PUBLIC

Code Assessment

of the OmniBridge

Smart Contracts

April 27, 2021

Produced for

by

ri POA

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

POA Network - OmniBridge - ChainSecurity

© 00 N b~ W

12
18

https://chainsecurity.com

1 Executive Summary

Dear Sir or Madam,

First and foremost we would like to thank POA Network for giving us the opportunity to assess the current
state of their OmniBridge system. This document outlines the findings, limitations, and methodology of
our assessment.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EI=)-Severity Findings ¢
(C)-Severity Findings 0
(Medium)-Severity Findings 8
8 Code Corrected) 6
B Ris Accepted 2
(Low)-Severity Findings 8
8 Code Corrected) 4
'Svecitcation Changed) 1
B Ris Accepted) 2
B Acknowiedged 1

@ POA Network - OmniBridge - ChainSecurity 3

https://chainsecurity.com

2 Assessment Overview

In this section we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the OmniBridge repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note
1 | March 1 2021 eaOffa6f015da024306d80f61bd271c4268b1f7a Initial Version
2 | April 8 2021 9e602a3719e32feabcl18fc387b9474acfa28cfe2 Version with fixes

For the solidity smart contracts, the compiler version 0. 7. 5 was chosen.

2.1.1 Excluded from scope

The Arbitrary Message Bridge (AMB) smart contracts were not part of the scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section we have added a version icon to each of the findings to increase the
readability of the report.

OmniBridge is a system of smart contracts that allows cross-chain token transfers between
Ethereum-compatible blockchains.

Cross-chain communication is based on the Arbitrary Message Bridge (AMB), which replays messages
between two blockchains: the home blockchain and the foreign blockchain. Messages can originate at
either blockchain, and are initially stored in the AMB mediator contract on that blockchain. Each
message includes a target address (on the target blockchain) and may include extra data parameters.
Then, dedicated oracles relay the messages to the AMB mediator contract on the other blockchain. A
relayed message is authenticated if enough oracles confirm its authenticity.

OmniBridge uses this message-relay system to establish token transfers between the home and the
foreign blockchains. The transfers are implemented by pairing a token contract, the native token, on one
of the blockchains, with a token contract, the bridged token, on the other blockchain. The native token is
independent of the OmniBridge system, while the bridged token is automatically deployed by the system.
Transfers are mediated by two AMB mediator contracts on every side of the bridge.

There are two message flows:
« For native -> bridged transfers:
1. the transfer sender approves native token transfer to the mediator contract;

2. the transfer sender invokes the mediator contract: 1. the mediator contract transfers to itself the
specified amount of tokens; 2. the tokens are now locked in the mediator; 3. the mediator sends
a transfer message through the AMB;

@ POA Network - OmniBridge - ChainSecurity 4

https://chainsecurity.com

3. when the message is received, the mediator on the other side mints the specified tokens of the
bridged token to the receiver of the transfer.

« For bridged -> native transfers, the flow is reversed: tokens are burned on the sender (bridged) side
and unlocked on the receiver (native) side.

As mentioned, the bridged token counterpart of a native token is deployed on-demand. The native token
starts in a deploy unacknowledged state. In this state, a cross-chain transfer generates an additional
request to deploy the bridged token counterpart, which until this moment is non-existent. After the
deployment request is received, the bridged counterpart is deployed by the TokenFact ory contract.
This leads to the native token state being updated to deploy acknowledged.

In addition to deployment, both tokens need to have their operational limits set. For native tokens this
happens upon the first cross-chain transfer, and for their bridged counterparts---after deployment. In
particular, the minimum transfer amount per transaction is set, which promotes the token from
unregistered to registered status. The registered status is required for the completion of cross-chain
transfers.

To reduce the cost of deployment, all bridged tokens share the same ERC677 implementation. Each
bridged token is actually a proxy that stores the token balances, but delegates all calls to a predeployed
ERCG677 contract. Thus, all proxies have very small code and deployment is relatively cheap.

