PUBLIC

Security Audit

of POA NETWORK’s Smart Contracts

September 11, 2018

Produced for

POA
by

C CHAINSECURITY

Table Of Content

Foreword 1
Executive Summary e 1
SCOPE . . o 2
I Included inthe scope e 2
Il Outofscope 2
Audit OVEIrVIEW e 3
. Scopeofthe Audit e 3
Il Depthof Audit. 3
I Terminology o e 4
Limitations 5
Best Practices in POA NETWORK'S project o oo oo e e e e e e e 6
Security ISSUES L L 7
I. Initialization and Key distribution 7

1.1 Basic specification FZINORERVEY 7

1.2 No guarantees on 12 initial validators : 7
I Validator Set 8
21 Basic specification RZINORERIVEY 8
2.2 Minority of dishonest validators colluding can be harmful : 9
. Upgradability 9
3.1 Basic Specification [ZINOIEEVEY 9
3.2 Correctness of the Eternal Storage Proxy pattern fZINQEEVEY 10
3.3 ProxyStorage link can be changed after initialization :i: 10
IV. Votingand Governance 11
4.1 Basic Specification FINOREENEY 11

https://chainsecurity.com

https://chainsecurity.com

4.2 Contract Owner Controls Voting 0 12

4.3 Any ballot type is accepted

-

ll / Addressed [, 13

HHt
+++

v/ Acknowledged [13

4.4 Any validator can freeze the EmissionFund

4.5 Theoretical Reentrancy during Ballot Creation 0 13

V. Reward System RINOMEEIVEY 14
VI. Miscellaneous EZNRERIER 15

VIl Locked ETH and Locked Tokens ~ [PAIRRGEN - - - - - - -« o oo oo 15
TrustIssues e 16
| Trust into Validators 0 v/ AcKnow | edged | 16

1.1 MINING e 16

1.2 Technical competence whenupgrading 16

1.3 Collusion Resistance 16
Design ISsSUeS 17
I. Assigning to function parameters “‘ 17
Il. Silent failures in case of enum mismatches 0 17
Ill. migrateBasicOne can exceed block gas limit ‘:‘ v Acknowledged | 17
IV. finalizeChange can exceed block gas limit ;‘ v/ Addressed | 18
V. Initializing with 75 validators exceeds block gas limit L Acknowledged |EE—G_—_——— 18
VI. RewardByTime Will not reward with more than 108 validators 0 v Addressed |EREG—G———— 18
VIl. Eternal Storage Pattern could be more efficient m 18
VIll. The IEternalStorageProxy Interface is not explicitly implemented ~ [PAGRCEl - - - - - - - - 19

ChainSecurity Security Audit Report

IX. setProxyStorage can be called by validators m 19

X. More than 200 active ballots possible ‘:‘ v/ Acknowledged | 20
XI. Confusing validator variables ~ PAREGEN - - - - - - o o 20

Xll. Incentive for delayed voting;;f v Acknowledged | 20
XIlI. Risk of forks due to updated list of validators 0 v Acknowledged | 21

Recommendations / Suggestions 22
I. Recommendations regarding the Eternal Storage Proxy pattern 22
I Miscellaneous L 22
Disclaimer 25

https://chainsecurity.com

https://chainsecurity.com

Foreword

We first and foremost thank POA NETWORK for giving us the opportunity to audit their smart contracts. This
documents outlines our methodology, limitations, and results.

— ChainSecurity

Executive Summary

The POA NETWORK smart contracts have been analyzed under different aspects, with a variety of tools for
automated security analysis of Ethereum smart contracts as well as expert manual review.

Overall, CHAINSECURITY found that POA NETWORK employs very good coding practices and has clean,
well-documented code, although the documentation could be updated. We still succeeded in uncovering sev-
eral vulnerabilities in the code base which were fixed by POA NETWORK in a timely and very professional
manner. CHAINSECURITY also reported more minor issues, recommendations and suggestions which were
understood and implemented by the development team, leading to an improved and more secure state of the
project.

ChainSecurity Security Audit Report

Scope

POA NETWORK requested a precisely scoped audit, meant to assess the technical foundation of POA NET-
WORK'’s project in its current state. To define this scope, CHAINSECURITY listed potential points of failure and
agreed with POA NETWORK upon them.

Issues that have been encountered while verifying this specification have been listed, even when they were
not explicitly mentioned in the specification. However, this list should not be considered exhaustive with respect
to the security of POA NETWORK’s smart contracts. CHAINSECURITY strove to verify the points listed here, to
provide a report which contents could serve as potential guidelines in the future.

The main specification sections are listed below and a detailed description of the reviewed properties can
be found in the issues section.

Included in the scope

e |. Initialization and Key distribution

1. Validator Set

[ll. Upgradeability

IV. Voting and Governance

e V. Reward System

e VI. Miscellaneous

Out of scope

e Non-smart contract components (e.g. user interfaces of dApps)

APls (Contract, Bank, SMS) and sub-protocols (PoPA, POBA PoSN, PoPN)

Communications between validators and master of ceremony happening off-chain

Parity implementation: we assume that the parity client has no bug impacting POA NETWORK affecting
the POA network)

Aura consensus and its finality

Correctness of genesis block

https://chainsecurity.com

https://chainsecurity.com

Audit Overview

Scope of the Audit

The scope of the audit is limited to the following source code files. All of these source code files were received
on August 2, 2018", and the last updated version introducing the fixes on August 30, 20182:

