

PUBLIC

Code Assessment

of the PositionManager

Smart Contracts

January 10, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 14

7 Notes 20

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Oasis team,

Thank you for trusting us to help you with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of PositionManager according
to Scope to support you in forming an opinion on their security risks.

PositionManager implements a way for users to easily create proxy contracts to manage various DeFi
positions without built-in asset separation. The proxies should be capable of replacing instances of
MakerDAO's DSProxy.

The most critical subjects covered in our audit are functional correctness, system design and safety of
user funds. We uncovered two medium severity issues regarding functional correctness, which have
been addressed. There was one high severity issue regarding system design, which also has been
remedied.

The general subjects covered are gas efficiency, code complexity, trustworthiness and access control.
Some improvements can be made to the gas efficiency of the contracts. Security regarding the remaining
subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 2

• Code Corrected 1

• Risk Accepted 1

Low -Severity Findings 17

• Code Corrected 12

• Code Partially Corrected 4

• Acknowledged 1

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the PositionManager repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V
Date Commit Hash Note

1 21 Oct 2022 92a8d03278a637bcf6c5d109d0d7c8992a711d5a Initial Version

2 22 Nov
2022

7283b901a3e4b183f9514c898ba3e6e7af5a5a64 First iteration of fixes

3 25 Nov
2022

d70319e59d1337fad9101965ac40366cdf530466 Second iteration of fixes

4 19 Dec
2022

19b75d52660ae72c9b510efaf0b57f8916745016 Minor change

For the solidity smart contracts, the compiler version 0.8.17 was chosen.

The following files are in scope:

• AccountFactory.sol

• AccountGuard.sol

• AccountImplementation.sol

• ImmutableProxy.sol

2.1.1 Excluded from scope
Third-party libraries, test files, and any files not listed above are not in scope of this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Oasis has implemented the DeFi Position Manager, a set of smart contracts allowing users to create
multiple proxies from one address to manage different positions on protocols without built-in asset
separation. The proxies should be capable of replacing MakerDAO's DSProxy, acting in an equivalent
way.

The creation of a new proxy mechanism was used as an opportunity to redesign some parts of the Maker
proxy design to achieve the following properties:

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

1. Cheaper deployment of new proxies.

2. Ability for a single user to own multiple proxies.

3. Whitelisting of contracts, preventing the execution of untrusted logic within the proxy. This is a
mitigation for DNS attacks on frontends.

4. Ability to do normal calls to contracts, not just delegatecalls.

2.2.1 AccountFactory
AccountFactory is responsible for the creation of new proxies. It deploys minimal proxies that call into the
AccountImplementation. Once assigned, the AccountImplementation cannot be changed.

AccountFactory has the following public functions:

• createAccount(address user) creates a new proxy for the given user using the OpenZeppelin
Clones library and makes them the owner. It emits the AccountCreated event, which contains a
unique ID.

• createAccount() calls createAccount(address user) with msg.sender as user.

2.2.2 AccountGuard
AccountGuard is responsible for storing and managing permissions of all proxies created with
AccountFactory. The AccountGuard owner can add addresses to a whitelist. Proxies can only call and
delegatecall to whitelisted addresses. The AccountGuard owner cannot tamper with any proxy
permissions. Every proxy also has a separate owner, which is stored in the owners mapping. The proxy
owner can transfer ownership to a new account and can grant execution permissions to other addresses.
Permitted addresses cannot remove the owner's permissions, but can add or remove permissions from
all other addresses.

AccountGuard has the following public functions:

• isWhitelisted() returns true if the given address is whitelisted.

• setWhiteList() adds or removes an address in the whitelist. Only callable by the AccountGuard
owner.

• canCall(address target, address operator) returns true if the operator is either the
proxy owner or permitted on the target proxy.

• initializeFactory() is used to set the AccountFactory after deploying. This can only be done
once and it must be ensured that it was done correctly, as there is a risk of frontrunning.

• permit(address caller, address target, bool allowance) adds or removes the
caller from being permitted on the target proxy. Can only be called by an address that is
already permitted. It has a special case when called by the factory contract, which then causes the
caller address to be set as owner, as well as giving the proxy the permission to call itself.

