

PUBLIC

Code Assessment

of the Modular Proxy Actions

Smart Contracts

September 14, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 13

7 Notes 24

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Oazo Apps Limited with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Modular Proxy
Actions according to Scope to support you in forming an opinion on their security risks.

The modular proxy actions allow execution of operations, a set of actions. An action contract performs a
single function. This flexibility makes it trivial to compose new operations from actions, especially as
actions may be added or upgraded.

The most critical subjects covered in our audit are functional correctness, security and whether the
implementation is suitable for the intended purpose.

While the modular implementation is suitable to reach the documented requirements it results in
increased transaction costs which may hinder adoption. The modularity is significantly more complicated
than a monolithic architecture. Extensive forked mainnet tests are recommended.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 9

• Code Corrected 8

• Specification Changed 1

Low -Severity Findings 14

• Code Corrected 11

• Specification Changed 1

• Risk Accepted 2

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Modular Proxy Actions repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V
Date Commit Hash Note

1
18 July 2022 755ee7c4aa3f27fb99c742addfe51c9303ffc415 Initial Version

2
10 August 2022 f18bd884079b3532e6a3567577dc216bba3ff9e

2
After Intermediate Report

3
30 August 2022 70cc810526353e08b75575b571271425c99b5

4b6
Updated Version

4
12 September
2022

5ab9875657263d75d96d75b33e444438e015c
b2d

Final Version

For the solidity smart contracts, the compiler version 0.8.5 was chosen. After the intermediate report
the compiler version was updated to 0.8.15.

The following files are in scope of this review:

• contracts/actions/aave:

• Borrow.sol

• Deposit.sol

• Withdraw.sol

• contracts/actions/maker:

• CdpAllow.sol

• Deposit.sol

• Generate.sol

• OpenVault.sol

• contracts/actions/common:

• Executable.sol

• PullToken.sol

• SendToken.sol

• SetApproval.sol

• TakeFlashloan.sol

• UseStore.sol

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

• contracts/core/ except ServiceRegistry.sol and McdView.sol. Earlier versions of these contracts
have been reviewed as part of another report.

2.1.1 Excluded from scope
All files not listed as in scope above, including:

• interfaces/*

• libs/* (excluding libs/DS/ProxyPermission.sol which is in scope)

• test/*

Notably actions maker/Payback.sol, maker/Withdraw.sol and all actions which were not present in the
initial commit of this review despite being part of the final commit listed have not been reviewed.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

The smart contracts of the modular proxy actions allow to execute a series of calls aggregating actions.
Individual actions may use return values or data stored by previous actions. A special kind of action
allows taking a flashloan and continuing execution of actions thereafter.

Actions are individual smart contracts. Their code is executed using Delegatecall in the current context of
the execution. All contract addresses, external and internal are queried from the ServiceRegistry. This
concept allows updating or adding new actions seamlessly.

Currently the following actions are implemented:

• PullToken: Pulls tokens of the specified asset from the given source address to the current
executing account (address(this()). Requires prior approval for the token transfer to succeed.

• SendToken: Sends an amount of tokens or Ether to the given address.

• SetApproval: Gives approval to transfer an amount of an asset to the given address.

• SwapOnOneInch: Calls the 1inch aggregator to execute a swap. Gives approval before and
ascertains that the balance after exceeds the minimum amount specified.

• TakeFlashloan: Takes a flashloan. If dsProxyFlashloan is specified, gives permission to the
OperationRunner to call Execute(address,bytes) on the DsProxy. This permission is revoked
afterwards OperationExecutor implements the required onFlashloan() interface.

For Maker:

Interactions happen on vaults managed by the CdpManager:

• OpenVault: Opens a new vault. The ilk type is defined by the specified join adapter. Pushes the id
to the OperationStorage.

• CdpAllow: Give allowance for a vault in the CdpManager to the specified address. The CdpID may
be retrieved from OperationStorage.

• Deposit: Deposit collateral (token/Ether) from the current executing account as gem, immediately
lock it as ink. The CdpID may be retrieved from OperationStorage.

• Generate: Makes the specified amount of DAI tokens available. If required, generates more debt
(art) in the urn. The CdpID may be retrieved from OperationStorage. The DAI amount is pushed to
the OperationStorage.