File

SHA-256 checksum

contracts/BallotsStorage.sol

c9¢c185077ed33705e5d799b614c9c3ca0079bb37782c3£1976513c482d574b9b

contracts/EmissionFunds.sol

498cd74bea3e3ddf423515f07e121ac0c980falelfbc3dc06293998cdc024c84

contracts/KeysManager.sol

dd7e838c3021be9bc571adcdbac3059e859c59e8b0bad8c469c151£93c6434ct

contracts/PoaNetworkConsensus.sol

102ea7£223d11295bfe621ab19eb517b4cc94644980466ed2ce877ef748947ec

contracts/ProxyStorage.sol

8b056b3d0d3f4f£5942006ec94e305fe6£362808d41a0ae359fef424e8f20bdd

contracts/RewardByBlock.sol

1d16052£69918933454c6bbd7e149ee8a8e4f9cdfb74bf33249e84eb923b2f14

contracts/RewardByTime.sol

e6ab9d0207b469910de34f3ca386cd5a6408c628434dab2dc16303b9d5c48d94

contracts/ValidatorMetadata.sol

906c204a948££56a3£39d9d3de39afefb53ad0029920ed8af04bf59b631£04e3

contracts/VotingToChangeKeys.sol

89ba7739422abal3f72e98c91f3e07abc11£513d2b26dee32a62b766c14b5517

contracts/VotingToChangeMinThreshold.sol

3559a534cbed654538890211ccb5b166£bb5f7bbcbd404c555ec53fb3eb1891d

contracts/VotingToChangeProxyAddress.sol

b80444d6beebabbb99868989866c954501d3d64d0ddf79a525d97c82de1984b2

contracts/VotingToManageEmissionFunds.sol

3662a883500dd6e034e7c62b051f5eaebefd1£1390e587baaal3199d78108e7ef

contracts/abstracts/VotingTo.sol

4c2322a45065a0476ccab4118cadeleebbedae269e39afdc72c2f7f1£855a7652

contracts/abstracts/VotingToChange.sol

51c402ace9ede4bbellecaad1421d67ab475a1£6956e699749£02£8524£26c59

contracts/eternal-storage/EternalStorage.sol

422ffabb744940de9f2c647ec16b0cc5c859e489797e67£5551b93fc075451d6

contracts/eternal-storage/EternalStorageProxy.sol

41d29bcc13f2dce6321dd1742e4d0cabbb55a749698e4e32d11295e7e25ededfb

contracts/interfaces/IBallotsStorage.sol

3993e6b10b16935c8a676d1a32c117576bbf28fb37bff£12d55c50fdef56c0e3

contracts/interfaces/IEmissionFunds.sol

d404425c85b18d63e6b7a165348de6£21435c18995d7f9ae72f640ef37fc9add

contracts/interfaces/IEternalStorageProxy.sol

10ec8b6fce3562f5584a193e45£44149e58413443239a18403f75bad4f8ee233

contracts/interfaces/IKeysManager.sol

c86b24472674£8e901c14337b52£0d5cdbf55c07bc673££6490b31d99213e443

contracts/interfaces/IPoaNetworkConsensus.sol

db467£5991a3038b921b47cd6bb8106ddbf3836434018114bd4efbb3£547c065

contracts/interfaces/IProxyStorage.sol

54bfce44fbc3d318c7da29edbc54a37£088dd3ac397ee4b7537a87aedbfd81b6

contracts/interfaces/IRewardByBlock.sol

803967c46964831af6a645bde9ca756c041c8924208fcf2457480822daf0e6c9

contracts/interfaces/IRewardByTime.sol

debac2d8360dfabeebc7c89a399a203d0794171de9375cd282252c8a%94ffabe?

contracts/interfaces/IVotingToChange.sol

4761041426af876d52895e74639007ed220a1b96a0a77a47598dc706298bb048

contracts/interfaces/IVotingToChangeKeys.sol

a994f33643e00c1a564c25a20b7536814e663c6£02€92d85bd9383£19674e690

contracts/interfaces/IVotingToChangeMinThreshold.sol

ab93ab01ea64dd57dd1302373a50e3e0beb5£88cbf2441dee71911b62e1a95db

contracts/interfaces/IVotingToChangeProxyAddress.sol

aedabb9976432e629bal0bfb9e7eabl64c2b7988ed39328ff8caf0766cfefe216

contracts/libs/SafeMath.sol

a42770d734a449ce0e4448eed3cdef8599314556da4062440d44£859a670742f

Depth of Audit

The scope of the security audit conducted by CHAINSECURITY was restricted to:

e Scan the contracts listed above for generic security issues using automated systems and manually in-

spect the results.

e Manual audit of the contracts listed above for security issues.

"https://github.com/poanetwork/poa-network-consensus-contracts/tree/daa6feed5c7b456d62d486ae0e78¢5f333212536
2https://github.com/poanetwork/poa-network-consensus-contracts/tree/0c175cb98dac52201342f4e5e617189a184dd467

ChainSecurity Security Audit Report

Terminology

For the purpose of this audit, we adopt the following terminology. For security vulnerabilities, we specify the
likelihood, impact and severity (inspired by the OWASP risk rating methodology?).

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.
Impact specifies the technical and business related consequences of an exploit.
Severity is derived based on the likelihood and the impact calculated previously.

We categorize the findings into 4 distinct categories, depending on their severities:

~~ Low: can be considered as less important

o
° m Medium: should be fixed
° 0 High: we strongly suggest to fix it before release

° e Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the following table, following a stan-
dard approach in risk assessment.

IMPACT

LIKELIHOOD

During the audit concerns might arise or tools might flag certain security issues. If our careful inspection
reveals no security impact, we label it as [FNEIE. If during the course of the audit process, an issue has
been addressed technically, we label it as , while if it has been addressed otherwise by improving
documentation or further specification, we label it as . Finally, if an issue is meant to be fixed in
the future without immediate changes to the code, we label it as .

Findings that are labeled as either or are resolved and therefore pose no security

threat. Their severity is still listed, but just to give the reader a quick overview what kind of issues were found
during the audit.

Shttps://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

g https://chainsecurity.com

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://chainsecurity.com

Limitations

Security auditing cannot uncover all existing vulnerabilities, and even an audit in which no vulnerabilities are
found is not a guarantee for a secure smart contract. However, auditing allows to discover vulnerabilities that
were overlooked during development and areas where additional security measures are necessary.

In most cases, applications are either fully protected against a certain type of attack, or they lack protection
against it completely. Some of the issues may affect the entire smart contract application, while some lack
protection only in certain areas. We therefore carry out a source code review trying to determine all locations
that need to be fixed. Within the customer-determined time frame, CHAINSECURITY has performed auditing in
order to discover as many vulnerabilities as possible.

ChainSecurity Security Audit Report

Best Practices in POA NETWORK’s project

Projects of good quality follow best practices. In doing so, they make audits more meaningful, by allowing
efforts to be focused on subtle and project-specific issues rather than the fulfillment of general guidelines.
Avoiding code duplication is a good example of a good engineering practice which increases the potential
of any security audit.
We now list a few points that should be enforced in any good project that aims to be deployed on the
Ethereum blockchain. The corresponding box is ticked when POA NETWORK'’s project fitted the criterion when
the audit started.

m The code is provided as a Git repository, which allows reviews of potential audit-related code changes.
m Code duplication is minimal or justified and documented.

m The code compiles.

m There are no compiler warnings, or warnings are documented.

m There are tests.

m The tests are easy to run.

m The test coverage is available or can be obtained easily.

IZ The output of the build process (including possible flattened files) is not committed to the Git repository.

The project only contains audit-related files, or, if not possible, a meaningful separation is made between
modules that have to be audited and modules that CHAINSECURITY should consider correct.

|Z[There are migration scripts.

|Z[The tests are related to the migration script.

|Z| The code is well documented.

m The high-level specification is thorough.

m There are no getter functions for public variables, or the reason why these getters are in the code is given.
IZ Function are grouped together according either to the Solidity guidelines*, or to their functionality.

IZ There is no dead code.

POA NETWORK managed to implement all these points, but the following good practices were also imple-
mented:

m The default value of all enum types is Invalid, which is best practice.
m No array length can underflow.

IZ There is one call to the function send. It is caused after all state changes and it handles failures explicitely.

“http://solidity.readthedocs.io/en/v0.4.24/style-guide.html#order-of-functions

m https://chainsecurity.com

http://solidity.readthedocs.io/en/v0.4.24/style-guide.html#order-of-functions
https://chainsecurity.com

Security Issues

In the following, we discuss our investigation into security issues. Therefore, we highlight whenever we found
specific issues but also mention what vulnerability classes do not appear, if relevant.

