

PUBLIC

Code Assessment

of the Automation Consultancy

Smart Contracts

March 30, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Chris,

Thank you for trusting us to help Oazo Apps Limited with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Automation
Consultancy according to Scope to support you in forming an opinion on their security risks.

Oazo Apps Limited implements an automated management solution for Maker's collateralized debt
positions. Users manage command triggers which are executed by bots. In the current implementation,
users can automatically close a vault position should the collateralization go below a certain threshold. All
in all, no high severity issues were uncovered. All the issues have been addressed.

The most critical subjects covered in our audit are functional correctness and access control. Security
regarding all the aforementioned subjects is high.

The general subjects covered are upgradability, unit testing and gas efficiency. Security regarding all the
aforementioned subjects is high. The specification provided was comprehensive.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 9

• Code Corrected 8

• Specification Changed 1

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Automation Consultancy repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 7 March 2022 db2fcc8856b6204fd9c069a149120285bb7e9d23 Initial Version

2 28 March 2022 6dbc5a77d5e7e811fc03880163d94948c8f4b0dd Version with fixes

For the solidity smart contracts, the compiler version 0.8.13 was chosen. The contracts in scope are all
the contracts under the contracts directory excluding the tests directory.

2.1.1 Excluded from scope
All the contracts not mentioned in scope. Specifically, the system interacts with the Maker core system.
All the interactions are assumed to work as intented. Moreover, the system under review delegates calls
to the multiply-proxy-action. This is also assumed to work as intended. Finally, parts of the
implementation are also part of the multiply-proxy-action. These also considered to be safe and work as
intended.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Oazo Apps Limited offers an implementation of automated management for the Oasis.app. Users can
perform a set of automated actions to manage their positions using a decentralized keeper network. The
Oasis system is set to interact with the Maker ecosystem. Thus, a user adds a trigger for a specific action
(also known as command) to a specific collateralized debt position (CDP). If at any point the conditions of
the action are met, an authorized keeper (also known as caller) executes the command. In the current
implementation, there is only one command available. That is, the automated closing of a position should
the collateralization ratio drops below a threshold. The current implementation only supports vaults that
have been created by the CdpManager.

The system consists of the following contracts:

ServiceRegistry

This contract serves as a single source of truth for the whole implementation. It maps the name of each
service to the corresponding address of the contract that implements it. ServiceRegistry is controlled
by its owner. The owner can transfer the ownership, change the required delay (explained later), add and
remove trusted addresses, add, update and remove smart contracts and cancel pending actions. In order
to counter a possible key compromise, ServiceRegistry implements a delay mechanism. To perform

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

an action, the owner must call a function of the contract twice, one to commit to the action and one to
actually execute it given that enough time has elapsed. For canceling a commited action or removing an
address from the registry no delay is required.

AutomationExecutor

This is the contract an authorized caller should call in order to execute a command. A caller is whitelisted
by the owner of this contract. Apart from that, a caller can swap the tokens this contract holds from or to
DAI by calling swap. The main purpose of this functionality is to exchange DAI, which is drawn from the
vaults to compensate for the caller's gas, into ETH which is used to bribe the miners. The exchange will
happen through the 1inch aggregator. The owner of the contract can set the exchange contract, add and
remove callers from the whitelist, unwrap WETH the contract holds to ETH, and withdraw to their address
tokens that remain in the contract including native ETH (withdraw). When a caller executes a call, they
are allowed to send money to bribe the miner. Moreover, the callers are partially reimbursed for the
transaction by sending themselves some of the ETH the contract holds. Note that they are reimbursed
only for the actual execution of the command and the gas costs for the miner's bribe. Any user can
deposit ETH directly to the contract. The system assumes there is always enough money stored in the
contract to cover for bribe expenses even in periods of high congestion in the network.

AutomationBot

This is the contract with which the end-users, owners of a CDP, should interact. The contract is a
delegate for the DSProxy of each user, thus, some of its external functions are executed in the context of
the Proxy. The end-user calls addTrigger which then calls addRecord and adds a hash of all the
details of the trigger together with the unique id of the CDP. Moreover, by calling addTrigger a user
approves the AutomationBot contract to execute actions (commands in this particular case) on behalf
of them on their CDPs. A user can replace one trigger by adding another one, remove a trigger, directly
add or remove a record, and remove the approval to the automation bot contract. Note that addTrigger
is executed in the context of the DSProxy while addRecord is executed in the context of the
AutomationBot after querying its address from the ServiceRegistry. This means that there could be a
case where the call a different version of the contract is used as a delegate and a different one is
returned by the registry. Finally AutomationBot exposes the execute function. This is the function the
AutomationExecutor should call in order to execute an automated action/command. execute will do
the following steps:

• The data the caller wants to use to execute the command is sanitized.