• changeOwner(address newOwner, address target) transfers ownership of the target
proxy to the newOwner and removes permissions from the previous owner. Any other permitted
addresses keep their permissions.

2.2.3 AccountImplementation
AccountImplementation contains the implementation that the minimal proxies point to. It does access
control through the AccountGuard and can call or delegatecall arbitrary whitelisted addresses.

AccountImplementation has the following public functions:

• send(address _target, bytes memory _data) calls the _target address with _data as
calldata. This can call arbitrary functions at a _target contract by including the function selector in

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

the calldata. It also forwards any ETH included in the transaction to the called contract, so it can be
used to send ETH. It reverts if the call fails.

• execute(address _target, bytes memory _data) does a delegatecall to _target with
_data as calldata. It returns the first 32 bytes of return data from the delegatecall and reverts if the
call fails.

Both functions can only be called by addresses permitted by the proxy and will revert unless _target is
whitelisted. Users must be careful not to delegatecall into two different contracts that both read or write
the same storage slot, as this will break the storage.

2.2.4 ImmutableProxy
ImmutableProxy is an instantiation of OpenZeppelin's Proxy.sol with a fixed implementation address that
is set during deployment.

2.2.5 Trust assumptions
The owner of AccountGuard is trusted not to remove any addresses from the whitelist that would lead to
funds being stuck on a proxy. Users are untrusted and can give permissions for the proxies they own to
anyone they trust. They cannot affect proxies owned by other users.

2.2.6 Changes in Version 2
The ImmutableProxy contract was removed.

The whitelist was split into 2 parts - one for delegate calls and one for regular calls. Hence, there are the
new functions isWhitelistedSend()``and ``setWhitelistSend() to mirror the existing
whitelist functions.

The AccountGuard has a new function canCallAndWhitelisted(address proxy, address ope
rator, address callTarget, bool asDelegateCall). It returns true if the operator address
is permitted to use the specified proxy and if the callTarget is whitelisted either as a delegatecall
target or a regular call target, depending on the asDelegateCall parameter.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk Acceptedexecute() Gas Calculation Can Underflow

Low -Severity Findings 5

• Code Partially Corrected AcknowledgedInefficient Boolean Mappings

• AcknowledgedExternal Calls Could Be Avoided

• Code Partially Corrected AcknowledgedFunction Arguments Can Be In Calldata

• Code Partially Corrected Risk AcceptedInefficiencies in execute()

• Code Partially Corrected AcknowledgedVarious Event Issues

5.1 execute() Gas Calculation Can Underflow
Correctness Medium Version 1 Risk Accepted

In AccountImplementation, execute() subtracts 5000 from gas() using assembly subtraction. If
gas() is less than 5000, this will underflow and wrap around to a very high value.

The solidity overflow checks are disabled when using assembly, so this will not revert.

Risk accepted

Oasis accepts the risk of this underflow occurring and states that under normal use this will not happen,
as the proxy is intended for state-changing operations and hence the delegate call should never cost less
than 5000 gas to execute.

5.2 Inefficient Boolean Mappings
Design Low Version 2 Code Partially Corrected Acknowledged

The AccountGuard has the following mappings:

mapping(address => mapping(address => bool)) private allowed;
mapping(address => mapping(bool => bool)) private whitelisted;

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Mappings that contain boolean variables are inefficient in general, as the Solidity compiler masks the
values when saving and loading these values from storage to prevent dirty bits from contaminating the
values.

For the whitelisted mapping, there is a superfluous level of indirection. The (bool => bool)
mapping could be replaced by a different type, e.g. an enum or an integer, which would reduce the
number of SLOADs needed to retrieve an entry. Alternatively, two separate mappings could be used for
the two whitelists.

Code partially corrected

The type of the whitelisted mapping was changed to mapping(address => uint8). The
allowed mapping was not modified.

Acknowledged

Note that reading and writing uint8 and bool values to and from storage results in inefficient bytecode,
as the Solidity compiler masks the values to ensure no dirty bits are propagated. As there is no possibility
of writing to arbitrary storage locations, these checks are superfluous. Using mappings that store the
uint256 type eliminates these checks. Oasis has acknowledged this inefficiency.