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com/wp-content/uploads/2022/05/20220330-ChainSecurity_Oazo_Apps_Limited_Automation_Audit_Report.pdf
https://github.com/makerdao/dss-cdp-manager
https://chainsecurity.com

For Aave v2:

• Deposit: Deposits the specified amount into the lending pool. Receives aTokens in exchange.
Pushes the amount to OperationStorage.

• Withdraw: Withdraws the specified amount by redeeming aTokens.

• Borrow: First approves the delegation before borrowing ETH. The receiver must be able to receive
Ether. Currently the OperationExecutor does not support this.

Actions may be combined as desired in so-called operations. The following example demonstrates this
capability:

IncreaseMultipleWithFl, which in the provided test case consists of the following actions: OpenVault,
PullToken, Deposit, TakeAFlashloan, Swap, Deposit, Generate, sendToken.

The setup allows support of arbitrary DeFi systems, extending the capabilities by adding new actions or
by crafting new operations by aggregating actions is intended to be simple.

OperationExecutor

The main contract is the OperationExecutor. It features the following entry points:

• executeOp(): The user will execute this function through his DsProxy as delegatecall.
Initializes/resets OperationStorage.

• aggregate(): Executes calls, executes the code of the individual actions as delegatecall.
Although the function is public, it should not be called directly.

• onFlashloan(): Implements the interface for the callback of the ERC3156 compliant flash loan
provider. If the flag dsflashloan is true, continues execution of the following action via the
DsProxy, otherwise calls aggregate() directly.

The AutomationBot may uses the OperationExecutor. It executes executeOp() via Delegatecall
similarly to the DsProxy. For Flashloans, dsProxyFlashloan will have to be set to false. The callback
to onFlashLoan will the execute the following actions directly in the context of OperationExecutor. In
this case the AutomationBot will have to give allowance to the OperationExecutor to operate on this
CdpID in the CdpManager first. It must be made sure the no funds remain in / controlled by the
OperationExecutor and that the allowance on the CdpID is revoked again upon completion of the
execution.

OperationsStorage

Used as temporary storage, assumed to be empty at the beginning of every execution. Actions can push
to and read from an array of bytes32. Function execute() specified in Interface Executable takes a
paramsMap array as argument. Non zero values mean replacing this argument by the value at position
x-1 in the operations storage array.

Additionally, implements the logic to verify actions. Verifying actions checks whether the calls passed to
executeOp matches the call sequence stored for this operation in the OperationRegistry. No check is
done when OperationRegistry returns an empty set of calls for a given operation name.

OperationsRegistry

This contract keeps a mapping of operations identified by a string. An operation is a array of bytes32.

Version 1The mapping can be updated (currently in without access control) and queried.

2.3 Trust Model & Roles
Front End: Fully trusted to craft a correct set of calls including proper calldata.

Oasis: Fully trusted to operate the OperationsRegistry correctly and to add genuine and correct actions
executing as documented only.

AutomationBot: Fully trusted.

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

User: Untrusted, any user may interact with the contracts through the context of their own DsProxy. Each
user is responsible for the correctness of the input parameters passed to the function. The user may use
the official frontend and trust it to aggregate all values correctly. That also includes trusting the third-party
APIs used by the Oazo front-end (e.g., 1inch API).

Users may also interact with the operation executor directly. This is not an intended use case. As the
contract is stateless outside of operations, this should not have an impact.

CdpManager: Trusted, the CdpManager contract of Maker.

Oazo: Owner of the smart contracts. Operates the frontend used by most users to interact with the smart
contract. The frontend aggregates all values for the operation of the smart contract.

All tokens are assumed to be ERC20 compliant without special behavior. No supported token can have
more than 18 decimals.

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Risk AcceptedFeeTier of Swap

• Risk AcceptedMissing NatSpec

5.1 FeeTier of Swap
Design Low Version 1 Risk Accepted

The Swap contract allows authorized callers to add multiple fee tiers. These tiers are not documented.
Any fee added as fee tier is valid. All calls to swapTokens() may simply specify the lowest allowed fee,
higher fee tiers can just be avoided by the users.

