

PUBLIC

Code Assessment

of the USDO

Smart Contracts

March 03, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Open Findings 10

6 Resolved Findings 12

7 Informational 14

8 Notes 16

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear OpenEden team,

Thank you for trusting us to help OpenEden with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of USDO according to Scope to
support you in forming an opinion on their security risks.

OpenEden implements a USD stablecoin called USDO and a wrapper contract (acting as a vault) for it
called cUSDO. The stablecoin will be backed by yield-earning U.S. treasury bills.

We did not find any critical issues in the codebase. Yet, we recommended testing cUSDO deposits,
transfers and withdrawals with intermediate multiplier changes in USDO very carefully. All raised issues
were addressed accordingly.

In summary, we find that the codebase provides a high level of security as most critical operations are
access-controlled and should have additional off-chain procedures to ensure the security of the system.
However, it is important to note that security audits are time-boxed and cannot uncover all vulnerabilities.
They complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 4

• Risk Accepted 2

• Acknowledged 2

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the USDO repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 29 July 2024 50c3cb84f74ffdb5a1235e375fc3ef81c5f59aa2 Initial Version

2 12 August 2024 1c8addeb9bc32ed945c10287f7c673543b900be6 Final Version

3 27 February 2025 7c9103a6f3d4bb3c4650b33e759eaff94d53ea34 Renaming

For the solidity smart contracts, the compiler version 0.08.18 was chosen, and the following two
contracts were reviewed:

• USDO.sol

• cUSDO.sol

Version 3In the file and contract wUSDO has been renamed cUSDO.

2.1.1 Excluded from scope
Excluded from the scope are all third-party libraries imported into the contracts.

2.2 System Overview
Version 3This system overview describes the latest version received () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

OpenEden offers a yield-bearing stablecoin system that consists of two contracts: USDO and cUSDO.
USDO is a rebasing ERC-20 token that accrues interest over time and is minted and burned by a central
party. cUSDO is a non-rebasing, ERC-4626 compliant wrapper contract for USDO.

2.3 Protocol

2.3.1 USDO
The USDO token contract is an upgradable ERC-20 token with rebasing balances. It inherits the following
default OpenZeppelin contracts:

• AccessControlUpgradeable: contract that gives role-based access control to admin functions.

• PausableUpgradeable: contract that allows the contract to be paused and unpaused.

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

• EIP712Upgradeable: contract that allows hashing and signing of structured data.

• UUPSUpgradeable: contract that allows to upgrade the logic of the implementation.

The balances of the contract increase and decrease with a so-called bonusMultiplier that controls
the conversion rate between shares and token balances. The multiplier is initially set to 1e18 during
initialization and can be incremented by the MULTIPLIER_ROLE. The contract stores the shares owned
by each user and the user's balance is then calculated as the number of shares multiplied by the current
value of the bonusMultiplier:

balance = shares * bonusMultiplier/1e18
The DEFAULT_ADMIN_ROLE can re-set the bonusMultiplier to any value >=1e18 and can thereby
reduce the value of the bonusMultiplier and the value of the shares.

Addresses with the MINTER_ROLE can mint new tokens for users and user addresses with the
BURNER_ROLE can burn tokens. Minting tokens takes as an argument the number of tokens to mint, and
the contract then calculates the number of shares to mint based on the current value of the
bonusMultiplier.

shares = balance * 1e18/bonusMultiplier

A privileged address with the BURNER_ROLE can burn tokens from user accounts. This reverses the
operation from above.

The contract can be paused by the PAUSE_ROLE. When paused, no transfers are allowed, including
token burning and minting.

The BANLIST_ROLE can ban and un-ban addresses. Banning stops users from transferring any tokens
from their addresses. This includes burning tokens from a banned address (burning is a transfer to
address 0).

The so-called UPGRADE_ROLE can upgrade the implementation of the contract. This is done by calling
the upgradeTo function of the UUPSUpgradeable contract.