Initialization and Key distribution

1.1 Basic specification

e Master of ceremony generates the initial keys, which are written to KeysManager contract by him
Indeed, the initiateKeys checks that only the Master of Ceremony is allowed to do so.

o Validators will be required to replace their initial keys with a set of three keys (mining, voting, payout) and
these can be only replaced with (successful) ballot proposals

— No further action can be taken without the keys being replaced by the ones that the master of
ceremony does not have

— We assume that there is a secure channel off-chain to prove that new keys have been generated

The smart contracts ensure that, without only the initial key, validators cannot fulfill their roles. Thus this
initial key has to be replaced by three new keys corresponding to the roles. Once these new keys have
been registered, the initial key no longer has any power, thanks to _setInitialKeyStatus(msg.sender
, uint8(InitialKeyState.Deactivated));.

e Successful removal of the master of ceremony is only possible in case of correct initialization

The Master of Ceremony is removed only when _isMoCRemovedPending is true which is made only by
the PoaNetworkConsensus . removeValidator function if validators are voting to remove the MoC with
the VotingToChangeKeys contract. However, the MoC cannot be removed unless all of the 12 initial keys
were used.

The createKeys function calls

IPoaNetworkConsensus(poaNetworkConsensus()).addValidator(_miningKey, true); which emits
InitiateChange(blockhash(block.number — 1), pendinglList);.

This event is picked up by the system and finalizeChange is called. This function includes

if (_mocPending != address(Q)) {
_moc = _mocPending;
_mocPending = address(Q);
}
if (_isMoCRemovedPending) {
_isMoCRemoved = true;
_isMoCRemovedPending = false;

}

Thus, it is called before all 12 validators did register their keys and therefore before the network is com-
pletely set. We thus assume that all validators will register.

e 3 validators are needed to start a fully functional network

1.2 No guarantees on 12 initial validators = [P CLG L o

During the verification of section |., CHAINSECURITY found that the property
e 12 keys are generated by the master of ceremony and received by validators.

does not hold, since the only check on the number of initial keys is made in the initiateKeys function of the
KeysManager contract. However, a new PoaNetworkConsensus can be initialized with more than 12 validators
through the constructor. Hence, no hard on-chain guarantee can be given.

Likelihood: Low

Impact: Low

ChainSecurity Security Audit Report

Fixed: POA NETWORK clarified that the initialization of validators through the constructor will only be used for
migration purposes.

Validator Set

2.1 Basic specification

e There are 12 initial keys for validators, including the master of ceremony (Ceremony stage)

— The master of ceremony does not have voting rights
— Later, more validators can be added (up to 2000)

The number of 12 validators is only an upper bound, as evidenced by the following snippets:

function maxNumberOfInitialKeys() public pure returns(uint256) {
return 12;

}

KeysManager.sol

function initiateKeys(address _initialKey) public ({

require(msg.sender == masterOfCeremony());

require(_initialKey != address(0Q));

require(initialKeys(_initialKey) == uint8(InitialKeyState.Invalid));
require(_initialKey != masterOfCeremony());

uint256 _initialKeysCount = initialKeysCount();
require(_initialKeysCount < maxNumberOfInitialKeys());

KeysManager.sol

This second snippet also shows that the master of ceremony’s initial key cannot be initiated. This in turn
prevents the master of ceremony from having voting rights, given that the initial key has to be activated
for a validator to be enfranchised, according to:

modifier onlyValidVotingKey(address _votingKey) {
IKeysManager keysManager = IKeysManager (getKeysManager());
require(keysManager . isVotingActive(_votingKey));

-7

VotingTo.sol
New keys can be added through addMiningKey, addVotingKey and addPayoutKey, with the caveat that

issues will arise if too many keys are used.

e The list of validators can be obtained by users at any time Since currentValidators is public in
PoaNetworkConsensus.sol, its member list can be fetched by anyone.

e There is no noticeable change before finalizeChange has been called and no partial change. Through
the use of the variable pendinglList, which contains potential validators up to the call of finalizeChange
, hon-atomic changes are avoided: finalizeChange enables all changes in one transaction, provided
that the pending list is not too big.

e Only the first submitted change has an impact, until it has been either approved or rejected (no collision
between proposed changes).

Any proposal receives a unique monotically increasing id:
_setNextBallotId(ballotId.add(1));

VotingTo.sol

and proposal interactions only happen through this id, hence the absence of collisions.

m https://chainsecurity.com

https://chainsecurity.com

2.2 Minority of dishonest validators colluding can be harmful = WA eI Lol

Whether or not a set of validators can have an impact on the system is determined by its cardinal: there is no
impact as long as this number is under getMinThresholdOfVoters, while any change is accepted beyond.

Given that this threshold is not computed depending on the number of validators, but is voted on, it can be
lower or higher than 51% of the validators.

Fixed: POA NETWORK is aware of this limitation.

Upgradability

3.1 Basic Specification

CHAINSECURITY verified the following properties related to the upgradeability of POA NETWORK’s smart con-
tracts.

e Upgradable contracts consists of two parts: Proxy and Implementation

The upgradable contract’s state will be stored in the proxy

— This holds. When called through the proxy, implementations can only read and write the state of
the proxy. Anyone could call the implementations directly and change their own storage, but that is
irrelevant to the behavior of the proxy contracts. The only relevant state of the implementations is
their mere existence. There are no calls to suicide or selfdestruct anywhere.

The code will be inside the implementation

— Yes, except for the functions defined in EternalStorage and EternalStorageProxy that cannot be
overridden: version, implementation, getOwner, getProxyStorage, renounceOwnership,

transferOwnership, upgradeTo. Indeed, none of these is reimplemented in implementation con-
tracts.

An upgrade to a correctly-designed contract results in no loss of information

— The storage layout is deterministic and documented®. Upgradable POA NETWORK contracts and
EternalStorageProxy all inherit from the same EternalStorage which defines the storage fields.
No other storage fields are defined in other contracts. New implementations that do the same, and
are compiled with a compatible compiler, will be able to use the existing storage easily.

The proxy will forward all calls directly to the implementation

After each upgrade the version number inside the proxy will be incremented

— Yes, although CHAINSECURITY notes that a future implementation could change the version to any
value.

Exceptions inside the implementation will be propagated by the proxy

— Yes. Reverts and return values of any size are propagated, including in nested calls.

The proxy is controlled by the central ProxyStorage, meaning:

— Only the ProxyStorage can update the implementation
x Yes. In the special case of the ProxyStorage, it can update itself.
— The ProxyStorage will only update when instructed by the Governance Dapp

x Yes, after the governing contract has been set by initializeAddresses(). It cannot change
after initialization in this implementation. There are two ways the governance can change:
with a new implementation of VotingToChangeProxyAddress, or a new implementation of
ProxyStorage that switches to another governance contract.

