

PUBLIC

Code Assessment

of the USDOExpress

Smart Contracts

Mar 06, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 11

7 Informational 14

8 Notes 15

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear OpenEden team,

Thank you for trusting us to help OpenEden Labs with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of USDOExpress
according to Scope to support you in forming an opinion on their security risks.

USDOExpress adds instant mint and redeem functionality to the existing USDO token.

We did not find severe issues. However, multiple minor issues related to fees were raised (see Missing
Slippage Protection, Fee Can Be Avoided on Small Amounts and Repeated Fees) and the deposit limits
are ineffective as described in Ineffective First Deposit Limit. All issues where addressed.

In summary, we find that the codebase provides a high level of security. Yet, it is important to note that
security audits are time-boxed and cannot uncover all vulnerabilities. They complement but don't replace
other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Specification Changed 1

Low -Severity Findings 5

• Code Corrected 1

• Specification Changed 1

• Acknowledged 3

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the USDOExpress repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 08 January 2025 ceaf7861a1bf7bae4c011ee00cefe2b3826eefc0 Initial Version

2 05 February 2025 f5eb61df682661cc71563afd3c14c2e30a188758 Fixes

3 05 March 2025 80cf2cd66356adc8c0f5c83632dc4ca80a7cd6e9 Version 2

For the solidity smart contracts, the compiler version 0.8.18 was chosen.

The following files were in scope:

• contracts/extensions/USDOExpress.sol

• contracts/extensions/USDOExpressPausable.sol

• contracts/extensions/USDOMintRedeemLimiter.sol

2.1.1 Excluded from scope
Other files are not in scope. In particular, USDO itself is not in scope. Third-party systems such as BUIDL
and TBILL are not in scope. Libraries such as OpenZeppelin are not in scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

The reviewed USDOExpress contract allows whitelisted users to instantly mint 1:1 USDO for either
USDC or TBILL tokens. Before, USDO could only be minted by an admin, after users performed a
relatively time-consuming fiat deposit process. The contract also adds three redemption options. All
operations might be subject to a fee, to certain limit, and to the presence of reserves.

To instantly mint USDO, the whitelisted user needs to call instantMint(). Additionally, the user needs
to specify the underlying (either USDC or TBILL tokens), the amount to exchange for USDO and a
destination address. Caller and destination address need to be whitelisted. There are minimum deposit
limits for the first deposit and for consecutive deposits. In case the mint request does not exceed the
system's limits, the underlying is transferred to the treasury contract and the USDO contract's mint
function triggered. We assume that the _firstDepositAmount is high enough to mitigate inflation
attacks. The USDOExpress uses the USDO mint function and, hence, needs to have the MINTER_ROLE

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 5

https://github.com/OpenEdenHQ/openeden.usdo.audit/tree/ceaf7861a1bf7bae4c011ee00cefe2b3826eefc0
https://github.com/OpenEdenHQ/openeden.usdo.audit/tree/f5eb61df682661cc71563afd3c14c2e30a188758
https://github.com/OpenEdenHQ/openeden.usdo.audit/tree/80cf2cd66356adc8c0f5c83632dc4ca80a7cd6e9
https://chainsecurity.com

in the USDO contract. The USDO contract acts similar to a vault in will calculate the depositor's share
and mint the USDO to the specified to address.

A user has three different ways to redeem his USDO for USDC. All approaches will charge a fee. The
caller and the receiver of the USDC needs to be whitelisted in all cases, too. The most basic approach is
to call redeem(). It will transfer the USDO to the treasury contract and the user needs to wait until the
admin manually burns the USDO and transfers the corresponding USDC minus fees to the user. There
are two new functions to instantly redeem without the manual review process. Both will first burn the
USDO. The difference is that instantRedeem() will use TBILL in the redemption process and
instantRedeemSelf() will use BUIDL in the redemption process. instantRedeem() will pull the
corresponding amount of TBILL tokens from the treasury contract and use it to call redeemIns() on the
TBILL contract. Consequently, receiving USDC from the TBILL redemption. The USDC is finally send to
the user and fee receiver. The last redemption option is instantRedeemSelf(). It will convert the
USDO amount to USDC and pull this amount from the BUIDL treasury and call redeem() on
_buidlRedemption. Finally, the USDC is sent to the user and fee receiver, too.

The remaining functions are view functions (e.g., to convert tokens) as well as setters and getters. The
contract is pausable and can separately pause mints and redeems. The contract is also upgradable by
the UPGRADE_ROLE role through OpenZeppelin's UUPS upgrade pattern.

The following roles defined by the contract:

DEFAULT_ADMIN_ROLE: Ultimately trusted as the role can grant and revoke other roles arbitrarily and
is allowed to set all critical parameters on the USDOExpress contracts, e.g. fees and limits. It is also able
to change the APY on USDO and abuse the minting permissions.

UPGRADE_ROLE: Ultimately trusted as this role can upgrade the contract implementation, making it as
powerful as DEFAULT_ADMIN_ROLE.

