactions (calls within transactions) are not subject to these
checks.

Some of these checks including e.g.

if (validatorSetContract.isValidator(_to)) {

return (NONE, false);
}

can be circumvented by internal transaction. Internal transactions are calls from within bytecode
execution, e.g. during execution of a smart contract.

Risk Accepted:

POA Network is aware that the rules defined by the TxPer m ssi ons contracts are only applied to
transactions of EOAs.

6.5 Role Switch Needed
(Mediumj [Version 1](]

The TokenM nter contract calls permissioned token contract functions. These are mnt,
set Bri dgeContract, transfer Owmer shi p. To successfully call these functions, the TokenM nt er
contract needs to be the owner of the ERC677Mul ti Bri dgeToken contract.

Regarding the set Bri dgeCont r act we have opened a separate issue because this call will always fail.
But the ERC677Mul ti Bri dgeToken contract also implements other functions that are permissioned to
be called only by the owner. Given the TokenM nt er contract is the owner these functions could not be
called. These functions are: addBridge, renpbveBridge, setBlockRewardContract,
set St aki ngcontract .

To call this functions, the ownership needs to be transferred from the minter contract to an other contract
and then back. This seems undesirable.

Acknowledged:

POA Network explains that the TokenMinter contract is used as an intermediate owner contract for the
PermittableToken contract wich represents the STAKE token. To clarify this, comments where added to
the TokenMinter contract.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6.6 Gas Inefficiency During Removal From Array
[Low] [Version 1][]

The staking contract keeps track of the pools using multiple arrays. When an entry has to be removed,
this is done as in the following example:

ui nt 256 i ndexToDel et e pool ToBeRenoved| ndex|[_pool | d] ;

i f (_pool sToBeRenoved. | ength i ndexToDel ete && _pool sToBeRenoved| i ndexToDel et e] _pool 1d) {
ui nt 256 | ast Pool _pool sToBeRenoved| _pool sToBeRenoved. | engt h 1];
_pool sToBeRenoved| i ndexToDel et e] | ast Pool ;
pool ToBeRenoved| ndex| | ast Pool | i ndexToDel et e;

pool ToBeRenoved| ndex|[_pool | d] 0;
_pool sToBeRenoved. | engt h

}

In case that the removed entry was already last in the list two SSTORE and one SLQAD operation could
have been skipped.

Acknowledged:

Client states that this operation is quiet rare and, hence, will not change the implementation.

6.7 Inconsistent Use of Safemath

(D) (Cow) (Version 1) R

The code has multiple calculations including multiplications and divisions without safemath. Even though
we could not find a place where we think calculation would over or underflow, the consistent use of
safemath would ensure this.

Risk accepted:

Safe math was not used intentionally in critical functions to not cause reverts and risk a network break
down. Hence, POA network accepted the risk.

6.8 Potentially Compromised Key Needed to

Change Key
[Low] [Version 1] []

To change a potentially compromised staking key, the staking key is needed. Even though, the mining
key is not used for tasks like key changes, in this case it might make sense from a security perspective.
One reason to change a key is that it might be corrupted. In this case, it might be safer to use an other
already existing key to change it.

Acknowledged:

POA network wants to keep the strong separation regarding the key usage.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

6.9 Superfluous Call of
finalizeNewval i dat ors

[Low] [Version 1] []

changeM ni ngAddr ess sets _fi nal i zeVal i dators. |i st tothe unedited _pendi ngVal i dat ors.
In finalizeChange this causes the else if conditon to be true and triggers
_finalizeNewval i dators. _finalizeNewval i dat ors first removes all validators and then adds
the same. This seems unnecessary. Additionally, the comment suggest another use case for the else if.

Acknowledged:
POA network acknowledged the issue but decided to leave the code unchanged.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

/ Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 3

* Failing Function Call Gl N ER T

* No Canonical Definition of Calldata for onTokenTransfer el NS ENF-Ch)
» claimOrderedWithdraw Not Always Successful

(Low)-Severity Findings 7
« Incorrect Comment in finalizeChange
» Incorrect Description
» Make onTokenTransfer() External
» Multiplication After Division
» No Indexed Fields for ReportedMalicious
» Unchecked Return Value of Transfer

» certify Missing Sanity Check

7.1 Failing Function Call
(Design LT |CLETTRY| Specification Changed

The TokenM nter contract implements the function setBri dgeContract which should call
t okenContract. set Bri dgeContract. The set Bri dgeContract function does not exists in the
ERC677Mul ti Bri dgeToken contract. Hence, the function call would fail and the interface definition at
the beginning is incorrect.

Specification changed:

POA Network explains that the TokenMinter contract is used as an intermediate owner contract for the
PermittableToken contract wich represents the STAKE token. To clarify this, comments where added to
the TokenMinter contract.