Risk accepted:

Oazo Apps Limited states:

Added a note at the bottom of the Operation Registry section. We accept the risk
that the user might change the fee from the front-end.

5.2 Missing NatSpec
Design Low Version 1 Risk Accepted

The code is not documented in the NatSpec format. It is recommended to fully annotate all public
interfaces. This should help both end users and developers interact with the contracts.

Risk accepted:

To be added later.

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedOperationStorage Can Be Polluted

• Code CorrectedOperationsRegistry: No Access Control

Medium -Severity Findings 9

• Specification ChangedImplementation of UseStore Inconsistent With Documentation

• Code CorrectedIneffective receiveAtLeast Check After Swap

• Code CorrectedMaker Deposit Action Uses Full Balance

• Code CorrectedNo Access Control on onFlashLoan

• Code CorrectedOperationRegistry: No Entry, No Checks

• Code CorrectedPayable Action.execute()

• Code CorrectedReentrancy Into executeOp()

• Code CorrectedVisibility of aggregate Function

• Code CorrectedsendToken: Transfers msg.value Instead of send.amount

Low -Severity Findings 12

• Code CorrectedAction Events Not Emitted

• Code CorrectedActions: Inconsistent Destination of Tokens

• Code CorrectedDAI Address Could Be Constant

• Code CorrectedOperationStorage: Unused owner Variable

• Code CorrectedOperationsRegistry: No Events Emitted on State Change

• Code CorrectedOutdated Compiler Version

• Code CorrectedReceiver of Flashloan

• Code CorrectedSanity Check in on Flashloan

• Code CorrectedSwap Slippage Saved Event Order

• Specification ChangedSwap.sol: ReceiveAtLeast Does Not Take Into Account the Fee

• Code CorrectedUnused Return Value of Aave Withdraw

• Code CorrectedonFlashLoan() Ignoring Fees

6.1 OperationStorage Can Be Polluted
Security High Version 1 Code Corrected

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

OperationStorage is designed to be used as a temporary store of actions and return values for the
execution of an operation. Therefore, the variables it contains are deleted at the end of every operation
execution. However, as it lacks access control, and since there is no mechanism to ensure that
OperationStorage is empty before an execution, action and return values could be maliciously or
erroneously introduced.

In particular, an attacker could store spurious return values with the push function. In the next execution
actions may retrieve these values instead of the intended ones which are appended at the end of the
array.

Finally, it should be considered that the execution of actions may reach untrusted code (integrations,
tokens). Functions push and finalize may be accessed unexpectedly even within the execution of an
action. This similarly applies to functions setOperationActions and verifyAction were it is not
obvious whether this can have a negative impact.

Code partially corrected:

OperationStorage is now cleared at the beginning of OperationExecutor.executeOp(), this
ensures that the execution of operation does not start with a polluted OperationStorage which mitigates
the main issue.

Within execution of actions untrusted code may be reached (integrations, tokens), in theory they may
execute state changing functions of the OperationStorage: push(), verifyAction(),
clearStorageAfter().

Code corrected:

OperationStorage contract now stores the return values from actions in a mapping where values are
assigned to the address that pushed them.

mapping(address => bytes32[]) public returnValues;

function push(bytes32 value) external {
...
returnValues[msg.sender].push(value);
}

function at(uint256 index, address who) external view returns (bytes32) {
return returnValues[who][index];
}

When writing to the OperationStorage, an address can only write in the array associated to this address.
When reading from the OperationStorage, the caller must specify which value from which address he
wants to read. This prevents untrusted code to tamper with the return values during an operation.

In case of a flashloan action executed from the AutomationBot (more precicesly a Flashloan action with
flag dsProxyFlashloan set to false) execution continues in the context of the OperationExecutor.
The original initiator will be pushed to the OperationStorage, when called from the OperationExecutor
functions push, at and len will use this address instead of msg.sender.

6.2 OperationsRegistry: No Access Control
Security High Version 1 Code Corrected

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

The purpose of the OperationsRegistry contract is to specify the set of actions identified by a
string name. As this contract lacks access control, anyone could modify the mapping between
operation and actions. This can be done through the addOperation function, which allows not only
adding a new operation but also modifying any existing one.