Shttp://solidity.readthedocs.io/en/v0.4.24/miscellaneous.html#layout-of-state-variables-in-storage

ChainSecurity Security Audit Report

http://solidity.readthedocs.io/en/v0.4.24/miscellaneous.html#layout-of-state-variables-in-storage

3.2 Correctness of the Eternal Storage Proxy pattern
The POA contracts make heavy use of the eternal storage pattern. A drawback of this technique is that
it bypasses the Solidity type system, given that storage is accessed either by key strings, or by hashes of
arguments. This opens multiple avenues for errors.

To compensate for the lack of type-safety, we checked all accesses to storage manually.

e There are no typos in key strings.

e The correct xStorage variables from EternalStorage are used.

e There are no implicit type castings in keys or values.

e There cannot be key collisions for the following reasons:

— All keys start with a constant, and use the same pattern for a given constant.
— No variable-sized inputs are used in keccak256 calls.
— All keys were checked for issues of common-prefix or -suffix.

— Some keys are in fact a prefix of others, such as affectedKeyx, miningKey*, minThresholdx, and
proposedValue.

— They are all used in different contexts and do not collide.
CHAINSECURITY also verified the following:
e The delegation code is correct.
e No contract has any storage slot of its own.
e No usage of selfdestruct.
e The addresses of the implementations are not used anywhere but in the proxy.

e There are no constructors and initialization is done in various init functions. Only the owner can call these
and only once.

¢ No functions of EternalStorageProxy are redefined in implementations.

We conclude that the usage of the eternal storage pattern is correct.

3.3 ProxyStorage link can be changed after initialization
During the verification of section Ill., CHAINSECURITY found that the property
e The link from proxy to ProxyStorage can only be initialized in the beginning

does not hold, since

e ValidatorMetadata can change its ProxyStorage, using a logic similar to a multisig wallet with 3 con-
firmations.

e Future implementations could change the ProxyStorage to any other address.
Likelihood: Medium

Impact: Low

Fixed: POA NETWORK fully removed the functionality allowing to change the ProxyStorage address after
initialization.

m https://chainsecurity.com

https://chainsecurity.com

Voting and Governance

4.1 Basic Specification

CHAINSECURITY verified the following properties related to the Voting and Governance system of POA NET-
WORK’s smart contracts.

e Once a consensus has been reached, the decision can be fetched by external actors without manipulation

— This can be done through the getQuorumState function. Each voting contract has its own QuorumStates
as an enum type, which contains the possible outputs of the vote, along with the other states of the
ballot.

e Ballots can only be created, voted upon and finalized from valid voting keys
— All finalize, vote and createBallot functions are guarded with onlyValidVotingKey modifiers.
e A validator can vote at most once (even when changing its key)

— The isValidVote function is checked in all vote calls, which in turn calls are01dMiningKeysVoted
and validates this for up to 25 past keys.

e Once a validator’s vote has been taken into account, it cannot be removed
— If the validator is removed, the vote is still taken into account if it took place before the removal

e A validator has all the information needed to vote: there is no information outside of the chain for which
an external actor has to be trusted

— A validator has access to the addresses of other validators, the current voting state, (read) access
to all keys, the emission fund address, past votes and thresholds.

e The order in which votes occur does not matter for the result
¢ A ballot has these properties (independent of type, additional type properties can be present):

— Start Time (has to be in the future)
— End Time (has to be bigger than start time)
— Consensus threshold (immutable once a ballot is created)
x Default threshold depends on the number of validators at ballot creation time
— Finalized Marker
— Quorum State

x VotingToChange: Invalid, InProgress, Accepted, Rejected
x VotingToManageEmissionFunds: Invalid, InProgress, Sent, Burnt, Frozen

— Creator
— Memo (Metadata String)

e The Ballot will only accept votes between start and end time
— isActive check needs to return true for any successful vote call.
e The Ballot will only accept votes if it is not finalized
— require(!getIsFinalized(_id)) is checked in all voting functions.
e The Ballot can be finalized when all possible validators voted OR the time for this ballot runs out

— In VotingToEmissionFunds finalization is triggered after all validators have voted automatically,
otherwise finalize can be called when it fulfills the _canBeFinalizedNow requirements.

e Master of ceremony does not possess any voting rights

e The following decisions are possible (excluding any other)

— Voting to add validator keys (validator management ballot)
— Voting to change validator keys (validator management ballot)

ChainSecurity Security Audit Report

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

— Voting to remove validator keys (validator management ballot)
— Voting to change proxy address (modify proxy ballot)

— Voting to change minimal threshold needed to pass a vote (consensus threshold ballot)

— Voting to manage emission funds

e Past votes of changed keys are not revoked

e Smart-contracts are defended from validators’ spam attacks (spamming the network with nonsense Bal-

lots)

4.2 Contract Owner Controls Voting o

The following item was part of the specification list above but did not hold:

e Consensus has always to be reached for a decision to be taken

— The function finalize can be called by any validator. When this function is called, the number of

positive votes is matched against the minimum threshold which is set initially.

— The result can be obtained through the getQuorumState function, which returns an integer that can
be cast to an enum type indicating the vote’s state. State changes occur through the finalize

function.

— However, the owner has power to override votes, as described below.

The owners of the Vot ingToChangeMinThreshold, VotingToChangeKeys, and Vot ingToChangeProxyAddress
can manipulate the votes contrary to the majority opinion. Using the _migrateBasicOne function the contract
owner can manipulate ongoing or completed votes. This is possible through the following implementation.

Here the owner can:

function _migrateBasicOne(
uint256 _id,
address _prevVotingToChange,
uint8 _quorumState,
uint256 _index,
address _creator,
string _memo,
address[] _voters

) internal onlyOwner {
require(_prevVotingToChange != address(Q));
require(!migrateDisabled());

IVotingToChange prev = IVotingToChange(_prevVotingToChange);

_setStartTime(_id, prev.getStartTime(_id));
_setEndTime(_id, prev.getEndTime(_id));

_setTotalVoters(_id, prev.getTotalVoters(_id));

_setProgress(_id, prev.getProgress(_id));

_setlIsFinalized(_id, prev.getlsFinalized(_id));

_setQuorumState(_id, _quorumState);
_setlndex(_id, _index);

_setMinThresholdOfVoters(_id, prev.getMinThresholdOfVoters(_id));

for (uint256 i = @; i < _voters.length; i++) {

address miningKey = _voters[i];
_votersAdd(_id, miningKey);
}
_setCreator(_id, _creator);
_setMemo(_id, _memo);

VotingToChange.sol

e Block certain voters from voting by registering that they already voted.

e Reset the quorum state of a finished vote, e.g. from rejected to accepted.

https://chainsecurity.com

https://chainsecurity.com

e Remove voters from the list and thereby allow them to vote again.

As the owner can add new validators or remove honest validators through these votes, it can take over the
majority of validators through this vulnerability.

Likelihood: Medium

Impact: High

Fixed: The function _migrateBasicOne was removed and the voters, progress and quorum state are now
retrieved from the previous ballots or events instead of being passed as arguments. Additionally, the migration
function can now only be called before any voting operation, meaning that before any vote is made migration
and initialization must be completed.