5.3 External Calls Could Be Avoided
Design Low Version 1 Acknowledged

In the EVM, external calls to other contracts cost more gas than internal calls to a contract's own
functions.

The AccountFactory makes external calls to AccountGuard. Both contracts are dependent on one
another - they need to know each other's addresses in order to set the owners of newly created proxies.
This introduces a circular dependency.

As neither contract is upgradeable and neither contract allows setting a new address for the other, the
increased gas cost and circular dependency could be avoided by combining both contracts' functions into
a single contract. This also allows for the removal of some storage variables.

Acknowledged

Oasis has acknowledged the issue.

5.4 Function Arguments Can Be In Calldata
Design Low Version 1 Code Partially Corrected Acknowledged

The bytes memory _data arguments in AccountImplementation.send() and
AccountImplementation.execute() can be in calldata instead of memory in order to save gas.

Code partially corrected

The _data argument of the send() function was changed to bytes calldata.

Acknowledged

For execute(), Oasis acknowledged the issue and decided not to make code changes.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5.5 Inefficiencies in execute()
Design Low Version 1 Code Partially Corrected Risk Accepted

The execute() function in AccountImplementation has multiple inefficiencies:

• Only gas() - 5000 gas is passed to the delegate call. This may force users to attach more gas
than needed to their calls. While it does guarantee that the remaining operations after the
delegatecall will complete, it also makes it more likely for the delegatecall to run out of gas. It is
simpler to just attach all the gas to the call and assume it returns before consuming all the gas.

• execute() only returns 32 bytes of return data from the delegate call. If any contract that is called
returns more than 32 bytes of data, it will be lost.

• The return data is not directly returned in the assembly block, but by the function itself. This means
that it will be copied before returning, which expands the memory and costs more gas. Instead, it
could be directly returned in the assembly block using a return call.

• The switch condition can be changed to succeeded instead of iszero(succeeded). There is no
reason to invert the condition.

For an example implementation of a similar function, see the _delegate function in OpenZeppelin's
Proxy contract. It allows returning more than 32 bytes of data. Note that its functionality may not be
completely identical, so the code should not be directly copied.

Code partially corrected

The return data is now directly returned in the assembly block. Additionally, the switch condition was
changed to succeeded, eliminating the extra iszero operation.

The newly introduced line returndatacopy(0, 0, returndatasize()) is used to copy the revert
data to memory in case of failure. It is redundant in the success case, as the delegatecall already copies
the first word of returndata to memory. If the delegate call returns more than 32 bytes of data, it will
expand the memory unnecessarily.

Risk accepted

Oasis accepts the risks regarding users being forced to attach too much gas to their calls, and only being
able to return the first 32 bytes of return data. These issues may reduce the ways in which users can
interact with the proxy contract.

5.6 Various Event Issues
Design Low Version 1 Code Partially Corrected Acknowledged

Some event parameters are not indexed, even though they might be useful for filtering events.

• AccountFactory: The AccountCreated event does not have an indexed proxy address.

• AccountGuard: The OwnershipTransfered event does not have an indexed newOwner address.

The OwnershipTransfered event is very similarly named to the OwnershipTransferred event which it
inherits from OpenZeppelin's Ownable contract. Consider renaming it so that these two events cannot be
confused.

Lastly, the vaultId parameter of the AccountCreated event is confusingly named, as there is no other
place in the code which refers to vaults. Renaming this to a more suitable description of the parameter
should be considered.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Code partially corrected

The indexed keyword has been added to the addresses in the mentioned events.

OwnershipTransfered has been renamed to ProxyOwnershipTransfered.