The behavior of the mediator contracts on the home blockchain and on foreign blockchain are mostly
identical. However, differences between the home and the foreign blockchains can make it economically
more efficient to perform certain operations on the home blockchains. (For example, because of lower
transaction fees, faster throughput, lower latency, etc.) This results in the following differences between
the home OmniBridge and the foreign OmniBridge:

* Fees are collected and payed in the home contract only.
» Gas limit on the foreign contract is stored on the contract itself and can be modified by owner.

* Gas limit on the home contract is queried from a separate SelectorTokenGasLimitManager contract.
This contract can return an exact limit for token and function based on the message data. Tokens
not configured on the SelectorTokenGasLimitManager will use default gas limits.

The same considerations also make the AMB transaction handling different. On the home side, oracles
will submit the incoming transaction. On the foreign side, oracles just provide the necessary signatures
before it is actually submitted to the foreign blockchain by the users (senders/receivers) themselves. This
way the higher foreign gas fees will be payed by the users.

2.2.1 Trust Model

Users of the OmniBridge need to trust in different parties:

« xDai Validators: They are trusted to avoid any forks of more than 12 blocks and generally follow the
protocol honestly.

* OmniBridge Contract Administrators: These administrator can change numerous values and thereby
execute a lot of control as described in some findings below.

» TokenFactory Contract Administrators: The administrators controlling the TokenFactory can
determine the base image that is used for all bridged tokens. By choosing a malicious image, they
can steal the bridged funds.

* FeeManager Contract Administrators: The administrators of the FeeManager contract can set the
fees and also exempt addresses from fee payments. By setting extremely high fees, they can
essentially steal the funds that are sent across the bridge.

* AMB Validators: The AMB Validators are fully trusted to correctly relay information from one side to
the other.

« Ethereum miners: They are trusted to avoid any forks of more than 12 blocks and generally follow
the protocol honestly.

@ POA Network - OmniBridge - ChainSecurity 5

https://chainsecurity.com

Generally, honest majorities are required from all of these parties.

@ POA Network - OmniBridge - ChainSecurity

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

@ POA Network - OmniBridge - ChainSecurity 7

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ POA Network - OmniBridge - ChainSecurity 8

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C)-Severity Findings 0
(Medium)-Severity Findings 2

+ Administrators Can Make Non-Native Tokens Native and Native Tokens Non-Native
» Tokens With More Than One Token Address Can Be Stolen by Admins

(Low)-Severity Findings 3
» Documentation Mismatches (=~)

* Function onTokenTransfer Reentrancy Case G L
* Incompatible Tokens (LI

5.1 Administrators Can Make Non-Native Tokens
Native and Native Tokens Non-Native

(@D (Medium) (Version 1) G000

When the function set Cust omlokenAddr essPai r is called, the following checks are being performed:

require(!isTokenRegi stered(_bridgedToken));
requi re(nativeTokenAddress(_bri dgedToken) address(0));
requi re(bridgedTokenAddress(_nati veToken) address(0));

However, there is no check that the _nat i veToken is not bridged token, i.e.:
requi re(nativeTokenAddress(_nati veToken) address(0));

This can create a weird condition where the bridged token is again a native token. Once this occurs, the
bridge fails to function correctly, as the bridged tokens are now handled as native tokens.

Similarly, administrators can also register an existing native token, as a non-native token. Consider the
following example:

1. A native token T exists, which has already been bridged and where tokens of type T are locked up
inside the mediator contract.

2. An administrator call set Cust omlfokenAddr essPai r with T as the _bri dgedToken and some
other fake token F as the supposedly native token on the other side.

@ POA Network - OmniBridge - ChainSecurity 9

https://chainsecurity.com

3. The attacker transfers a lot of F token (which can be freely minted) over the brige and thereby
unlocks the T tokens.

This allows administrators to steal all native tokens held by the bridge.

However, the overall risk is rather low as only administrators can call set Cust onmlfokenAddr essPai r .

Risk accepted:

To address this problem, POA Network added a comment saying that the function arguments should be
manually validated by the administrator, as no easy solution is available.