As a consequence, an attacker could modify the entries for existing operations. This could prevent the
corresponding verifications from succeeding, and thus compromise the availability of the system. An
attacker may as well delete the actions stored for an operation resulting in no verification on the calls
being done in OperationExecutor.aggregate().

The extensive documentation lacks a description of the OperationRegistry.

Code corrected:

Access control has been added: There is now an owner, only this owner can add/update operations to
the OperationRegistry.

6.3 Implementation of UseStore Inconsistent With
Documentation
Correctness Medium Version 1 Specification Changed

The implementation of the read function in UseStore is not consistent with the provided documentation.
The function shown in the PDF does not subtract 1. In general, mixing 0-based and 1-based indexing can
be a source of errors, so this should be well documented.

Specification changed:

The excerpt of UseStore.read() shown in the documentation has been updated and is now in line
with the actual implementation. Furthermore the params mapping section of the documentation has been
extended.

6.4 Ineffective receiveAtLeast Check After
Swap
Correctness Medium Version 1 Code Corrected

To verify that the swap executed correctly, SwapOnOneInch.execute() checks that the balance is at
least what the user wanted to receive:

require(balance >= swap.receiveAtLeast, "Exchange / Received less");

The check doesn't take into account that the token balance before the swap may have been non-zero
already. Hence the check may pass despite the swap resulted in less than receiveAtLeast tokens.
This code is intended to be executed as Delegatecall in the context of the users DsProxy, a non-zero
balance of the token out before the swap is not an unlikely scenario.

A similar check is done in Swap.sol. This contract however is used differently: It's a helper contract
which is not supposed to hold any token balances in between calls, furthermore it forwards all token
balance. Hence in the Swap contract; from a caller's perspective the check ensures receiveAtLeast.

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Code corrected:

File SwapOnOneInch.sol no longer exists in the updated codebase.

6.5 Maker Deposit Action Uses Full Balance
Correctness Medium Version 1 Code Corrected

While the DepositData struct contains an amount parameter, the maker/Deposit action always
uses the full available balance. This behavior is not documented and may be unexpected for users who
specify an inferior amount.

Code partially corrected:

The code of action maker/Deposit now deposits the amount specified. However the action still exchanges
all Ether balance to WETH. Is this intended?

Code corrected:

The code wrapping ETH has been removed. This fixes the remaining issue as the user's Ether will not be
exchanged to WETH. Note that the user needs to have WETH available instead.

6.6 No Access Control on onFlashLoan
Design Medium Version 1 Code Corrected

The onFlashLoan function of the OperationExecutor contract is only intended to be called by the
Flashloan provider. As it has no access control it can be called by anyone. The contract will then give
approval to the registered lender for amount of asset. While this is not necessarily a problem, it breaks
the normal pattern that the OperationExecutor is "stateless" in between calls, in the sense that he has
given an approval to transfer tokens to a third party.

Code corrected:

Access control has been added to OperationExecutor.onFlashLoan(). The function can only be
called by the trusted lender returned by the Registry:

address lender = registry.getRegisteredService(FLASH_MINT_MODULE);
require(msg.sender == lender, "Untrusted flashloan lender");

6.7 OperationRegistry: No Entry, No Checks
Design Medium Version 1 Code Corrected

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

When there is no operation stored for a name, getOperation() returns an empty array and
subsequently nothing is checked. Shouldn’t this case be handled explicitly to avoid not checking
correctness by accident?

An operation name is a string. This allows displaying the operation name in a human readable way.
However, this can be dangerous as strings support the Unicode charset and many lookalike characters of
different alphabets exist in this charset. Hence users might be tricked.

For more insights into lookalike characters, please refer to:
https://util.unicode.org/UnicodeJsps/confusables.jsp?a=IncreaseMultipleWithFl

Code corrected:

getOperation() of OperationRegistry now reverts on non-existing operations instead of returning an
empty array (which results in skipping checks). Custom operation with empty actions have to be explicitly
added to the OperationRegistry.