PAUSE_ROLE: Fully trusted as the role can pause and unpause minting and redeeming and block the
whole system.

MULTIPLIER_ROLE: Partially trusted to call and update the bonus multiplier in time. See
addBonusMultiplier().

WHITELIST_ROLE: Untrusted. This role is used for legal compliance purposes to whitelist users that are
allowed to use the instant redeem and mint functionalities provided by the contract.

We want to highlight the following assumptions:

• The USDOExpress contract does not hold any relevant tokens.

• No rounding issues or similar will happen in _buidlRedemption.redeem such that it will not
transfer exactly the requestAmt amount.

• We assume that the patched UUPS OpenZeppelin upgrade scheme is used that uses the
onlyProxy modifier with upgradeTo() is used or the implementation contract is initialized
accordingly.

• We assume that fees and cost for a minting operation always exceed the profit that potentially can
be made through an instant mint and redeem operation as well as through any sandwich attacks on
multiplier updates.

Version 2 Changes:

• A KYC whitelist is used to manage access to the redeem and instant mint functionalities. This
whitelist is not based on the OZ role access control but on a simple _kycList mapping.

• The redeem function now burns the USDO, instead of transferring it to treasury address.

• A function to update the buidlTreasury address was added.

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• AcknowledgedFee Can Be Avoided on Small Amounts

• AcknowledgedIneffective First Deposit Limit

• AcknowledgedinstantRedeem Can Transfer One Wei Less Than Requested

5.1 Fee Can Be Avoided on Small Amounts
Correctness Low Version 1 Acknowledged

CS-USDOEX-002

The internal function txsFee() rounds down when calculating the fee. Given that it is applied to
amounts in USDC or TBILL, small amounts can be selected such that the fee is rounded down to zero.
For 5 basis points, the optimal amount would be 1999 wei or 0.1999 cents. By breaking up a large sum in
chunks of this size, the mint and redeem fees can effectively be circumvented. However, gas fees would
most likely make this unprofitable.

Acknowledged

OpenEden Labs acknowledges the issue.

5.2 Ineffective First Deposit Limit
Design Low Version 1 Acknowledged

CS-USDOEX-004

A user that deposits the first time USDC via calling instantMint() needs to at least provide
_firstDepositAmount USDC tokens. However, a user with idle capital can always mint and
immediately redeem their deposit in whole or in part. Subsequent deposits can also bypass
_mintMinimum in a similar way. As a result, there would effectively be no deposit minima as long as
redeem liquidity is available. Additionally, users can leverage flash loans if those are available.

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

Acknowledged:

OpenEden Labs noted the issue.

5.3 instantRedeem Can Transfer One Wei Less
Than Requested
Correctness Low Version 1 Acknowledged

CS-USDOEX-006

Due to the conversion to and from TBILL, the instantRedeem() function can truncate the transaction
amount in an unexpected way, potentially causing confusion for users and integrators.

Assume the redemption fee is zero and the TBILL to USDC rate is 1.088307. A user calls
instantRedeem() for 1 USDO (wei). The function converts the amount to 1 USDC (wei) then
to 0.918858 TBILL for which the TBILL vault will only give 0.999999 USDC. The caller could reasonably
have expected to receive one whole token.

As the TBILL conversion rate grows above 2-to-1, the error can be up to 2 wei, and will grow
exponentially.

Acknowledged

OpenEden Labs is aware of the issue and acknowledges it. Furthermore, OpenEden Labs replied that
the rate won't grow over 2-1 in reality anyway.

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Specification ChangedMissing Slippage Protection

Low -Severity Findings 2

• Code CorrectedIncomplete or Incorrect Natspec

• Specification ChangedRepeated Fees

Informational Findings 3

• Code CorrectedCode Fragmentation

• Code CorrectedNon-indexed Events

• Code CorrectedUnused Event

6.1 Missing Slippage Protection
Security Medium Version 1 Specification Changed

CS-USDOEX-001

When redeeming via instantRedeem() a user specifies an USDO amount that shall be redeemed.
This amount will be burned and converted into a tbillAmt which will subtract the fees specified by the
protocol. When calling redeemIns() on the TBILL contract, additional fees will be charged and
calculations performed.

Even though the user can call previewRedeem() to estimate the redemption including the protocol
fees, it is hard for the user to control third-party fees that are deducted.

The user cannot opt-out in case the fees or conversion rate is unacceptable.

Specification changed:

OpenEden Labs states that the fee will be set to 0 on the tbill side, specifically for requests coming from
USDOExpress.

6.2 Incomplete or Incorrect Natspec
Correctness Low Version 1 Code Corrected

CS-USDOEX-003

The following functions have incomplete or missing natspec:

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

• Many functions in USDOExpress either have incomplete or missing natspec

• USDOMintRedeemLimiter._setTotalSupplyCap

• USDOMintRedeemLimiter.__USDOMintRedeemLimiter_init

In the NatSpec for instantMint(), the amt parameter is described as "[t]he requested amount of
USDO to mint". However, in the actual implementation, it corresponds to the amount of underlying token
supplied by the caller.