5.2 Tokens With More Than One Token Address
Can Be Stolen by Admins

(Security JCIT AT Risk Accepted)

Tokens that have more than one address, through which they can be called, can be stolen when they are
bridged. An example for such a token is TUSD. The attack would work as follows:

1. The token is already bridged using the first token address. An amount X has been transferred across
the bridge.

2. An attacker bridges the token using another token address. The attacker also bridges X tokens. Now
the mediator balance on the native side is X for both token addresses. However, the actual balance,
when queried from bal anceO is 2*X for both of them.

3. The attacker colludes with the administrators, which trigger a call to f i xMedi at or Bal ance on the
native side and withdraw X amount of tokens.

4. Then, the attacker can withdraw X tokens, by sending back the bridged tokens.

Overall, turned X tokens into 2*X tokens, when ignoring fees. The attacker managed to withdraw the full
amount of bridged tokens. At the time of writing 118,000 TUSD have been bridged which are at risk
under such an attack.

Risk accepted:

No code changes were done. POA Network added a warning comment to fi xMedi at or Bal ance
method.

5.3 Documentation Mismatches

D (Low) (Version 1)()

The following mismatches with the documentation or within the documentation were found:

1. The definition of native is different in the code and in the documentation:
https://docs.tokenbridge.net/about-tokenbridge/features#chain-and-network-definitions

In the code, native refers to the origin of the token contract, in the documentation to the home side of
the network.

2. Some documentation items mention a r equi r edBl ockConf i r mat i ons of 8 while others mention
12.

@ POA Network - OmniBridge - ChainSecurity 10

https://docs.tokenbridge.net/about-tokenbridge/features#chain-and-network-definitions
https://chainsecurity.com

Acknowledged:

Documentation will be re-worked with help of a technical writer.

5.4 Function onTokenTr ansf er Reentrancy Case

D (Cow) (Version 1) (ETTETED)

The main contracts have a | ock() function with a corresponding variable that aims as a reentrancy
guard. In case when | ock() is true, the onTokenTr ansf er function will silently accept the funds. This
can lead to a reentrancy that can break some invariants of the contract. In case, the callback happens
during the saf eTr ansf er Fr omin the _r el ayTokens function, the f r omaddress can perform a token
transfer to the Bridge contract. Note that the same or a different token can be used. Such callbacks
during saf eTr ansf er Fr om can occur with tokens that implement the ERC777 or similar standards.
Because the received tokens are silently accepted and _set Medi at or Bal ance is not called, the
medi at or Bal ance won't track the balance correctly.

Risk accepted:

The described behaviour is acceptable, as ERC-777 tokens are not supported by the OmniBridge.

5.5 Incompatible Tokens

(D (Low) (Version 1) (ETEETED)

The following token types are incompatible with Omnibridge:

» Rebasing tokens: If the balance of a token can change while it is stored inside the mediator contract,
then basic assumptions no longer hold. Hence, such tokens as Ampleforth should not be bridged as
the bridging might not be reversible.

* Special transfer fees: This report already contains issues regarding "regular transfer fees", where
upon transfer of X tokens, X-F tokens are transferred, while F tokens are paid to the fee receiver. In
case of transfer fees, where upon transfer of X tokens, X+F tokens are subtracted from the senders
balance and X tokens arrive at the receiver, the Omnibridge contracts will fail as they do not account
for such fees.

» Malicious tokens: Obviously, any malicious token contracts that do not follow sensible guidelines so
that for example, balances can be arbitrarily can freely manipulated, cannot be bridged in a
meaningful manner.

Users should be warned not to bridge such tokens.

Risk accepted:

POA Network manually reviewed the most important tokens to ensure their compatibility and will monitor
the bridge and the bridged tokens. Furthermore, appropriate warnings will be added inside the UI.