In addition to the standard ERC-20 function, the contract implements EIP-2612 permit, to allow users to
approve token transfers without having to send a transaction to the blockchain and
increaseAllowance and decreaseAllowance functions to protect users against frontrunning
approvals. Note that the latter are taken from the OpenZeppelin 4.9 release and are not part of the
current OpenZeppelin release.

2.3.2 cUSDO
The cUSDO token contract is a non-rebasing ERC-4626 compliant wrapper contract around the rebasing
USDO token.

They inherit the same default OpenZeppelin contracts as the USDO token:

• AccessControlUpgradeable: contract that gives role-based access control to admin functions.

• PausableUpgradeable: contract that allows the contract to be paused and unpaused.

• EIP712Upgradeable: contract that allows hashing and signing of structured data (used for
ERC20-permit).

• UUPSUpgradeable: contract that allows to upgrade the logic of the implementation.

and in addition, inherit the ERC-4626 Vault contract implementation by OpenZeppelin:

• ERC4626Upgradeable contract that implements the ERC-4626 Vault contract.

Users can deposit USDO tokens into the cUSDO contract to receive cUSDO tokens. These tokens are
non-rebasing and can be utilized in external DeFi applications. Users can redeem their cUSDO tokens for
USDO. The conversion between shares is handled by OpenZeppelin's ERC-4626 Vault contract.

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The contract has a dedicated PAUSE_ROLE to pause and unpause the contract. When paused, no
transfers are allowed. Additionally, the contract integrates the pause function from the USDO contract to
stop transfers when the underlying contract is paused. Similarly, it integrates the banlist from the USDO
contract to halt transfers when the user is banned in USDO. This means that banning a user will prevent
them from transferring any tokens.

The contract has a UPGRADE_ROLE that can upgrade the implementation of the contract by calling the
UUPSUpgradeable.upgradeTo().

In addition to the standard ERC-20 function, the contract implements EIP-2612 permit, to allow users to
approve token transfers without having to send a transaction to the blockchain.

2.4 Trust Model
The admin roles that are described above are fully trusted and are expected to behave in the interest of
the users. The most powerful role is the default admin which can transfer all other roles to other
accounts. They are expected to only transfer roles to well-vetted addresses.

Another important role is the UPGRADE_ROLE role that can upgrade the implementation of the contracts.
They are expected to upgrade the contract to well-tested and non-malicious implementations.

2.5 Assumptions
• We assume that U.S. treasury bills do not default fully or partially. Furthermore, we assume that the

rate does not decrease in such a way that it causes issues in the system (e.g. to fall below _BASE in
the beginning).

• We assume all mint as well as burn operations are carefully checked. If burn operations are
automatic and instant, front-running issues might arise because rate changes will be visible in the
mem-pool before they are applied.

2.5.1 Changelog
Version 3:

• Renamed contract wUSDO to cUSDO.

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 4

• Risk AcceptedDust Accumulation in cUSDO

• AcknowledgedMinting to Banned Addresses

• Risk AcceptedRedeem Without Reducing Shares

• AcknowledgedToken Transfers Allowed to Token Contract Addresses

5.1 Dust Accumulation in cUSDO
Correctness Low Version 1 Risk Accepted

CS-USDOO-001

Through the back-and-forth conversion from assets to shares in USDO, rounding errors will accumulate.
This prevents the full withdrawal of all USDO from cUSDO. Over time, dust will accumulate in cUSDO
with no owner. This will also marginally influence the shares received when depositing in cUSDO. We
recommend testing cUSDO deposits, transfers and withdrawals with intermediate multiplier changes in
USDO very carefully.

Risk accepted:

OpenEden has accepted the risk and states that they will add additional tests to cover more edge cases.

5.2 Minting to Banned Addresses
Design Low Version 1 Acknowledged

CS-USDOO-002

Banning an address disallows the address to send funds to other addresses and to burn the address's
funds. However, it remains possible to mint funds to the banned address.