6.8 Payable Action.execute()
Design Medium Version 1 Code Corrected

The interface Executable specifies:

function execute(bytes calldata data, uint8[] memory paramsMap) external payable;

The code of actions is executed as delegatecall from within OperationExecutor.aggregate().
Delegatecall preserves msg.sender and msg.value. The aggregate function of the OperationExecutor
is not payable, hence msg.value will always be zero. Calls to executeOp() / aggregate() with
non-zero msg.value will revert, hence why is the execute function of actions supposed to be payable?

Note that actions may still work with Ether despite not receiving calls with non-zero msg.value: Ether
can be received by the DsProxies fallback function / the DsProxy can already have an Ether balance
which can be transferred onwards.

Code corrected:

OperationExecutor.executeOp() is supposed to handle Ether transactions, hence it has been
changed to payable.

6.9 Reentrancy Into executeOp()
Design Medium Version 1 Code Corrected

Function executeOp() can be reentered. At this time OperationStorage may be in an inconsistent state,
amongst others (actions), returnValues may contain values.

While this is not an intended use case, technically the possibility exists. To reduce risks, this may be
restricted especially as the execution reaches untrusted third-party code (integrations, token contracts).

Furthermore note that after a takeAFlashloan action, the OperationExecutor temporarily has the right
to call execute() on the DsProxy of the user. OperationExecutor.onFlashloan() uses this to
execute aggregate() on the initiator.

Currently this is not exploitable due to:

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 17

https://util.unicode.org/UnicodeJsps/confusables.jsp?a=IncreaseMultipleWithFl
https://chainsecurity.com

• The DAI Flash Mint Module features a reentrancy protection, hence no second flashloan is currently
possible. Note that this is no requirement for an ERC3165 compliant flashloan provider, an arbitrary
flashloan proivder may not, e.g., the reference implementation of ERC3165 does not feature such a
protection.

• ERC3165 requires the initiator being the msg.sender initiating the flashloan. It's not possible
for an attacker to get the initiator to be the DsProxy where the OperationExecutor holds the privilege.

Version 1In the reentrancy is also possible with aggregate(), please consider issue Visibility of
aggregate function.

Code corrected:

The updated code prevents reentrancy into executeOp() by leveraging the OperationStorage contract:
The reentrancy lock is set in the OperationStorage at the beginning of the execution and released after
the operation.

Releasing can only be done by the account which set the reentrancy lock; releasing the lock sets the
stored account to 0x0. This ensures that the original call to executeOp() reverts in case of reentrancy.

6.10 Visibility of aggregate Function
Design Medium Version 1 Code Corrected

Although the main entry point into the OperationExecutor contract is the executeOp function, the
aggregate function is also public. In the current implementation this is required for the flashloan
functionality to continue execution of the subsequent calls.

This function, which is not intended to be called directly, may become a source of confusion/errors. In
particular, if called directly it will bypass the verification that the right actions are executed for a given
operation (as specified by OperationsRegistry). Furthermore operationStorage.finalize()
will not be executed.

Access to this function might be restricted. This function may be internal, with an exposed external
function for onFlashloan() which accepts calls by the OperationExecutor only.

Code corrected:

The visibility of the aggregate function has been changed to internal. The callback from
onFlashLoan to the DsProxy is executed via a new callbackAggregate function which is public but
restricts execution only by OperationExecutor itself.

6.11 sendToken: Transfers msg.value Instead of
send.amount
Correctness Medium Version 1 Code Corrected

In case of Ether transfer, action sendToken transfers msg.value instead of the amount specified in
sendTokenData.

Note that despite the payable modifier of function execute, (delegate)calls from the OperationExecutor
to this action cannot have a non-zero msg.value since OperationExecutor.aggregate() is not

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

payable and would revert on non-zero msg.value. Neither does executeOp(). Hence sendToken will
never enter the msg.value > 0 branch in the current setup.

Code corrected:

In case of Ether transfer, action sendToken now transfers the amount specified in sendTokenData.
Furthermore OperationExecutor.executeOp() now features the payable modifier and accepts
calls with Ether. Since function aggregate has been made internal calls with non-zero msg.value
are now supported.