@ POA Network - OmniBridge - ChainSecurity 11

https://eips.ethereum.org/EIPS/eip-777
https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 6

« Decimals in bridgeSpecificActionsOnTokenTransfer Are Not Used
« ERC20 Function Calls Ignore Return Values

+ No Canonical Definition of Calldata for onTokenTransfer

» Safe Transfers Are Not Used for All Token Transfers

» Transferred Values in Case of Relaying Tokens With Fees

* OmnibridgeFeeManager Fee Distribution Reverts in Case of Tokens With Transfer Fees
(Low)-Severity Findings -
« Code Simplification Possible

+ Name Collision Among Bridged Tokens With Different Origins

* Reentrancy Into AMB (&L lRe i T
* Restriction to Static Call (elEReIgTe =T

* Superfluous Loads From Storage (ELERSua

6.1 Decimals in

bri dgeSpeci fi cActi onsOnTokenTransfer Are
Not Used

[Medium][Version 1]

In both Home and Foreign OmniBridge contracts the decimals are queried in the
bri dgeSpeci fi cActi onsOnTokenTr ansf er function during the token relaying. But this data is used
only in few cases within this function:

« Token is not registered and limits need to be initialised.
« Token is native to the current side of the bridge and its deployment is not yet acknowledged.
In case of non-native, acknowledged or initialised Tokens the queried decimals won't be used. Because

such cases are the most common ones, the unused data introduces extra gas costs that could be
avoided.

Code corrected:

@ POA Network - OmniBridge - ChainSecurity 12

https://chainsecurity.com

The use of TokenReader.readDeci mal s() was refactored as so it is being called only when
depl oyAndHandl eTokens messages are sent.

6.2 ERC20 Function Calls Ignore Return Values
(Design LT ICLETIRY] Code Corrected!

The ERC20 specification states:

Call ers MJUST handl e false fromreturns (bool success). Callers MJST NOT assune that false is never returned!

In some calls to the ERC20 tokens those return values are ignored:

| Bur nabl eM nt abl eERC677Token(_t oken) . mi nt (addr ess(manager), fee) in
_di stri but eFee function.

* | Bur nabl eM nt abl eERC677Token(_t oken) . transf er (addr ess(manager), fee) in
_di stri but eFee function.

e | Bur nabl eM nt abl eERC677Token(_bri dgedToken). nmi nt (address(t his), 1) in

set Cust omlokenAddr essPai r function.
e _getM nterFor(_token).mnt(_recipient, _value) in_rel easeTokens function.
In most cases that happens during the calls to non-native Tokens that were deployed via the factory. But

due to the set Cust onTokenAddr essPai r function the non-native contracts can have any behavior
and the return values need to be checked explicitly.

Code corrected:

All calls to transfer and mint function now check the return values.

6.3 No Canonical Definition of Calldata for
onTokenTr ansf er

[Medium] [Version 1] Code Corrected

The function onTokenTr ansf er uses inline assembly to read the receiver and calldata from the calldata
arguments. The assembly strongly relies on some assumptions about the argument encoding of the
Solidity. One of them is that there are no "garbage bits" between the byte offset of the
byt es calldata _data variable and the length field of the byt es cal |l data _dat a argument.
This assumption will hold true in most cases, but is not guaranteed to hold. This assumption can be
eliminated letting the compiler copy the _data into the memory and dealing with it there. Full
expectations about the expected information in the _dat a argument must be properly documented, to
avoid the misinterpretation of the interface.

function onTokenTransf er (
address from
ui nt 256 _val ue,
bytes call data _data

) external returns (bool) {

@ POA Network - OmniBridge - ChainSecurity 13

https://eips.ethereum.org/EIPS/eip-20
https://docs.soliditylang.org/en/v0.6.0/abi-spec.html
https://docs.soliditylang.org/en/v0.6.0/abi-spec.html
https://chainsecurity.com

Code corrected:

For the relevant onTokenTr ansf er function, the cal | dat a location of the _data variable was
replaced with the menory location. Hence, the ABI parsing is performed by the compiler and only
afterwards data is being parsed in inline assembly.