Code corrected:

The natspec listed above was corrected or added.

6.3 Repeated Fees
Design Low Version 1 Specification Changed

CS-USDOEX-005

instantRedeem() charges two different fees. First in previewRedeem() and another time third-party
fees in redeemIns. Besides inconveniences for the user as described in Missing slippage protection,
there is no guarantee that in requestAmt - feeInUsdc the invariant requestAmt >= feeInUsdc
holds. As both amounts are calculated in different stages and different amounts with different fees.
Additionally, a rational user will never use instantRedeem() if fees are charged in redeemIns, as it
will be more expensive than calling instantRedeemSelf(). This might result in an accumulation of
tbills in the treasury as users will prefer instantRedeemSelf() and withdraw BUIDL form the treasury.

Specification changed:

OpenEden Labs has clarified that the third-party fee in TBILL.redeemIns will be waved. (see Missing
slippage protection) OpenEden Labs also states that instantRedeemSelf() should be the user's first
choice, and that instantRedeem() should only be used if there isn't enough BUIDL liquidity. This
would be reflected in the user interface.

6.4 Code Fragmentation
Informational Version 1 Code Corrected

CS-USDOEX-007

The following three errors are defined in USDOMintRedeemLimiter but only used in USDOExpress:

• MintLessThanMinimum

• TotalSupplyCapExceeded

• FirstDepositLessThanRequired

Code corrected:

The error definitions have been moved to USDOExpress.

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6.5 Non-indexed Events
Informational Version 1 Code Corrected

CS-USDOEX-009

Events can be indexed to make filtering for certain addresses or parameters easier. None of the events
defined in USDOExpress and USDOExpressPausable have indexed fields.

Code corrected:

The following parameters are now indexed:

• underlying, from and to in InstantMint,

• from and to in InstantRedeem,

• from and to in ManualRedeem and

• account in UpdateFirstDeposit.

6.6 Unused Event
Informational Version 1 Code Corrected

CS-USDOEX-012

The event UpdateMintRedeemLimiter is not used and there is no state variable for the Limiter
because it is inherited by the USDOExpress contract. This might be an artefact from past versions.

Code corrected:

The event was removed.

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Missing Sanity Check
Informational Version 1

CS-USDOEX-008

Some setters are missing sanity checks. As all setters have access control, the caller needs to make
sure that no mistakes are done. Some sanity checks might still make sense to implement on smart
contract level. E.g., tx fees should not exceed _BPS_BASE.

7.2 Unconventional Naming
Informational Version 1

CS-USDOEX-011

Public fields of USDOExpress, namely _apy, _mintFeeRate, _redeemFeeRate, _increment,
_lastUpdateTS, _timeBuffer, _usdo, _usdc, _tbill, _treasury, _feeTo, _buidl,
_buidlRedemption, _buidlTreasury, and _firstDeposit, start with an underscore. It is a
common practice in Solidity development to prefix private fields with an underscore, but not public ones.
While there is no difference in terms of functionality, this could confuse users and developers interacting
with the contracts through its ABI.

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Bonus Multiplier Increments Do Not
Compound
Note Version 1

The system sets the bonus multiplier increment proportionally to the APY advertised in updateAPY(), in
such a way that users receive the same amount of interest each day of the year. If a user deposits on the
first day and redeems on the 365th day, their gains will reflect the advertised APY. However, since the
rewards distribution does not follow an exponential curve, the effective daily APY will be magnified on the
first day and decrease on every subsequent day. In particular, a user who deposits only during the first
half of the year will receive more than one that deposits on the second half. Furthermore, the effective
APY for the second year will be less than the advertised APY.

More specifically, given an APY value apy, with BASE = 1e18 and BPS_BASE = 1e4 the increment
will be increment = BASE * apy / BPS_BASE / 365. With a first-day principal of amount, the
daily yield will be yield = amount * increment / BASE, so the balance on day d will be
balance(d) = amount + d * yield. Since balance increases with d, the ratio
yield / balance(d) = increment / (base + d * increment), which is proportional to the
daily APY, decreases with d and tends towards 0 at infinity.

With apy = 400 and amount = 10000, a user who deposits on day 0 and withdraws on day 182 will
earn 199.45 USDO, whereas a user who deposits on day 183 and withdraws on day 365 will earn 195.53
USDO.

OpenEden Labs - USDOExpress - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Fee Can Be Avoided on Small Amounts
	5.2 Ineffective First Deposit Limit
	5.3 instantRedeem Can Transfer One Wei Less Than Requested

	6 Resolved Findings
	6.1 Missing Slippage Protection
	6.2 Incomplete or Incorrect Natspec
	6.3 Repeated Fees
	6.4 Code Fragmentation
	6.5 Non-indexed Events
	6.6 Unused Event

	7 Informational
	7.1 Missing Sanity Check
	7.2 Unconventional Naming

	8 Notes
	8.1 Bonus Multiplier Increments Do Not Compound