6.12 Action Events Not Emitted
Design Low Version 1 Code Corrected

The Executable interface defines an Action event that only some actions emit. The following actions
do not emit an event at the end of their execution:

• common/PullToken

• common/SendToken

• common/SetApproval

• common/SwapOnOneInch

• maker/CdpAllow

Code corrected:

All actions now emit the Action event.

6.13 Actions: Inconsistent Destination of Tokens
Design Low Version 1 Code Corrected

In maker/Generate the destination address data.to can be specified by the caller, but this is not
possible in aave/withdraw. There may be a general pattern actions should adhere to for consistency.

Code corrected:

AAVE withdrawal & borrow actions now accept the destination of tokens, consistent with the Maker
actions.

6.14 DAI Address Could Be Constant
Design Low Version 1 Code Corrected

In TakeFlashoan, the DAI address may be hardcoded instead of being queried from the registry.

Code corrected:

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

The DAI address is now an immutable set upon deployment.

6.15 OperationStorage: Unused owner Variable
Design Low Version 1 Code Corrected

The OperationStorage contract defines an owner variable that is set to msg.sender in the constructor,
but is never used thereafter.

Code corrected:

The unused owner variable has been removed.

6.16 OperationsRegistry: No Events Emitted on
State Change
Design Low Version 1 Code Corrected

No events are defined or emitted in the OperationsRegistry contract. In general, it is recommended to
emit an event on every state change. This allows to identify changes easily.

Code corrected:

Function addOperation now emits event OperationAdded.

6.17 Outdated Compiler Version
Design Low Version 1 Code Corrected

The project uses an outdated version of the Solidity compiler.

pragma solidity ^0.8.5;

Known bugs in version 0.8.5 are:

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1753

More information about these bugs can be found here: https://docs.soliditylang.org/en/latest/bugs.html

At the time of writing the most recent Solidity release is version 0.8.16.

Code corrected:

It was decided to update to compiler version 0.8.15. Client states:

Updated compiler version to 0.8.15. There was a new version
after this that came just after we updated, but that did not have changes that were
relevant to our scope.

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 20

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1753
https://docs.soliditylang.org/en/latest/bugs.html
https://chainsecurity.com

6.18 Receiver of Flashloan
Design Low Version 1 Code Corrected

From the documentation we understood that the receiver of the flashloan and the callback would always
be the OperationExecutor contract. For action TakeFlashloan however, the caller can specify the
receiver using parameter flData.borrower. What's the intention here?

Code corrected:

The address of the OperationExecutor is now fetched from the registry and set as borrower.

6.19 Sanity Check in on Flashloan
Design Low Version 1 Code Corrected

The intention behind following check in OperationExecutor.onFlashloan() is unclear:

require(amount == flData.amount, "loan-inconsistency");

While checking the actual balance has its limitations (e.g. not clear if token balance originates from the
flashloan or whether it has been there before already), why is the sanity check on the specified amounts
being done but not on the actual balance ?

After the intermediate report, the check was changed to:

require(IERC20(asset).balanceOf(address(this)) == flData.amount, "Flashloan inconsistency");

This is dangerous: Any additional balance of this token held by the OperationExecutor causes a revert of
this function. It should be clarified what should be checked and why this is checked.

Initially the code checked whether the parameter amount the caller (the flashloan provider) passed
matches the expected amount. We questioned what's the intention behind this check and highlighted that
it doesn't ascertain anything on the actual balance. Checking if at least the balance expected is present
might be an option, but it must be clear that this doesn't say how much tokens have been transferred
from the flashloan provider (as the OperationExecutor may have had a non-zero token balance before as
anyone could just transfer tokens).

Code corrected:

The check was changed to:

require(IERC20(asset).balanceOf(address(this)) >= flData.amount, "Flashloan inconsistency");

This does not allow to determine whether the token balance originates from the flashloan or if it was
already in the contract, but now an additional balance of this token held by the OperationExecutor will not
cause a revert.

Client adds:

In the event that the lender is compromised and supplies a lesser amount then the
Operation execution will fail unless another party has accidentally sent balance to

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

the Operation Executor at some earlier time. The only impacted party would be the person
who accidentally sent tokens to the Operation Executor, whose funds are lost anyway.