6.4 Safe Transfers Are Not Used for All Token
Transfers

(D (Wiedium) (Version 1) (CTEIIEED)

For some transfers of ERC20 Tokens the Saf eERC20 functions are not used. This includes:

* The function _di st ri but eFee in Omi bri dgeFeeManager Connect or contract.
* The function di st ri but eFee in Omi bri dgeFeeManager contract.

The first case only appears for non-native tokens at the Home side of the bridge, which in most cases
should be ERC677 deployed by Factory. But due to the set Cust onmTokenAddr essPai r function, there
are possible conditions when any other token can be called with this transfer.

Code corrected:

All calls to the t r ansf er function were replaced by a safe wrapper.

6.5 Transferred Values in Case of Relaying
Tokens With Fees
(Design (LI VEETIBY Code Corrected

In a scenario with token relaying, the _r el ayTokens function is executed. A user provided _val ue is
then transferred to the bridge contract via saf eTr ansf er Fr om If the token has fees on transfer (e.g.
USDT-not currently charged, PAXG), the actual transferred value will be smaller than the bridged value.
This will effectively break the invariant
Bal ance of bridge == total supply of bridged token.

Code corrected:

This has been corrected by measuring the actually transferred token amount.

6.6 Omi bri dgeFeeManager Fee Distribution
Reverts in Case of Tokens With Transfer Fees

(Design (I TONZIEEEY] Code Corrected

As part of the internal function _di st ri but eFee of the Omi bri dgeFeeManager Connect or contract
calls the token contract to transfer or mint the fee amount to the manager. In case the relevant token
contract is native to Home side it might have transfer fees. Then, a value less than fee will be moved
during the transfer to the Omi bri dgeFeeManager. Later the Omi bri dgeFeeManager tries to
distribute this fee amount using di st ri but eFee function. Because the actually transferred value will be

@ POA Network - OmniBridge - ChainSecurity 14

https://chainsecurity.com

smaller in case of Tokens with transfer fees, the Omi bri dgeFeeManager will not have enough assets
to perform the reward distribution with the required values.

Hence, the whole transaction will fail and such tokens cannot be moved across the bridge.

Code corrected:
The code has been rewritten so that

1. The Omi bri dgeFeeManager determines the amount of fees to distribute by calling
t oken. bal anceOf (address(this)).

2. Failure of the transfer/mint operation during the fee distribution will not fail the Omi bri dge
message processing.

6.7 Code Simplification Possible
D) (Low) (Version 1) TN

The following code can be simplified:

it (_token addr ess(0Oxb7D311E2Eb55F2f 68a9440da38e7989210b9A05e)) {
return | Burnabl eM nt abl eERC677Token(0xb7D311E2Eb55F2f 68a9440da38e7989210b9A05¢) ;

}
return |Burnabl eM ntabl eERC677Token(_t oken);

The i f clause can be entirely omitted.

Specfication changed:

Before the Omi Bri dge is deployed for the ETH-xDAI instance the contract address in this check can be
replaced with the actual minter 0x857DD07866C1e19eb2CDFceF7aE655cE7f 9E560d of the STAKE
token on the xDai chain. For other bridges this check is either removed at all or did not have any
significant impact. A comment was added into the code to bring more clarity why this check is needed.

6.8 Name Collision Among Bridged Tokens With
Different Origins

(D (Cow) (Version 1) ST

When the bridge creates token contracts on the Home chain, the " on xDai" string is appended to the
Foreign token name. In case of multiple bridges to different Foreign chains, different tokens that have the
same name on different Foreign chains, will have same names on the Home chain. As an example,
"1INCH Token" from Ethereum Mainnet and Binance Smart Chain will both have the "1INCH Token on
xDai" name on the Home chain. While that has no direct code-related problems, this increases the
human error chance during the user interactions.

Code corrected:

@ POA Network - OmniBridge - ChainSecurity 15

https://chainsecurity.com

Newly deployed Omnibridge contracts are using "from X" names where X is the respective blockchain.
The Blockscout interface also renames such tokens in the Ul. Unfortunately, it is not possible to change
token names for already existing tokens. However such collisions are being mitigated in the UI.