• Some extra debt in DAI from the CDP is withdrawn in order to cover the gas costs for the caller.
Note that there is a minimum amount of debt a CDP can create. This means that if the debt
withdrawn is under the minimum allowed the transaction will fail.

• A check is performed of whether the conditions for the command to execute are met.

• The command is executed.

• The results of the command are sanitized.

Commands

The logic of the automated actions is implemented in the command contracts. Each command
implements a different action. A command exposes the following interface:

• isExecutionLegal: Checks whether the precondition of the execution of the command
actually holds.

• execute: Executes the command.

• isExecutionCorrect: Checks whether the postcondition of the execution of the command
actually holds.

CloseCommand:

Implements the Command interface.

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• isExecutionLegal: Checks whether the collateralization ratio is below a threshold. To do so
it evaluates both the debt and the collateral in DAI using the next price of the OSM. Note that
when the collateralization ratio is calculated extra debt might have been created to reimburse
the caller.

• execute: closes the position either by closing the vault. It then either sends the collateral to the
user or trades the collateral to DAI and sends it to the user. The action is delegated to the
Multiply Proxy Actions (MPA) contract, and, thus, executed within the context of the command.

• isExecutionCorrect: Checks whether the CDP has been closed, i.e., both collateral (ink)
and debt (art) are 0.

McdView

This a utility contract, exposing view functionality useful to other contracts of the system. It exposes the
following functions:

• getVaultInfo: Queries the collateral and the debt for a system.

• getPrice: Uses the OSM to query the current price of a particular collateral token. The price is
given in 18 decimals.

• getNextPrice: Uses the OSM to query the next price of a particular collateral token. To query
the price on-chain, one should be whitelisted by the owner of this contract. The next price is
given in 18 decimals.

• getRatio: Returns the collateralization ratio for a particular CDP.

• approve: allows the owner of the contract to whitelist an address to be able to query the next
price on-chain.

McdUtils

This is another utility contract. The most important function it implements is drawDebt which draws more
debt from a CDP, if needed, in order to cover the caller's gas expenses.

2.2.1 Trust Model
The owners of the contracts are trusted entities which are expected to only make non-harmful changes to
the states of the contracts they own. The callers are also trusted entities and they should not try to
withdraw more debt to cover their gas fees than they actually need or make swaps that are unfavourable
to the system.

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code CorrectedMissing ETH Unwrapping

Low -Severity Findings 9

• Code CorrectedAccidental Approval Revocation

• Code CorrectedDead Code

• Code CorrectedMissing Sanity Checks

• Code CorrectedOutdated Compiler

• Code CorrectedRedundant Authorization

• Code CorrectedRounding Errors

• Specification ChangedSpecification Discrepancies

• Code CorrectedUse Safe Calls

• Code CorrectedZero Debt Vaults

6.1 Missing ETH Unwrapping
Design Medium Version 1 Code Corrected

The AutomationExecutor allows its owner to withdraw tokens or native ETH. As the Oazo team
informed us, the main purpose of this function is to withdraw ETH converted from DAI. The exchange
contract is not able to handle native ETH but needs its wrapped version. Hence there is a need for
unwrapping functionality to be able to use native ETH. However, such functionality is not implemented.

Code corrected:

unwrapWETH has been implemented. It can be called only by the owner of the AutomationExecutor
contract and calls weth.withdraw function.

6.2 Accidental Approval Revocation
Design Low Version 1 Code Corrected

On removeTrigger a user can accidentally set the removeAllowance variable to true. If this happens
the approval to the automation bot is revoked. A user can only re-approve the automation bot indirectly
by adding another trigger since there is no function to do this directly. Another option for the user is to use
the revocation manager.

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Code corrected

The functionality to grant approval to the automation bot has been added.

6.3 Dead Code
Design Low Version 1 Code Corrected

In ServiceRegistry, the functions addTrustedAddress, removeTrustedAddress and
isTrusted manipulate the trustedAddresses mapping. However, this mapping is not used by the
rest of the implementation. Moreover, McdUtils.convertTo18 is also never used.

Code corrected:

The dead code has been removed.

6.4 Missing Sanity Checks
Design Low Version 1 Code Corrected

There are multiple points in the contract where sanity checks are missing. The absence of such checks
can allow users to assign invalid values to variables:

1. AutomationBot.addRecord does not sanitize triggerType and triggerData. Also,
triggerData includes slLevel which can have invalid values that cause reverts inside
isExecutionLegal. Should the variables store invalid data the corresponding trigger will not
be able to execute at a later point in time.

2. AutomationExecutor.(transferOwnership, setExchange) does not sanitize the
input values. Notice that there is no delayed execution implemented for this contract.

3. ServiceRegistry.constructor sanitizes the required delay by requiring it to be less than
the maximum integer. However, any value close to the maximum integer would be valid and
problematic for the system.