7.2 No Canonical Definition of Calldata for
onTokenTr ansf er

[Medium] [Version 1] Specification Changed

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

The function onTokenTr ansf er uses inline assembly to read the receiver and calldata from the calldata
arguments. The assembly strongly relies on some assumptions about the argument encoding of the
Solidity. One of them is that there are no "garbage bits" between the byte offset of the
bytes cal |l data _dat a variable and the length field of the bytes cal | data _data argument.
This assumption will hold true in most cases, but is not guaranteed to hold. This assumption can be
eliminated letting the compiler copy the _data into the memory and dealing with it there. Full
expectations about the expected information in the _dat a argument must be properly documented, to
avoid the misinterpretation of the interface.

function onTokenTransf er (
address _from
ui nt 256 _val ue,
bytes cal |l data _data

) external returns (bool) {

A similar situation can be found in the TxPer m ssi ons contract.

Specification Changed:

The code has been commented as follows:

7.3 clal mOrderedWt hdrawNot Always
Successful

(D) (Visdium) (Version 1) G

After using the St aki ngAuRa. or der Wt hdr aw() function the validator can complete the withdrawal
starting from the next epoch using cl ai nOr der edW t hdr aw() .

To prevent abuse, this function queries _i sW t hdr awAl | owed once more in order to determined if the
validator may have been banned in the meantime. However _i sWt hdr awAl | owed also includes a
check whether staking or withdrawals are currently allowed using ar eSt akeAndW t hdr awAl | owed() .

Normally such actions are not allowed near the end of a staking epoch in order to not interfere with the
validator selection process. Note that claiming a previously ordered withdrawal has no influence on this
and hence shouldn't be subject to this restriction. If a party happens to claim their withdrawal at the end
of an epoch their withdrawal fails without apparent reason.

Code corrected:

The _i sWt hdr awAl | owed function has been refactored and parts of it's functionality has been moved
into a new _i sPool Banned() function. This function is now querried in cl ai nOr der edW t hdr aw()
which resolves problem with the blocked withdrawals at the end of an epoch as described above.

7.4 Incorrect Comment in final i zeChange

(Correctness JICTO(ZEETBY Code Corrected)

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 22

https://docs.soliditylang.org/en/v0.6.0/abi-spec.html
https://docs.soliditylang.org/en/v0.6.0/abi-spec.html
https://chainsecurity.com

The comment in the else if branch suggest, it is only been executed in case of malicious validator
reporting.

But the code is also executed in case of mining address changes.

Code corrected:
The code comments were corrected and elaborated.

7.5 Incorrect Description

D (Lo (Version 1) CIXTRTD)

In St aki ngAuRaBase the function description of _st ake(addr ess, address, uint256) is

But function is also used ini ni ti al Val i dat or St ake, _addPool .

Code corrected:

The code comments were corrected and elaborated.

7.6 Make onTokenTr ansfer () External

(D) (Cow) (Version 1) CEIXTEED

Function St aki ngAur aTokens. onTokenTr ansf er () has visibility publ i c. This means the function
can be called externally and internally from within the contract.

Inside this function the cal | dat a is read. This is the data passed alongside the call to the contract and
remains unchanged if another function within the contract executes another contract as on a bytecode
level this is only a JUMP. Function onTokenTr ansf er is currently only called from externally and not
internally from within the St aki ngAur aTokens contract. Hence, the calldata consists of the function
arguments as expected. Due to the dependency on calldata the functions visibility may be ext er nal
instead of publ i ¢ to avoid the function being called from within the contract accidentally during future
code changes.

Code corrected:

The function visibility as well as the reads from memory were changed accordingly.

7.7 Multiplication After Division
(Design [(FTYWEETTBY] Code Corrected

In Val i dat or Set AuRa. r eport Mal i ci ousCal | abl e() a multiplication is performed after a division:

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

aver ageReport sNunber (reportsTotal Nunber report sNunber) (val i dat or sNunber 1)

[...]
report sNunber val i dat or sNumber 50 && reportsNunber aver ageRepor t sNunber 10

Due to possible precision loss, this should be avoided.

Code corrected:

The multiplication is now done before division.

7.8 No Indexed Fields for Report edMal i ci ous
D) (Low) (Version 1) (XL

The ReportedMal i ci ous event has multiple fields that might be worth indexing. No field is indexed.
POA Network might re-evaluate if this is desired.

Code corrected:

The event has now indexed fields.

7. 9 Unchecked Return Value of Transfer

Desig (EOVEETRY] Code Corrected

Bl ockRewar dAuRaTokens. t r ansf er Rewar d() and
Stakl ngAuRaTokens. _sendW t hdr awnSt akeAnmount () the boolean return value of the call to
erc677TokenContract.transfer () isignored.

While most ERC-20 Tokens (ERC-677 implements the ERC-20 Standard) and the ERC677 token
implementation available in the repository revert upon failure, the standard does not require this and
returning f al se instead of reverting is valid according to the standard. As the POSDAO system is highly
customizable the situation may arises where a token contract not reverting on failure is used.

Similarly the return value of the call to t okenContract. nmnt () inside
TokenM nt er. mi nt Rewar d() is also ignored.

Code corrected:

The transfer functions are wrapped into a require. The mint function remained as it is since it is called by
the Bl ockRewar d. r ewar d function which is critically sensible for reverting according to POA network.