6.20 Swap Slippage Saved Event Order
Design Low Version 1 Code Corrected

Swap._swap() emits the SlippageSaved event after a swap:

balance = IERC20(toAsset).balanceOf(address(this));
emit SlippageSaved(receiveAtLeast, balance);
if (balance < receiveAtLeast) {
 revert ReceivedLess(receiveAtLeast, balance);
}

While after a revert occurs all state changes including any event logs are thrown away, it might be more
appropriate to only emit the event after it has been ascertained that more than receiveAtLeast have
been received.

Code corrected:

The event is now emitted after the check.

6.21 Swap.sol: ReceiveAtLeast Does Not Take
Into Account the Fee
Correctness Low Version 1 Specification Changed

While the code of Swap._swap() ensures that after the call to the 1inchAggregateor the balance of the
SwapContract is more than receiveAtLeast what is sent onwards to the user might be less as the fee
may be deducted only afterwards. The expected behavior is not specified.

Specification changed:

The documentation has been updated and now reads:

receiveAtLeast - an amount that needs to be returned from swap, it does not consider fee,
in case fee is collected from outgoing token the resulting amount might be less than receiveAtLeast.
Sole purpose of ReceiveAtLeast is to prevent high slippage on exchange.

6.22 Unused Return Value of Aave Withdraw
Design Low Version 1 Code Corrected

In the Aave withdraw action, the return value of withdraw is ignored:

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

ILendingPool(registry.getRegisteredService(AAVE_LENDING_POOL)).withdraw(
 withdraw.asset,
 withdraw.amount,
 address(this)
);

This return value represents the actual amount that was withdrawn and might be different from the
amount given as argument.

Specifically, if type(uint256).max is given as argument amount, then the total available balance is
withdrawn and returned.

Code corrected:

The withdrawn value is now stored and can be used by subsequent actions.

Oazo Apps Limited replied:

We agreed that all Actions should push a
return value to the OperationStorage even if that value is zero (Code change hasn’t
occurred yet). This makes paramsMapping simpler and more predictable.

6.23 onFlashLoan() Ignoring Fees
Correctness Low Version 1 Code Corrected

The documentation states that the OperationExecutor implements the IERC3156 standard. The
implementation of OperationsExecutor.onFlashloan() however does not support fees. DAI flash
mint currently takes no fee hence with the intended flashloan provider the code currently works however
the current code doesn't fully implement/support the ERC3156 standard.

Code corrected:

onFlashloan() now supports fees.

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 DsProxy With Unsupported Authority
Note Version 1

A user is free to set the authority contract of his own DSProxy. Depending on the authority contract
set, which may be arbitrary, ProxyPermission.givePermission() may not be successful. The
documentation only explains the expected case were everything works, it does not mention this
restriction.

Oazo Apps Limited - Modular Proxy Actions - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 FeeTier of Swap
	5.2 Missing NatSpec

	6 Resolved Findings
	6.1 OperationStorage Can Be Polluted
	6.2 OperationsRegistry: No Access Control
	6.3 Implementation of UseStore Inconsistent With Documentation
	6.4 Ineffective receiveAtLeast Check After Swap
	6.5 Maker Deposit Action Uses Full Balance
	6.6 No Access Control on onFlashLoan
	6.7 OperationRegistry: No Entry, No Checks
	6.8 Payable Action.execute()
	6.9 Reentrancy Into executeOp()
	6.10 Visibility of aggregate Function
	6.11 sendToken: Transfers msg.value Instead of send.amount
	6.12 Action Events Not Emitted
	6.13 Actions: Inconsistent Destination of Tokens
	6.14 DAI Address Could Be Constant
	6.15 OperationStorage: Unused owner Variable
	6.16 OperationsRegistry: No Events Emitted on State Change
	6.17 Outdated Compiler Version
	6.18 Receiver of Flashloan
	6.19 Sanity Check in on Flashloan
	6.20 Swap Slippage Saved Event Order
	6.21 Swap.sol: ReceiveAtLeast Does Not Take Into Account the Fee
	6.22 Unused Return Value of Aave Withdraw
	6.23 onFlashLoan() Ignoring Fees

	7 Notes
	7.1 DsProxy With Unsupported Authority