6.9 Reentrancy Into AMB
G (Low) (Version 1) (XITIEED)

When the Arbitrary Message Bridge contract receives a message from the other side, the following is
performed code is used to execute the message call:

set MessageSender (_sender) ;
set Messagel d(_nessagel d) ;
set MessageSour ceChai nl d(_sour ceChai nl d) ;

bool status _contract.call.gas(_gas)(_data);
set MessageSender (address(0));

set Messagel d(byt es32(0));

set MessageSour ceChai nl d(0) ;

The called contracts can query the information such as nessagel d and nessageSender. These
information provide important authorization for the called contracts. As there is no reentrancy guard on
this function, this code can be reentered in the following way:

1. Call A is made, correct information for A is available

2. A triggers the reentrancy and call B is made, now B is executing and the correct information for B is
available

3. The call B completes and the information are reset to O

4. The execution of A continues, but now the queried information will be 0

Hence, it is possible that during the execution of a passed message the wrong context, namely 0 is
returned when queried from the AMB contract. Furthermore, events are emitted in an interlaced order
which might confuse connected systems.

Please note the AMB contracts were outside of the scope of this review, however, we still note this as it
can affect the OmniBridge.

Code corrected:

The issue was fixed in https://github.com/poanetwork/tokenbridge-contracts/pull/577. It ensures that no
other message relay is currently being processed.

6.10 Restriction to Static Call
EZIID (Low) (Version 1) (CXIXLID

The contract contains the following code to determine the upgr adabi | i t yOamner :

address(this).call (abi.encodeWthSel ect or (UPGRADEABI LI TY_OAMNER))

However, this function is defined as a vi ew function:

@ POA Network - OmniBridge - ChainSecurity 16

https://github.com/poanetwork/tokenbridge-contracts/pull/577
https://chainsecurity.com

function upgradeabilityOaner() external view returns (address);

Hence, astati ccal | can be used to avoid unexpected state modifications.

Code corrected:

The cal | was replaced witha staticcall.

6.11 Superfluous Loads From Storage

(Design J(ED[ULEBY Code Corrected)

The Omnibridge contracts sometimes contain code like this:

require(!bridgeContract().nessageCal | Status(_nessageld));
require(bridgeContract().fail edMessageRecei ver (_messagel d) address(this));
require(bridgeContract().fail edMessageSender (_nessagel d) medi at or Cont ract OnQt her Si de()) ;

As there is a storage load (SLOAD) inside the bri dgeContract () function, this SLOAD will be
executed three times in this case. Due to the about-to-be introduced EIP-2929 the additional costs of
extra SLOADs from the same location are significantly lowered, but it could still be avoided to do it.

Code corrected:
The return value of bri dgeCont ract () was saved in a local variable to avoid repeated calls.

@ POA Network - OmniBridge - ChainSecurity 17

https://chainsecurity.com

7 Notes

We leverage this section to highlight potential pitfalls which are fairly common when working Distributed
Ledger Technologies. As such technologies are still rather novel not all developers might yet be aware of
these pitfalls. Hence, the mentioned topics serve to clarify or support the report, but do not require a
modification inside the project. Instead, they should raise awareness in order to improve the overall
understanding for users and developers.

7.1 Differing Token Values

The OmniBridge has limits on transfers per token. This means that only a certain amount of tokens can
be transferred per transaction and per day. Generally, this limits are initialized as a nhumber of tokens.
Obviously, a certain number of tokens of one type can have a very different value than the same number
of tokens from another type. Hence, these limits need to be carefully monitored.

7.2 Function r equest Fai | edMessageFi x
Performs Multiple Calls to bri dgeCont r act

When a user detects a failed, bridged message, the function r equest Fai | edMessageFi x can be used
to fix the failed call. Therefore, three pieces of information are needed which are currently loaded like
this:

requi re(!bridgeContract (). messageCal |l Status(_nessageld));
requi re(bridgeContract().fail edMessageRecei ver (_nmessagel d) address(this));
requi re(bridgeContract().fail edMessageSender (_nessagel d) nmedi at or Contract OnQt her Si de()) ;

This code i s execute both on Hone and Foreign bridges.