7.10 certify Missing Sanity Check
7DD (Low) (Version 1) (CXISIEED)

The Certifier implements certi fy. The function allows certifying the same address multiple times. The
Confi r med event would be emitted misleadingly multiple times.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Code corrected:

An appropriate sanity check was added.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG

25

https://chainsecurity.com

8 Notes

We leverage this section to highlight potential pitfalls which are fairly common when working Distributed
Ledger Technologies. As such technologies are still rather novel not all developers might yet be aware of
these pitfalls. Hence, the mentioned topics serve to clarify or support the report, but do not require a
modification inside the project. Instead, they should raise awareness in order to improve the overall
understanding for users and developers.

8.1 Avoiding Function Identifier Clashes

The current proxy scheme is vulnerable to duplicated 4-byte function identifiers which could result in a
function identifer clash. POA Network prevents this by using an off-chain script to check for clashes.
There are also on-chain solutions like the upgradable transparent proxy solution by OpenZeppelin which
might be worth considering.

8.2 ERC677 Standard Is a DRAFT

The ERC677 standard is based on a eip having draft status since it's creation in 2017. Such standards
are subject to changes before the eip's status is finalized.

8.3 Most of the RedBlackTree Library Functions
Unused

Following function of the RedBlockTree Library are unused and hence dead code.

BokkyPooBahsRedBl ackTreelLi brary. first()
BokkyPooBahsRedBl ackTr eelLi brary. get Enpt y()
BokkyPooBahsRedBl ackTr eeLi brary. get Node()
BokkyPooBahsRedBl ackTr eeLi brary. i sEnpty(ui nt 256)
BokkyPooBahsRedBl ackTr eeLi brary. next ()
BokkyPooBahsRedBl ackTreelLi brary. treeM ni num))

Note as the functions are not used within the POSDAO system these were not reviewed as part of this
audit.

8.4 Pragma Experimental ABIEncoderV2
(D) (Version 1

Contract TxPriority uses pragma experinmental ABIEncoderV2. In the compiler version
choosen the new ABI encoder is still considered to be experimental.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

8.5 UTF-8 Charset
(D) (Version 1

The validator and the staking contract allow names to be set for pools. The charset for string is UTF-8.
UTF-8 has some similar looking characters, which for a human reader some of these letters are
indistinguishable.

This allows so called visual spoofing of names. Users and front-end developper should excercise extra
caution.

8.6 Unreliable Event Emission When Mining
Address Is Changed
(D) (Version 1

When reporting a malicious validator, the mining address is used and the following event emitted.

The _malici ousM ni ngAddr ess might change between multiple reportings. Hence, the mining
address is no reliable information to process from across multiple events.

8.7 Unused Code _renoveMal i ci ousVal i dat or

(D) (Version 1)

The Val i dat or Set AuRa contract implements the function _renoveMal i ci ousVal i dator. This
function is not called at all. The only function it appears is in _r enoveMal i ci ousVal i dat ors. But it is
commented out there. Furthermore, the function _renoveMali ci ousVal i dators does not do
anything except for setting | ast ChangeBl ock. Hence, also renoveMal i ciousValidators is
basically only setting this variable.

This also affects parts of r eport Mal i ci ous. We were verbally informed that client is aware of this and
this will be fixed for the final review. Else, this would turn into an issue.

@ POA Network - POSDAO - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Registry
	3.2 TxPriority
	3.3 TxPermissioning
	3.4 Certifier
	3.5 ValidatorSetAuRa​
	3.6 StakingAuRa​
	3.7 BlockRewardAuRa
	3.8 RandomAuRa​
	3.9 Configurations
	3.10 Roles
	3.11 Assumptions
	3.12 Address Setup

	4 Limitations and use of report
	5 Terminology
	6 Findings
	6.1 EIP-170 Mix Up / Unlimited Contract Size
	6.2 Changing Mining and Staking Addresses While Banned
	6.3 Incoherent Event ChangedMiningAddress Emitted
	6.4 Limitations of the TxPermissions Contract
	6.5 Role Switch Needed
	6.6 Gas Inefficiency During Removal From Array
	6.7 Inconsistent Use of Safemath
	6.8 Potentially Compromised Key Needed to Change Key
	6.9 Superfluous Call of _finalizeNewValidators

	7 Resolved Findings
	7.1 Failing Function Call
	7.2 No Canonical Definition of Calldata for onTokenTransfer
	7.3 claimOrderedWithdraw Not Always Successful
	7.4 Incorrect Comment in finalizeChange
	7.5 Incorrect Description
	7.6 Make onTokenTransfer() External
	7.7 Multiplication After Division
	7.8 No Indexed Fields for ReportedMalicious
	7.9 Unchecked Return Value of Transfer
	7.10 certify Missing Sanity Check

	8 Notes
	8.1 Avoiding Function Identifier Clashes
	8.2 ERC677 Standard Is a DRAFT
	8.3 Most of the RedBlackTree Library Functions Unused
	8.4 Pragma Experimental ABIEncoderV2
	8.5 UTF-8 Charset
	8.6 Unreliable Event Emission When Mining Address Is Changed
	8.7 Unused Code _removeMaliciousValidator