Acknowledged

The vaultId parameter name is unchanged. The ProxyOwnershipTransfered event has a misspelling, it
should be ProxyOwnershipTransferred.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedImmutableProxy Is Unnecessary

Medium -Severity Findings 1

• Code CorrectedNew Owner Cannot Permit

Low -Severity Findings 12

• Code CorrectedAccountGuard Variable Could Be Immutable

• Code CorrectedChecking Conditions in AccountImplementation

• Code CorrectedExecute Does Not Forward Revert Reason

• Code CorrectedFloating Compiler and Dependency Versions

• Code CorrectedFunction Visibility Can Save Gas

• Code CorrectedIncorrect Error Messages

• Code CorrectedIncrement Can Be Done in Event to Save Gas

• Code CorrectedMissing Sanity Checks

• Code CorrectedRedundant Initializations

• Code CorrectedSeparate Whitelists

• Code CorrectedUnnecessary Checks

• Code CorrectedUnused Imports

6.1 ImmutableProxy Is Unnecessary
Design High Version 1 Code Corrected

The ImmutableProxy is designed as a small proxy contract which delegatecalls into a fixed
implementation address. Except for the implementation() getter, its functionality is identical to the
minimal proxy contract described in EIP1167.

OpenZeppelin's Clones library, which is used to deploy clones of the ImmutableProxy contract, deploys
clones by using the contract described in EIP1167 - so it simply deploys a contract which delegatecalls
the target contract. All in all, this means that we have a minimal proxy, which calls the ImmutableProxy,
which then calls the AccountImplementation. This double proxy setup is unnecessary and wastes gas.

Instead, it would be much simpler and cheaper to directly clone the AccountImplementation and discard
the ImmutableProxy contract. The minimal proxy contract is hand-written bytecode which is designed to
be as cheap as possible both to deploy and execute.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 14

https://eips.ethereum.org/EIPS/eip-1167
https://chainsecurity.com

Code corrected

The ImmutableProxy contract was removed. Instead, the Clones library is used to directly clone the
AccountImplementation.

6.2 New Owner Cannot Permit
Correctness Medium Version 1 Code Corrected

In AccountGuard, when an owner is initially set by the factory they also receive an entry in the
allowed[caller][target] mapping. However, when changeOwner() is called, the new owner only
receives an entry in the owners mapping but is not added to the allowed mapping. Hence, the new
owner cannot call permit on the proxy they now own.

Note that not even someone else who is allowed to permit on the proxy can admit the owner, as
permitting the owner will revert with "account-guard/cant-deny-owner". The only way to allow the
new owner would be to transfer ownership to someone else who is already allowed to permit.

The owner would still be able to make transactions from the proxy, as canCall() always returns true for
the owner, even if they are not allowed.

Code corrected

changeOwner now adds the new owner to the allowed addresses.

6.3 AccountGuard Variable Could Be Immutable
Design Low Version 1 Code Corrected

In AccountFactory, the AccountGuard variable is set in the constructor and then never changed. It
could be made immutable to be more gas-efficient.

Code corrected

The variable has been made immutable.

6.4 Checking Conditions in
AccountImplementation
Design Low Version 1 Code Corrected

When calling send() or execute() in the AccountImplementation, the following checks are performed:

1. First, the auth modifier checks that guard.canCall(address(this), msg.sender) returns
true.

2. Next, it is checked that _target != address(0).

3. Lastly, the condition guard.isWhitelisted(_target) is checked.

Here, the AccountGuard contract is called twice to check whether the call should be allowed. These calls
could be combined into a single cross-contract call to reduce gas costs.

Assuming that address(0) is never whitelisted, the second check is redundant.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Note also that the same conditions are checked in both cases, hence they could be included into the
auth modifier in order to reduce code duplication.

Code corrected

The calls to AccountGuard were combined into a single call of the new canCallAndWhitelisted
function and moved into the auth modifier. The _target != address(0) check was removed.

6.5 Execute Does Not Forward Revert Reason
Design Low Version 1 Code Corrected

In AccountImplementation, execute() reverts with (0,0) if the delegatecall fails. It does not revert with
the revert reason from the delegatecall.

It would be easier for users to debug their reverted transactions if the revert reason contained information
from the delegatecall.

Code corrected

The return data is now copied and returned. If the delegatecall fails, the revert reason will be returned.