Note that there are two levels of inefficiency here. First of all three separate calls are made, even though
these information are generally always queried together. Second, this information is spread amount three
storage slots, and hence requires three costly SLOADs, even though two storage slots would easily
suffice, as only 321 bit of data are stored.

However, as this needs to be resolved within the AMB contracts, it is outside the scope of this code
review.

7.3 Limits Can Be Compressed in Storage

(D) (Version 1

There are three storage slots being consumed on both sides of the bridge for the following information:

ui nt St or age[keccak256(abi . encodePacked("dai | yLimt", _token))] limts[O];
ui nt St or age[keccak256(abi . encodePacked(" maxPer Tx", _token))] _limts[1];
ui nt St or age[keccak256(abi . encodePacked(" m nPer Tx", _token))| limts[2];

These information are often accessed together. Given the value ranges they could probably be
compressed into two storage slots. This would also provide gas savings on the foreign side as it would
avoid a costly SLOAD.

@ POA Network - OmniBridge - ChainSecurity 18

https://chainsecurity.com

7.4 Proxy Fallback Redundant Operations
(D) (Version 1

The Proxy contract does some redundant operations, such as:
elet ptr := m oad(0x40)
*nst ore(0x40, add(ptr, returndatasize()))

Preserving the free memory slot pointer at 0x40 is important when the assembly code is used together
with Solidity code. But in case of the Proxy contract, this can be skipped, as no solidity code is executed
after the assembly block.

7.5 Redundant Work Performed as Part of

t ot al Spent Per Day

The function bri dgeSpeci fi cActi onsOnTokenTr ansf er has the following code, that checks and
adjusts the t ot al Spent Per Day limit for a particular token.

requi re(withinLimt(_token, _value));
addTot al Spent Per Day(_t oken, getCurrentDay(), _value);

The code of those 2 functions are quite similar.

function withinLimt(address _token, uint256 _anount) public view returns (bool) {
ui Nt 256 next Limt t ot al Spent Per Day(_t oken, get CurrentDay()).add(_anount)
return
dailyLimt(address(0)) 0 &&
dai | yLi m t (_t oken) nextLimt &&
_anount maxPer Tx(_t oken) &&
_anount m nPer Tx(_t oken)

functi on addTot al Spent Per Day(
address _token
ui nt 256 _day,
ui nt 256 _val ue
) internal {
ui nt St or age[keccak256(abi . encodePacked("t ot al Spent Per Day", _token, _day))] t ot al Spent Per Day(_t oken, _day) . add(
_val ue
DE
}

The function wi t hi nLi m t, that is executed first, reads, increases and checks limits. The function
addTot al Spent Per Day reads, increases and writes the increased value for the limit. This is a small
redundancy that can potentially be eliminated.

7.6 Reentrancy Lock Is Gas Inefficient

The main contracts have a reentrancy guard. Setting and releasing this guard inside OmniBridge
contracts is done via storage of a boolean true/false.

Please note that using locks which switch between the values 0 and 1 is more expensive than switching
between the values 1 and 2 in case of a reverting transaction. However, the correct choice of this values

@ POA Network - OmniBridge - ChainSecurity 19

https://chainsecurity.com

in the future will also be affected by the currently discussed EIP-3298 which is concerned about the
removals of refunds.

Based on EIP-2929 it would also be beneficial if the reentracy lock value would be packed into the same
storage slot with another variable, but that is hard due to the chosen storage layout.

7.7 State of Implementation Contract

(D) (Version 1)

With proxied contracts, the state generally resides in the proxy while the code resides inside the
implementation contract. In principle, the state of the implementation contract is meaningless, unless the
code contains selfdestruct, callcode or delegatecall opcodes. Neither of these opcodes can be found
inside the current Omnibridge contracts. However, we would still recommend to make the initialization of
the state of the implementation contract part of the deployment scripts, as a best practice to avoid future
issues.