CHAINSECURITY remarks that this issue was present in contracts not yet deployed and was successfully miti-
gated before the upcoming deployment.

4.3 Any ballot type is accepted =~ RV (¢ [(=LLET

During the verification of section IV., CHAINSECURITY found that the property
e Each ballot has a type, which has to be in the enum type

does not hold.

In the VotingTo contract, a ballot is defined as an enum, representing one of the seven possible ballot
types®. However, when the function _createBallot is called to create a new ballot, no checks are performed
on the type of the proposed ballot, accepting any value.

Further examples of missing input validation can be found in the EmissionFunds contract, where the func-
tions sendFundsTo, burnFunds and freezeFunds do not perform any checks on the _amount parameter.

Likelihood: Low

Impact: Low

Fixed: POA NETWORK remarks that _createBallot is an internal function, so that it is assumed that the
type is checked before a call to it. Indeed, all current voting contracts either pass hard-coded arguments or
sanitize the input.

4.4 Any validator can freeze the EmissionFund RV [T [o1=Te
The following item was part of the specification list above but did not hold:

e A deadlock due to unreachable consensus is unlikely, only if many validators are removed before voting
while a ballot is open

InVotingToManageEmissionFunds, a validator can create a ballot with _endTime = startTime + 1, such
that it is unlikely that any validator will manage to vote within this short timeframe. Afterwards, the validator can
call finalize, reaching the branch if (getTotalVoters(_id)< getMinThresholdOfVoters(_id)) where
the QuorumState will be set to Frozen. Since currently the Frozen state does not have any consequences,
this is not critical.

Likelihood: Low

Impact: Low

Fixed: POA NETWORK notes that if the validator does that maliciously, other validators can create a ballot to
remove that validator from the list of validators or to remove his voting key.

4.5 Theoretical Reentrancy during Ballot Creation m

During ballot creation, the following code is executed:

202 function _createBallot(
203 uint256 _ballotType,
204 uint256 _startTime,
205 uint256 _endTime,
206 string _memo,

6Invalid, KeyAdding, KeyRemoval, KeySwap, MinThreshold, ProxyAddress and ManageEmissionFunds.

ChainSecurity Security Audit Report “

207 uint8 _quorumState,

208 address _creatorMiningKey

209) internal returns(uint256) ({

210 uint256 ballotId = nextBallotId();

211 _setStartTime(ballotId, _startTime);

212 _setEndTime(ballotId, _endTime);

213 _setlsFinalized(ballotId, false);

214 _setQuorumState(ballotId, _quorumState);
215 _setMinThresholdOfVoters(ballotId, getGlobalMinThresholdOfVoters());
216 _setCreator(ballotId, _creatorMiningKey);
217 _setMemo(ballotId, _memo);

218 _setNextBallotId(ballotId.add(1));

VotingTo.sol

A fresh ballot ID is chosen in the beginning. The ballot ID is the central identifier for this ballot. To ensure
uniqueness, the identifier for the next ballot is incremented in line 218.

However, in line 215 an external contract is invoked. This contract could in theory trigger another (reen-
trant) call to _createBallot. While not possible in the current version, future upgrades might enable such a
reentrancy, which would create two ballots with the same ID and thereby violate the uniqueness of ballot IDs.

Likelihood: Low

Impact: High

Fixed: The ballotId is now incremented and set before the potentially reentrant call.

Reward System

CHAINSECURITY checked the following points related to the POA NETWORK reward system. The subpoints
listed below are comments on the fulfillment of the specification.

e Only the “system” (parity’s special address) can reward them

— Both in the RewardByTime and RewardByBlock, the reward function is guarded by the onlySystem
modifier, such that only the special parity system address can successfully call it.

e External actors know well in advance what the reward will be and can thus make an informed choice
about whether they want to become validators

— Before HF on Nov 2018 the reward is 1 coin, send to the validator who created that block (total 1
coin per block)

* CHAINSECURITY notes that for each block the validator and the emissionFund are rewarded,
never just the validator.

— After HF on Nov 2018 the reward is 1 coin, send to the validator who created that block, and an
additional coin for self sustainability (total 2 coins per block), send to a dedicated address

x While no statements about the fork and how it will proceed can be made, the RewardByBlock
contract implements the reward distribution correctly, according to the interface described in the
parity documentation”.

e Events informing about a call to the reward function are emitted in correct places

— In both RewardBy contracts, the event Rewarded(receivers, rewards) is emitted if the call exe-
cutes successfully®.

e The reward of one validator is only impacted by the actions of other validators insofar as it can be removed
from the validator pool by the majority

— The reward amount for a validator is fixed in the constant blockRewardAmount. Further, the reward
function can only be called from the parity special address and the engine does so after a block
is produced, rewarding only the block author (i.e. validator). Hence, under the assumption of a
bug-free parity engine, the reward for a validator can’t be impacted by other validator’s actions.

7hitps://wiki.parity.io/Block-Reward-Contract.html
8The following limitation holds: https://wiki.parity.io/Block-Reward-Contract.html#limitations

ﬂ https://chainsecurity.com

https://chainsecurity.com

e Reward by time contract only rewards validators, and the reward can be only triggered by the parity
engine

— At least the system is always rewarded.

— The function _refreshPayoutKeys can only retrieve validator keys, which are initialized upon cre-
ation of a PoaNetworkConsensus or added through voting later.

— CHAINSECURITY notes that the following calculation is made to compute the number of keys to
obtain a reward: —
k=" 11 (1)

T

where t. is the current timestamp, ¢;, the timestamp of the last block and = a constant threshold
parameter. The +1 stems from the fact that the EmissionFund is always rewarded. According to the
Aura consensus documentation®, each validator gets an assigned time slot in which they can release
a block, so a validator can't artificially stretch (¢, — t;;,) to increase the number of validators that get
a reward with him. Also, if 7 is the size of the timeslot described in Aura, only the block producing
validator and the EmissionFund will be rewarded, with no potential for abuse. Concluding, incentive
alignment in RewardByTime is not trivial and choice of parameters should be carefully considered
before deployment.

Miscellaneous A\ s R EIE

CHAINSECURITY considered the issues listed below while investigating the overall system.
e Keys in the Eternal Storage (one per proxy contract) cannot be chosen freely

— Keys meant as the computation output of the hash operations
— Meaning that there can be no collision between independent variables

e Link with data stored outside of the blockchain can be verified (signed)

— With the exception of the initial keys, all data submitted from off-chain to on-chain storage is passed
through the dApps (Validators- and Governance-dApp), by signed transactions. Transactions writing
to storage only succeed when in compliance with modifiers guarding the setter functions. Hence,
an observer can review all transactions writing to storage, check their sender and verify the data.

e Short address attacks

e Smart-contracts are not accessible for changing state by unauthorized person (not owner, not validator
and not other smart-contract from governance scope)

In the current version of the contracts, ETH and ERC-20 tokens can be sent to the contracts. While all contracts
can receive tokens, all proxied contracts can receive ETH through a generic fallback function:

53 function() public payable {
EternalStorageProxy.sol

However, the current contracts have no capabilities to forward or spend such funds. Hence, the funds will
be locked inside the contracts. To unlock them, a code upgrade would become necessary.