6.6 Floating Compiler and Dependency Versions
Design Low Version 1 Code Corrected

Oasis uses the floating pragma solidity ^0.8.9. Contracts should be deployed with the same
compiler version and flags that have been used during testing and audit. Locking the pragma helps to
ensure that contracts do not accidentally get deployed using, for example, an outdated compiler version
that might introduce bugs that affect the contract system negatively
(https://github.com/SmartContractSecurity/SWC-registry/blob/b408709/entries/SWC-103.md).

In hardhat.config.ts, the compiler version 0.8.17 is specified.

The versions of the contract libraries in package.json are also not fixed. In particular:

"@openzeppelin/contracts": "^4.7.3"

The caret ^version will accept all future minor and patch versions while fixing the major version. With
new versions being pushed to the dependency registry, the compiled smart contracts can change. This
may lead to incompatibilities with older compiled contracts. If the imported and parent contracts change
the storage slot order or change the parameter order, the child contracts might have different storage
slots or different interfaces due to inheritance.

In addition, this can lead to issues when trying to recreate the exact bytecode.

Code corrected

The Solidity compiler version has been specified as exactly 0.8.17 for all contracts in scope.

The OpenZeppelin version has been specified as exactly version 4.7.3 in package.json.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 16

https://github.com/SmartContractSecurity/SWC-registry/blob/b408709/entries/SWC-103.md
https://chainsecurity.com

6.7 Function Visibility Can Save Gas
Design Low Version 1 Code Corrected

Reducing a function's visibility from public to external saves gas. The following functions could be defined
as external:

• AccountFactory.createAccount()

• AccountGuard.isWhitelisted()

• AccountGuard.setWhitelist()

• AccountGuard.initializeFactory()

• AccountImplementation.send()

• AccountImplementation.execute()

• MakerMigrationsActions.migrateMaker()

• MakerMigrationsActions.migrateAdditionalVaults()

• McdView.getRatio()

• McdView.getMakerProxy()

Additionally, the self storage variable in MakerMigrationsActions should not be public, as it only
contains the address of the contract itself. Hence, making it private or internal reduces bytecode size as
the getter is unnecessary.

Code corrected

The mentioned functions in AccountGuard, AccountFactory, and AccountImplementation have been
changed to external. The visibility of the self storage variable in MakerMigrationsActions was
changed to private.

6.8 Incorrect Error Messages
Design Low Version 1 Code Corrected

The auth modifier in AccountImplementation and the permit() function in AccountGuard both revert
with the error message "account-guard/not-owner".

However, the owner is actually not the only user that is checked for. In both cases, it is checked whether
the msg.sender is the owner OR has been permitted. The error message makes it seem like only the
owner is allowed to use these functions.

Also, migrateAdditionalVaults in MakerMigrationsActions reverts with the message
"factory/already-migrated" in case it is called from an address that has not yet migrated. This error
message states the opposite of what actually happened.

Code corrected

The permit() function and authandWhitelisted modifier now revert with
"account-guard/no-permit". The revert message in migrateAdditionalVaults was also
changed.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6.9 Increment Can Be Done in Event to Save Gas
Design Low Version 1 Code Corrected

In AccountFactory, createAccount() increments the accountGlobalCounter variable. Later, it is
emitted in the AccountCreated event. This means it must be loaded from storage twice.

The accountGlobalCounter could be cached or incremented in the event emission, which would
save one SLOAD operation and be more gas-efficient.

Code corrected

The value of the counter is now cached after being incremented.

6.10 Missing Sanity Checks
Design Low Version 1 Code Corrected

Sanity checks on values are missing in several places. This makes it more likely for incorrect values to
accidentally be set.

• In AccountFactory.createAccount(address user), it is possible for user to be
address(0).

• In AccountGuard.changeOwner(address newOwner, address target), it is possible for
newOwner to be address(0).

• In the AccountImplementation constructor, _guard could be address(0).

• In the MakerMigrationsActions constructor, _serviceRegistry could be address(0).

Code corrected

Sanity checks have been added to all mentioned functions.

6.11 Redundant Initializations
Design Low Version 1 Code Corrected

Some storage variables are initialized to their default values, which is redundant and wastes gas.