Code corrected:

1. AutomationBot.addRecord validates the triggerData by using
commandAddress.isTriggerDataValid.

2. AutomationExecutor now sanitizes the data.

3. The maximum required delay is now set to 30 days.

6.5 Outdated Compiler
Design Low Version 1 Code Corrected

The system is compiled using solidity version 0.8.4. However, more recent versions are available. At
the time of writing 0.8.13 is the most recent version.

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Code corrected:

The compiler version 0.8.13 is now used.

6.6 Redundant Authorization
Design Low Version 1 Code Corrected

In McdUtils.drawDebt, the authorization of the AutomationBot to daiJoin is given every time the call
is made since the following line is always executed:

IVat(vat).hope(daiJoin);

We noticed that the implementation is quite similar to https://github.com/OasisDEX/multiply-proxy-action
s/blob/develop/contracts/multiply/MultiplyProxyActions.sol#L205. However, there is always a check if the
authorization is needed.

Code corrected:

The current implementation only grants authorization to daiJoin, if it has not been given before.

6.7 Rounding Errors
Design Low Version 1 Code Corrected

According to the specification (https://github.com/dapphub/ds-math), DSMath.wmul should be used with
two Wads and DSMath.rdiv should be used with two Rays. However, this is not true in
McdView.getRatio where the following snippet exists:

uint256 ratio = rdiv(wmul(collateral, price), debt);

Here, wmul is applied on collateral which is a wad and price which is a 9-decimal number. The
result will also be a 9-decimals number. Later, rdiv is applied on this 9-decimal number and debt which
is a wad. The result is a Wad instead of a Ray. Wrong usage of DSMath leads to rounding errors. This
means that a vault is rendered closable at different levels than the users have actually set.

Code corrected:

In the current implementation price is a Wad and the problematic snippet has been rewritten to:

return wdiv(wmul(collateral, price), debt);

6.8 Specification Discrepancies
Design Low Version 1 Specification Changed

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 13

https://github.com/OasisDEX/multiply-proxy-actions/blob/develop/contracts/multiply/MultiplyProxyActions.sol#L205
https://github.com/OasisDEX/multiply-proxy-actions/blob/develop/contracts/multiply/MultiplyProxyActions.sol#L205
https://github.com/dapphub/ds-math
https://chainsecurity.com

There are some discrepancies between the provided specification and the actual implementation. We
follow the enumeration provided in the documentation.

System Requirements & Assumptions:

ServiceRegistry:

1. The addresses are not trusted, in the sense that the trustedAddresses mapping is not used. 4.
removeTrustedAddress also does not use the delayedExecution modifier.

AutomationBot:

5. If a user executes addRecord directly to add a trigger then cdpAllow will not be called. 13. The
permission might have been revoked by the user.

Smart Contract Architecture:

AutomationExecutor:

• swapTokenForDai is documented but does not exist.

• swap is implemented but not documented.

Specification changed:

All the discrepancies in the specification have been fixed.

6.9 Use Safe Calls
Correctness Low Version 1 Code Corrected

AutomationExecutor exposes swap and withdraw functions. These functions, interact with ERC20
contracts by calling ERC20.approve and ERC20.transfer. However, these calls will fail, should a
user try to interact with a USDT contract. For example, a user sends accidentally USDT to the
AutomationExecutor, the amount will remain stuck there since any withdrawal by the owner will fail.

Code corrected:

SafeERC20 library is now used. ERC20.approve has been replaced with
SafeERC20.safeIncreaseAllowance and ERC20.transfer has been replaced with
SafeERC20.safeTransfer.

6.10 Zero Debt Vaults
Design Low Version 1 Code Corrected

McdUtils.getRatio returns 0 when the debt of a vault is 0. This means than
CloseCommand.isExecutionLegal will return true, and thus, render the vault closable. This means
that a caller might try to close the a zero debt vault. When the AutomationExecutor calls
AutomationBot.execute, the latter will try to withdraw extra debt (drawDaiFromVault) to cover its
gas costs. However, the Maker system only allows users to withdraw debt that exceeds a specific limit
(dust). Since the amount of extra debt withdrawn to cover the caller is small compared to the dust
amount, the whole transaction will revert.

Code corrected:

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

An execution of the CloseCommand is legal as long as the collateralization ratio is not 0.

Oazo Apps Limited - Automation Consultancy - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Missing ETH Unwrapping
	6.2 Accidental Approval Revocation
	6.3 Dead Code
	6.4 Missing Sanity Checks
	6.5 Outdated Compiler
	6.6 Redundant Authorization
	6.7 Rounding Errors
	6.8 Specification Discrepancies
	6.9 Use Safe Calls
	6.10 Zero Debt Vaults