Likelihood: Medium

Impact: Low

Fixed: The payable keyword was removed.

9https://wiki.parity.io/Aura.html

ChainSecurity Security Audit Report

Trust Issues

The issues described in this section are not security issues but describe functionality which is not fixed inside
the smart contract and hence requires additional trust into POA NETWORK, including in POA NETWORK’s
ability to deal with such powers appropriately.

Trust into Validators m v Acknowledged

In the design of POA NETWORK, validators jointly have a lot of power. They can potentially misuse this power
in various ways. We will elude to some of those issues:

1.1 Mining

In their role as validators, they control the block generation and hence the state of the blockchain. Here, as in
other blockchain systems, a simple majority controls the long-term blockchain state. Note, that the size of this
majority might be smaller than 50% if more than 2 diverging views exist about the desirable blockchain state.

During mining, validators should act according to the protocol and not favor certain actors (including them-
selves) while also not disregarding specific other actors.

1.2 Technical competence when upgrading

As the design of POA NETWORK allows multiple central components, such as voting procedures, to be up-
graded. In case of an upgrade the new smart contracts have to be carefully evaluated to make sure that no
functionality breaks, no vulnerabilities are contained and no additional permissions are granted.

In practice, every validator should have the technical skills to review the proposed upgrades independently,
without relying on third-party explanations. Given the upgradability features of POA NETWORK’s project, there
is no real bound on how complex future upgrades will be, which in turn implies that the minimum required
technical skills of validators is unknown as of now.

1.3 Collusion Resistance

A subgroup of validators can collude to damage other validators or to obtain other benefits. For example, they
can ignore blocks generated by one validator or vote to remove him, in order to improve their rewards. Even
if such a group is not a majority, other validators might be economically incentivized to collaborate with them
and would hence indirectly support them.

Additionally, validators can collude during the emission fund voting process to collect emissions. Here,
smaller groups might be sufficient due to the structure of the voting process.

Fixed: POA NETWORK is aware of the current trust model and its implications.

https://chainsecurity.com

https://chainsecurity.com

Design Issues

The points listed here are general recommendations about the design and style of POA NETWORK’s project.
They highlight possible ways for POA NETWORK to further improve the code.

Assigning to function parameters

Assigning to function parameters should be avoided. Several occurrences of this can be found in POA NET-
WORK’s code:

e VotingTo contract: in the are01dMiningKeysVoted function, the argument _miningKey is written to.

e VotingToChangeKeys contract: In the checkIfMiningExisted function the address _currentKey is
overwritten.

Fixed: New variables were introduced and function parameters are not written to anymore.

Silent failures in case of enum mismatches 0

As the POA NETWORK contracts are upgradable, current dependencies might be broken in the future. As an ex-
ample, we highlight the setContractAddress function, which iterates over all elements of the ContractTypes

enum:
203 } else if (_contractType == uint8(ContractTypes.ValidatorMetadata)) {
204 IEternalStorageProxy(
205 getValidatorMetadata()
206) .upgradeTo(_contractAddress) ;
207 } else if (_contractType == uint8(ContractTypes.ProxyStorage)) {
208 IEternalStorageProxy(this).upgradeTo(_contractAddress);
209 }
210 emit AddressSet(_contractType, _contractAddress);
211 }

ProxyStorage.sol

If however, the supplied _contractType, due to an upgrade, does not match any of the tested enum values,
the contract just silently fails. A reverting else clause, might be more appropriate in this case.

Likelihood: Medium

Impact: Medium

Fixed: POA NETWORK modified the code such that a bool variable is returned indicating whether the fields
were valid or not, hence silent failures are not possible anymore.

migrateBasicOne can exceed block gas limit v Acknowledged

During the verification of section VI., the property item
e No cases of reaching block gas limit in methods’ execution

was violated by the following issue:

The functionmigrateBasicOne is implemented in all three voting contracts: Vot ingToChangeProxyAddress
, VotingToChangeKeys, and VotingToChangeMinThreshold.

While it can only be successfully called by the owner, a provided parameter which is not checked is the
address[] _voters array. A loop iterates over this array and once its length reaches 340, the function will
exceed the block gas limit of 8 million.

ChainSecurity Security Audit Report

Fixed: POA NETWORK notes that the migrateBasicOne function will be used to migrate ballots from old
contracts to new upgradable contracts until the hard fork. The current ballots do not contain a lot of voters
because there are 25 validators for the Core network, so the assumption is that the block gas limit will not be
exceeded. For future possible migrations, gas limitations will be taken into account.

finalizeChange can exceed block gas limit =~ PAGLIEEE

During the verification of section VI., the property item
e No unbounded array iterations resulting in a deadlocked state

was violated by the following issue:

If the finalizeChange function in the PoaNetworkConsensus contract is called while more than 1100
validators are present, the function call will exceed the current block gas limit of 8 million and not succeed.
While this number is high, it is below the maxLimitValidators limit of 2000 and can lead to a change never
being finalized.

Fixed: POA NETWORK explains that the corresponding function is called by the Parity engine which uses "sys-
tem" transactions for its calls, meaning that the block gas limit for such transactions is equal to OxFFFF...FFFF
(256 bits).

Initializing with 75 validators exceeds block gas limit . PG

During the verification of section VI., the property item
e No cases of reaching block gas limit in methods’ execution

was violated by the following issue:

If a PoaNetworkConsensus is created with 75 validators, the deployment costs is above 8 million, therefore
exceeding the current block gas limit. Since a new consensus contract is planned to only be initialized with 12
validators, this is not critical but should be noted to avoid potential deployment failures.

Fixed: POA NETWORK is aware of these limitations.

RewardByTime Will not reward with more than 108 validators m v Addressed

During the verification of section VI., the property item
e No unbounded array iterations resulting in a deadlocked state

was violated by the following issue:

While adding validators can only be done on initialization or after a voting procedure, having 109 current val-
idators already will result in the reward function exceeding the block gas limit of 8 million in the RewardByTime
contract. This would lead to validators not receiving their reward.

Fixed: POA NETWORK explains that the corresponding function is called by the Parity engine which uses "sys-
tem" transactions for its calls, meaning that the block gas limit for such transactions is equal to OxFFFF...FFFF
(256 bits).

Eternal Storage Pattern could be more efficient m

As part of the used eternal storage pattern, POA NETWORK defines string constants as follows:

24 string internal constant VOTERS = "voters";
25 string internal constant VOTING_STATE = "votingState";
VotingTo.sol

These constants are then used to calculate the storage offset, as in this example:

m https://chainsecurity.com

https://chainsecurity.com

152 function hasMiningKeyAlreadyVoted(uint256 _id, address _miningKey)

153 public

154 view

155 returns(bool)

156 {

157 return boolStorage]|

158 keccak256(abi.encodePacked(VOTING_STATE, _id, VOTERS, _miningKey))
159 1;

160 }

VotingTo.sol

However, as the constants are declared as string, this computation is relatively inefficient. Instead, the
constants could be declared as bytes32. According to our measurements, such a redeclaration would save
257 gas per storage access in simple cases with one constant. Additionally, the redeclaration would save a
significant amount of gas during deployment.