Acknowledged:

OpenEden stated:

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

The code won’t check `to` for gas efficiency.

5.3 Redeem Without Reducing Shares
Design Low Version 1 Risk Accepted

CS-USDOO-003

In function USDO.burn() the amount of shares burned is rounded to zero when
(amount * _BASE) < bonusMultiplier (where amount > 0). This could cause problems when a
user redeems their USDO for USDC and the respective amount of USDO is burned. In this scenario, _burn
will remove no shares and _shares[user] remain constant, while the user receives USDC. While this
condition can be enforced in some external logic that is not part of the reviewed codebase, the issue
should ideally be prevented and checked on a smart contract level.

Risk accepted:

The OpenEden has accepted the risk and noted:

The burn() is fully controlled by the admin, and in reality this won’t happen.

5.4 Token Transfers Allowed to Token Contract
Addresses
Design Low Version 1 Acknowledged

CS-USDOO-004

The contracts allow sending tokens to the issuing contract (e.g., USDO token to USDO contract).
Currently, there is no function to recover the funds. There might be the possibility to add this functionality
in an update. However, we do not see a reason to allow this functionality.

Acknowledged:

OpenEden team has acknowledged the issue, but has decided to keep the code unchanged.

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Informational Findings 2

• Code CorrectedArguments Returned by Custom Error

• Code CorrectedGas Optimizations

6.1 Arguments Returned by Custom Error
Informational Version 1 Code Corrected

CS-USDOO-009

The function USDO.permit() reverts with custom error ERC2612InvalidSignature() that returns
the owner and spender addresses.

address signer = ECDSAUpgradeable.recover(hash, v, r, s);

if (signer != owner) {
 revert ERC2612InvalidSignature(owner, spender);
}

However, it does not return the signer of the signature, which is commonly done by current libraries like
OpenZeppelin.

Code corrected:

The OpenEden repository has been updated to return the signer and owner addresses in the custom
error:

if (signer != owner) {
 revert ERC2612InvalidSignature(signer, owner);
}

6.2 Gas Optimizations
Informational Version 1 Code Corrected

CS-USDOO-008

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

1. In the function USDO._updateBonusMultiplier(), the event BonusMultiplier can log the
function argument _bonusMultiplier instead of reading bonusMultiplier from storage.

2. The mapping _bannedList could use integer values to indicate true or false. As all words are
unit256 by default, using boolean will add a type conversion from uint to bool. The gas for this
casting could be saved.

Code corrected:

Version 2The optimizations have been implemented in .

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Decreasing BonusMultiplier
Informational Version 1 Acknowledged

CS-USDOO-005

We assumed that the BonusMultiplier is never decreasing. This assumption is not true if market
prices are factored into the multiplier instead of interest payments only. In this case, the chances are high
that the multiplier would need to be decreased. However, we assumed that the market prices are not
factored into the multiplier.

Technically, it is possible to decrease the BonusMultiplier by calling the setBonusMultiplier
function. However, a decrease in the beginning to a value below _BASE will not be possible due to the
restriction _bonusMultiplier < _BASE. Additionally, setBonusMultiplier allows setting the
same multiplier multiple times.

Another remaining scenario where the BonusMultiplier would need to decrease is partial or full
treasury bill defaults. This scenario is highly unlikely but should be considered in the design. Otherwise,
these scenarios need to be properly handled off-chain as the smart contract accounting could be
incorrect.

Acknowledged:

OpenEden stated:

Won’t happen in reality, and can upgrade if needed.

7.2 Shares to Burn Are Rounded Down
Informational Version 1 Acknowledged

CS-USDOO-006

The function USDO._burn() rounds down the number of shares burned from the user.

function _burn(address account, uint256 amount) private {
 ...

 uint256 shares = convertToShares(amount);
 uint256 accountShares = sharesOf(account);

Note, this is in contrast to the natspec above function USDO.convertToShares() which states:

 * Note: All rounding errors should be rounded down in the interest of the protocol's safety.
 * Token transfers, including mint and burn operations, may require a rounding, leading to potential
 * transferring at most one GWEI less than expected aggregated over a long period of time.