• In the AccountFactory constructor, accountsGlobalCounter is initialized to 0.

• In AccountGuard, factory is initialized to address(0).

Code corrected

Both redundant initializations were removed.

6.12 Separate Whitelists
Design Low Version 1 Code Corrected

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

The AccountImplementation allows calls and delegatecalls to any whitelisted contracts. Currently, there
is just one whitelist for both cases. However, there may be some contracts that are safe to call but not
delegatecall or vice versa.

Code corrected

The whitelisted mapping of the AccountGuard now contains a (bool => bool) mapping. This
extra bool lookup parameter allows specifying whether a specific address is whitelisted for regular calls,
delegatecalls, or both.

6.13 Unnecessary Checks
Design Low Version 1 Code Corrected

permit() in AccountGuard has the following check:

if (msg.sender == factory && allowance)

The AccountFactory only has one function that calls permit(). It always calls it with allowance set to
true. Hence, just checking for msg.sender == factory is equivalent, as allowance is always true if
this holds (unless AccountFactory is changed in the future).

There are also unnecessary checks in send() and execute() in AccountImplementation, which are
described in Checking Conditions in AccountImplementation.

These checks can be removed to save gas.

Code corrected

The check for allowance has been removed.

6.14 Unused Imports
Design Low Version 1 Code Corrected

There are several imported files which are never used:

In AccountFactory:

• "./interfaces/IProxyRegistry.sol"

• "./interfaces/ManagerLike.sol"

• "./interfaces/IServiceRegistry.sol"

• "./utils/Constants.sol" (AccountFactory inherits from it but no values are used)

In AccountGuard:

• "@openzeppelin/contracts/proxy/Proxy.sol"

Code corrected

The unused imports were removed.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Permissions Stay When Changing Owner
Note Version 1

When the changeOwner() function of AccountGuard is called, the permissions of the old owner are
revoked. However, the permissions of all other addresses are unaffected. Any addresses that were
permitted by the old owner will still have permissions unless the new owner calls permit() to remove
them.

Anyone receiving ownership over a proxy should ensure they trust all permitted addresses before using
it.

7.2 Proxy Storage Layout
Note Version 1

The AccountImplementation allows delegatecalls into arbitrary whitelisted contracts. Such a contract
could read/write to storage. If two different contracts are delegatecalled that both use the same storage
slots, they may conflict with each other and read data written by the other contract.

The AccountGuard owner should keep this in mind when whitelisting contracts. They should either not
whitelist conflicting contracts or explicitly warn users not to use multiple contracts that use the same
storage from the same proxy.

7.3 send Function Name Is Confusing
Note Version 1

The send function of AccountImplementation has a lot more functionality than just sending ETH. It can
be used to call arbitrary functions on any whitelisted contract.

This is not obvious from the function name and could be confusing to users.

Oasis - PositionManager - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 AccountFactory
	2.2.2 AccountGuard
	2.2.3 AccountImplementation
	2.2.4 ImmutableProxy
	2.2.5 Trust assumptions
	2.2.6 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 execute() Gas Calculation Can Underflow
	5.2 Inefficient Boolean Mappings
	5.3 External Calls Could Be Avoided
	5.4 Function Arguments Can Be In Calldata
	5.5 Inefficiencies in execute()
	5.6 Various Event Issues

	6 Resolved Findings
	6.1 ImmutableProxy Is Unnecessary
	6.2 New Owner Cannot Permit
	6.3 AccountGuard Variable Could Be Immutable
	6.4 Checking Conditions in AccountImplementation
	6.5 Execute Does Not Forward Revert Reason
	6.6 Floating Compiler and Dependency Versions
	6.7 Function Visibility Can Save Gas
	6.8 Incorrect Error Messages
	6.9 Increment Can Be Done in Event to Save Gas
	6.10 Missing Sanity Checks
	6.11 Redundant Initializations
	6.12 Separate Whitelists
	6.13 Unnecessary Checks
	6.14 Unused Imports

	7 Notes
	7.1 Permissions Stay When Changing Owner
	7.2 Proxy Storage Layout
	7.3 send Function Name Is Confusing