Fixed: POA NETWORK adopted the proposed changes.

The IEternalStorageProxy Interface is not explicitly implemented

The IEternalStorageProxy interface is not implemented by any of the contracts. Many contracts are, how-
ever, cast to this interface inside the ProxyStorage contract:

181 if (_contractType == uint8(ContractTypes.KeysManager)) {

182 IEternalStorageProxy(

183 getKeysManager ()

184) .upgradeTo(_contractAddress);

185 } else if (_contractType == uint8(ContractTypes.VotingToChangeKeys)) {

186 IEternalStorageProxy(

187 getVotingToChangeKeys ()

188) .upgradeTo(_contractAddress);

189 } else if (_contractType == uint8(ContractTypes.
VotingToChangeMinThreshold)) {

190 IEternalStorageProxy(

191 getVotingToChangeMinThreshold ()

192) .upgradeTo(_contractAddress) ;

193 } else if (_contractType == uint8(ContractTypes.VotingToChangeProxy))
{

194 IEternalStorageProxy(

195 getVotingToChangeProxy ()

196) .upgradeTo(_contractAddress) ;

ProxyStorage.sol

It seems that EternalStorageProxy is expected to implement the IEternalStorageProxy interface,
which should be made explicit in this case.

Fixed: The EternalStorageProxy now correctly implements the IEternalStorageProxy interface.

setProxyStorage can be called by validators o

The setProxyStorage function in the PoaNetworkConsensus contract allows to set the address of the proxy
storage, which can be done by any validator or the contract owner. However, a malicious validator can set the
ProxyStorage address to a contract he controls, hence being able to manipulate the voting process and stor-
age. We recommend to restrict the ability to set this address to only the Master of Ceremony or contract owner
in order to avoid such attacks. Additionally, we recommend renaming the isMasterOfCeremonyInitialized
flag, since it really indicates whether the ProxyStorage was initialized or not.

Fixed: Only the Master of Ceremony or an owner can now call setProxyStorage and the flag was renamed.

ChainSecurity Security Audit Report “

The following code suggests that at most 200 active ballots can exist inside the system:

103 function getMaxLimitBallot() public view returns(uint256) {
104 return 200;
105 }

BallotsStorage.sol

However, this is not quite true. As the creation of new ballots is limited per validator, a validator that recently
changed its key can create additional ballots. Due to the specific setting this is, however, highly unlikely to
occur.

Fixed: POA NETWORK is aware of these limitations.

Confusing validator variables .~

The PoaNetworkConsensus has two modifiers (isNewValidator, isNotNewValidator) and one function (
isValidator) accessing the same variable validatorsState[_someone] .isValidator. Additionally, all of
these carry a very similar naming, which is confusing.
CHAINSECURITY notes that the relation between those can be expressed as: !isNewValidator(a)==
isValidator(a)== isNotNewValidator(a), meaning that having only one of them would be enough in
POA NETWORK’s case.

Fixed: The modifiers isNewValidator, isNotNewValidator were removed.

Incentive for delayed voting ‘ v Acknowledged

Due to the design of the Aura consensus, validators have economic incentives to delay their voting, when
adding and removing validators. This is because exact the time of removal influences their reward payouts. As
an example, we will consider the following scenario:

e There are 12 registered validators

e A ballot exists to remove a validator

e This ballot only needs one additional vote to succeed

e Validator 5 wants to vote for the removal, but at the optimal time

e The current Aura step is 125

If validator 5 acts purely short-term focussed, he finds the following situation:

e In the Aura step 125, validator 5 would be the primary in case the validator set remains unchanged
(because 125 mod 12 = 5)

e [f validator 5 votes for removal of another validator within step 125, validator 4 becomes the primary due
to the changed validator set (because 125 mod 11 = 4)

e However, if validator 5 votes in the next step, it will be the primary for steps 125 and 126 (because
125 mod 12 = 5and126 mod 11 = 5)

e Therefore, validator 5 has an incentive to delay his vote, which might drag out voting procedures. The
incentive, however, is relatively small. It is one block reward.

Above, we have shown that incentives exist to delay voting on removing validators. Analogously, these
incentives exist when adding validators.

Likelihood: Low

Impact: Low

Fixed: POA NETWORK is aware of this scenario and considers it unlikely.

ml https://chainsecurity.com

https://chainsecurity.com

Risk of forks due to updated list of validators m v Acknowledged

Due to the design of the Aura consensus, unforeseen forks might exist. As an example we will consider, the
following scenario:

e There are 12 registered validators
e A ballot exists to remove a validator 3
e This ballot only needs one additional vote to succeed

e The current Aura step is 125

The first branch of the fork is generated by validator 5:

e In the Aura step 125, validator 5 would be the primary in case the validator set remains unchanged
(because 125 mod 12 = 5)

e Hence, validator 5 creates a valid block for step 125

The second branch of the fork is generated by validator 4:

e Validator 4 votes for the removal ballot and the validator 3 is removed

e Now, in step 125, validator 4 is the primary (because 125 mod 11 = 4)
e Hence, validator 4 creates a valid block for step 125

As we have shown, two valid blocks exist for step 125. This might occur accidentally, as validator 5 might
have not yet received the voting transaction by validator 4. However, it might also occur intentionally, as both
validators have an economic incentive to behave this way in order to receive the block reward.

Likelihood: Medium

Impact: Medium

Fixed: POA NETWORK is aware of this scenario and opened a corresponding issue in the Aura repository'°.

Ohttps://github.com/paritytech/parity-ethereum/issues/9425

ChainSecurity Security Audit Report

Recommendations / Suggestions

Recommendations regarding the Eternal Storage Proxy pattern

We recommend the following regarding the eternal storage proxy pattern, in addition to the comments made in
section lll.:

e Several key names are repeated in multiple contracts, for instance proxyStorage and owner. These and
others could be declared in a parent contract and inherited by the child contracts that need it.

e A variant of this design, the Inherited Storage pattern'’, could maintain type-safety while keeping the
same structure and upgreadability. In particular, this would allow the following:

— To remove the generic storage fields from EternalStorage.

— For each POA contract (i.e. KeysManager), to create a storage contract that declares the storage
fields (i.e. KeysManagerData).

— To make implementations inherit from a storage contract (i.e. KeysManager is KeysManagerData).
e The storage layout might change in future versions of Solidity, either intentionally or by mistake.

e In future upgrades, there is a risk that a user or attacker uses the new implementation before it is initial-
ized. Multiple approaches are available, such as using only constants, supporting zero-values, storing a
new isInitialized flag, or always calling an init function in upgradeTo.

Miscellaneous

|Z[Several contracts make use of smaller uint8 data types. This should only be done if necessary by
the contract logic and not to save gas, since the Solidity compiler does not optimize memory layout as
expected. If the smaller data type is not explicitly tightly packed (i.e. in a struct), smaller data types are
more costly because the EVM operates on 256 bit words and higher order bits need to be masked out
with an additional operation.