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

 */
function convertToShares(uint256 amount) public view returns (uint256) {
 return (amount * _BASE) / bonusMultiplier; // amount / index = shares
}

However, this remains an informational issue, since the issuer has full control over how much USDC to
send back to the user and can always send a bit less to compensate for the rounding down.

Acknowledged:

OpenEden team has acknowledged the issue, but has decided to keep the code and specification
unchanged.

7.3 Upper Bound for Bonus Multiplier
Informational Version 1 Acknowledged

CS-USDOO-007

The function USDO._updateBonusMultiplier() enforces that the new value of the bonus multiplier
is greater than, or equal to, 1e18. However, there is no upper bound for the bonus multiplier.

Limiting the increase of the bonus multiplier might prevent unintentional high increases (e.g., caused by
an error). Currently, the annual increase could e.g., be 100% (i.e. 1e18). This would not make sense for a
bond value that is expected to be updated daily. The function USDO.addBonusMultiplier() could
revert if _bonusMultiplierIncrement is greater than a certain threshold e.g., 3e15 (1e18 / 365 days
= 2.7e15).

Acknowledged:

OpenEden acknowledges the issue and stated that they will monitor changes in the bonus multiplier
off-chain.

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Effects of Rounding in USDO
Note Version 1

In each state-modifying function the token amount is taken as an argument and converted to the share
representation by rounding down:

function convertToShares(uint256 amount) public view returns (uint256) {
 return (amount * _BASE) / bonusMultiplier;
}

The rounding has the following effects:

• When minting tokens, minting of X tokens will effectively mint Y tokens, where . Similarly,
burning of X tokens will effectively burn Y tokens, where .

• For transfers of X tokens with initial balances A and B, the updated balances A' and B' satisfy
 and .

• The total supply invariant is not strictly enforced:

∑
i ∈ holder

balanceOf(i) ≤ totalSupply

Note that the functions transfer(), transferFrom(), mint() and burn() will update the balances
with amounts that might be different from those specified by callers due to these rounding errors.
3rd-party protocols should consider this when integrating with USDO.

8.2 Potentially Ineffective Banning
Note Version 1

The admin can ban an address. This address can then no longer send funds to other addresses. This
address's funds also not be burned anymore if it is banned. But funds could be minted to a banned
address as mentioned in Minting to banned addresses. If OpenEden does not use private mem-pools,
the transaction will be publicly visible in the mem-pool before it is executed. Hence, the to-be-banned
address can send the funds to another address before the ban is effective and escape the ban each time
by successfully front-running the ban transaction.

8.3 To Address Not Checked
Note Version 1

As the comment in the code implies, it is intended that the current code base does not validate the to
address in _beforeTokenTransfer. Consequently, it is possible to send funds to blocked addresses.
These addresses will just not be able to send the funds to other addresses. However, it is still possible to
mint to banned addresses (see Minting to banned addresses).

OpenEden - USDO - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Protocol
	2.3.1 USDO
	2.3.2 cUSDO

	2.4 Trust Model
	2.5 Assumptions
	2.5.1 Changelog

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Dust Accumulation in cUSDO
	5.2 Minting to Banned Addresses
	5.3 Redeem Without Reducing Shares
	5.4 Token Transfers Allowed to Token Contract Addresses

	6 Resolved Findings
	6.1 Arguments Returned by Custom Error
	6.2 Gas Optimizations

	7 Informational
	7.1 Decreasing BonusMultiplier
	7.2 Shares to Burn Are Rounded Down
	7.3 Upper Bound for Bonus Multiplier

	8 Notes
	8.1 Effects of Rounding in USDO
	8.2 Potentially Ineffective Banning
	8.3 To Address Not Checked