7.8 Token Creators Can Avoid Fee Payments

(D) (Version 1)

Token contracts that are native to the xDai side could be programmed such that they avoid a fee
payment to the bridge validators, e.g. by simply ignoring transfer calls to and from the fee manager.
Furthermore, existing tokens could be wrapped to avoid fees. However, as the fees are fairly low and as
such tokens could be blocked on the bridge, the risk appears to be very low.

7.9 Token With Transfer Restrictions
(D) (Version 1

Certain Tokens, especially regulated stable coins, have transfer restrictions, blacklists or even the power
to seize funds. If some tainted funds would be bridged, the entire bridge balance of that particular token
might become frozen or could get seized. As with any other contract where funds are deposited, users
need to be aware of these potential risks.

7.10 Weak Randomness
(D) (Version 1

The following function is used to pick a random number:

function randon(ui nt 256 _count) internal view returns (uint256) {
return ui nt 256(bl ockhash(bl ock. nunber.sub(1))) % count;

}

This is generally a bad way to sample randomness as, especially in the case of xDai, different attacks
exist. Furthermore, there randomness is extremely slightly skewed. In this context, however, the
randomness only serves to pick the account the receives the fee dust. As the corresponding monetary
value is generally tiny, it seems acceptable.

@ POA Network - OmniBridge - ChainSecurity 20

https://chainsecurity.com

7.11 onl yMedi at or Modifier
(D) (Version 1

There is an onl yMedi at or modifier inside the Basi cAMBMedi at or contract. It performs two checks:
» Check that the call comes from AMB bridge contracts.

» Check that the forwarded by AMB bridge the message sender is a mediator on the other side.

There are multiple concerns about this modifier.

Firstly, the Medi at or Omabl eMbdul e has a modifier with the same name that performs only one check
- that the message comes from QOmi Bri dge extension contract. That can potentially cause
misunderstandings and human errors.

Secondly, it seems that the virtual message sender is always needed. This is currently being queried
through a call to bri dge. nessageSender () . Here, for future versions of the AMB protocol a more
efficient design would be possible where this information is passed along.

nodi fier onlyMedi ator {
_onl yMedi ator () ;

function _onlyMediator() internal view {
| AMB bridge bri dgeContract () ;
require(nsg. sender address(bridge));
requi re(bridge. messageSender () medi at or Contract OnQt her Si de()) ;

@ POA Network - OmniBridge - ChainSecurity 21

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Administrators Can Make Non-Native Tokens Native and Native Tokens Non-Native
	5.2 Tokens With More Than One Token Address Can Be Stolen by Admins
	5.3 Documentation Mismatches
	5.4 Function onTokenTransfer Reentrancy Case
	5.5 Incompatible Tokens

	6 Resolved Findings
	6.1 Decimals in bridgeSpecificActionsOnTokenTransfer Are Not Used
	6.2 ERC20 Function Calls Ignore Return Values
	6.3 No Canonical Definition of Calldata for onTokenTransfer
	6.4 Safe Transfers Are Not Used for All Token Transfers
	6.5 Transferred Values in Case of Relaying Tokens With Fees
	6.6 OmnibridgeFeeManager Fee Distribution Reverts in Case of Tokens With Transfer Fees
	6.7 Code Simplification Possible
	6.8 Name Collision Among Bridged Tokens With Different Origins
	6.9 Reentrancy Into AMB
	6.10 Restriction to Static Call
	6.11 Superfluous Loads From Storage

	7 Notes
	7.1 Differing Token Values
	7.2 Function requestFailedMessageFix Performs Multiple Calls to bridgeContract
	7.3 Limits Can Be Compressed in Storage
	7.4 Proxy Fallback Redundant Operations
	7.5 Redundant Work Performed as Part of totalSpentPerDay
	7.6 Reentrancy Lock Is Gas Inefficient
	7.7 State of Implementation Contract
	7.8 Token Creators Can Avoid Fee Payments
	7.9 Token With Transfer Restrictions
	7.10 Weak Randomness
	7.11 onlyMediator Modifier