[]

Following best practices, upper case notation should be used for constants, which is not the case in the
RewardByBlock and RewardByTime contracts.

[]

We recommend using inclusive bounds in the VotingToChange contract. Concretely, the two checks

— require(diffTime > minBallotDuration());

— require(diffTime <= maxBallotDuration());
should both test for equality, which would make the code clearer and easier to use.

In the KeysManager contract the statement if (oldMiningKey == @) compares an address field to an
integer. While this works, for consistency reasons the comparison should be made with address(0).

&

CHAINSECURITY noticed several comments in the code base mentioning that values must be changed or
hardcoded before deployment in the PoaNetworkConsensus, RewardByTime and RewardByBlock con-
tracts. We recommend explicitly tracking these fields and additionally reviewing them to avoid potentially
costly mistakes upon deployment.

&

|:| The following fields are public even though getters are implemented:

address[] public currentValidators;
address[] public pendinglList;

PoaNetworkConsensus.sol

They should be made private or internal instead, to ensure that there is only one way to read their values.

m There are several unused imports in different contracts which can be removed:

""More examples are given here: https://blog.gnosis.pm/solidity-delegateproxy-contracts-e09957d0£201.

ﬂ https://chainsecurity.com

https://blog.gnosis.pm/solidity-delegateproxy-contracts-e09957d0f201
https://chainsecurity.com

— BallotsStorage: IKeysManager

— RewardByBlock: IPoaNetworkConsensus

— VotingToChangeKeys: IKeysManager

— VotingToChangeProxyAddress: IProxyStorage, IBallotsStorage
— VotingToChange: IBallotsStorage

m The string variable fullAddress is unbounded. It would be better to use some comfortable upper limit,
to prevent unbounded gas usages.

[:] The array variable voters in VotingToChange and VotingToManageEmissionFunds is unbounded,
which could provoke an out-of-gas exception in some cases. Some bound preventing this should be
enforced.

[] The first require is useless given the second one in this snippet:

require(_id < nextBallotId());
require(_id == nextBallotId().sub(1));

VotingToManageEmissionFunds.sol

In EternalStorageProxy .upgradeTo, the name implementation is inconsistent and shadows a getter
function. It could be renamed to _newImplementation for consistency.

N

The same key proposedValue is used for different purposes (an address and a number) and should be
split in two for clarity.

It seems that the this keyword is used only because of hame conflicts in:

&

— KeysManager
— VotingToChangeMinThreshold
— VotingToChangeProxyAddress
— VotingToManageEmissionFunds
However, it is not the same as a simple call, and it causes a round trip through the proxy as well as

delegatecall again. We recommend renaming the variables to be different from the function names,
and not to use this.

m The Checks-Effects-Interactions pattern’? is not properly implemented in the following snippet:

uint256 ballotId = nextBallotId();

/]l ...
setMinThresholdOfVoters(ballotId, getGlobalMinThresholdOfVoters());

/] ...
_setNextBallotId(ballotId.add(1));

VotingTo.sol

Here, an effect happens after an interaction (through the getGlobalMinThresholdOfVoters function).
Given that this is an interaction with a trusted contract, it is not a security risk, but it is good practice to im-
plement this pattern nonetheless, as it makes reentrancy auditing easier, and prevents the introduction of
bugs if the interaction is modified to become one with a non-trusted contract. Calling _setNextBallotId
earlier would suffice in this case.

m CHAINSECURITY has the following suggestions regarding the Vot ingToManageEmissionFunds contract:
— The check require(_startTime > releaseTime); could be removed, since it is also checked

that currentTime > releaseTime and _startTime > currentTime.

— In the same function, currentTime > releaseTime might fail if releaseTime was just updated.
This can be avoided by allowing for equality.

— The variable previousBallotFinalized could be renamed to noActiveBallotExists for clarity.
— The visibility of refreshEmissionReleaseTime can be restricted from public.

2 https://solidity.readthedocs.io/en/v0.4.24/security-considerations.html

ChainSecurity Security Audit Report

https://solidity.readthedocs.io/en/v0.4.24/security-considerations.html

m Although the short address attack seems to be a concern for POA NETWORK, the number of functions
having address arguments was too high to make fine-grained recommendations in that regard. To limit
the risk, address arguments could be put at the end of the argument list of functions, so that (at least)
other arguments are not changed through padding. If POA NETWORK wants to solve this problem on-
chain more systematically, checks should exist in every function using address inputs (as is done in
sendFundsTo). On the other hand, it is arguably a problem which should be solved at other layers; on
top of this, the next major version of Solidity is meant to solve this problem at the compilation phase.

Post-audit comment: POA NETWORK has fixed some of the issues above and is aware of all the impli-
cations of those points which were not addressed. Given this awareness, POA NETWORK has to perform no
more code changes with regards to these recommendations.

https://chainsecurity.com

https://chainsecurity.com

Disclaimer

UPON REQUEST BY POA NETWORK, CHAINSECURITY LTD. AGREES MAKING THIS AUDIT REPORT
PUBLIC. THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY FOR DAMAGE
ARISING OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF THIS REPORT

REMAINS WITH CHAINSECURITY LTD..

ChainSecurity Security Audit Report

	Foreword
	Executive Summary
	Scope
	Included in the scope
	Out of scope

	Audit Overview
	Scope of the Audit
	Depth of Audit
	Terminology

	Limitations
	Best Practices in POA Network's project
	Security Issues
	Initialization and Key distribution
	Basic specification push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	No guarantees on 12 initial validators repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Validator Set
	Basic specification push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Minority of dishonest validators colluding can be harmful repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Upgradability
	Basic Specification push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Correctness of the Eternal Storage Proxy pattern push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	ProxyStorage link can be changed after initialization repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Voting and Governance
	Basic Specification push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Contract Owner Controls Voting replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Any ballot type is accepted repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Any validator can freeze the EmissionFund repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Theoretical Reentrancy during Ballot Creation replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Reward System push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Miscellaneous push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Locked ETH and Locked Tokens repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Trust Issues
	Trust into Validators replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Mining
	Technical competence when upgrading
	Collusion Resistance

	Design Issues
	Assigning to function parameters repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Silent failures in case of enum mismatches replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	migrateBasicOne can exceed block gas limit repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	finalizeChange can exceed block gas limit repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Initializing with 75 validators exceeds block gas limit repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	RewardByTime will not reward with more than 108 validators replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Eternal Storage Pattern could be more efficient replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	The IEternalStorageProxy Interface is not explicitly implemented repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	setProxyStorage can be called by validators replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	More than 200 active ballots possible repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Confusing validator variables repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Incentive for delayed voting repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Risk of forks due to updated list of validators replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Recommendations / Suggestions
	Recommendations regarding the Eternal Storage Proxy pattern
	Miscellaneous

	Disclaimer

