PUBLIC

Code Assessment

of the Morpho (Aave v3)
Smart Contracts

August 19, 2022

Produced for

%¢ Morpho

@EHAINSEEURITY




Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG

10
11
16
23


https://chainsecurity.com

1 Executive Summary

Dear Morpho Team,

Thank you for trusting us to help Morpho Labs with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Morpho (Aave v3)
according to Scope to support you in forming an opinion on their security risks.

Morpho Labs implements a peer-to-peer lending protocol that leverages the liquidity of existing lending
protocols like Aave or Compound to allow instant withdrawals. Peer-to-peer matched users benefit from
better rates than users of the underlying lending protocols.

The most critical subjects covered in our audit are access control, functional correctness and precision of
arithmetic operations. Access control is extensive. Functional correctness of the main contracts is high.
Functional correctness of the HeapOr der i ng data structure is not sufficient as the Heap data structure
can be spammed. This issue can also lead to accidental violation of the Heap ordering, causing users
additional gas fees. Precision of arithmetic operations is high.

The general subjects covered are documentation and gas efficiency. Documentation is extensive. Gas
efficiency is improvable as shown in Gas inefficiencies.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 3


https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings e
()-Severity Findings 1
Wris Accepicd) 1
(Medium)-Severity Findings 2
N Goisicasiis) 1
Wris Accepicd) 1
(Low)-Severity Findings 19
Y Code Corrected 14
o ) 3
W kisi Accepted) 2
@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 4



https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Morpho (Aave v3) repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

morpho-contracts

V | Date Commit Hash Note

1 | 27 June 2022 3653fbc4db9037974fd42e17eab49404297c69e3 Initial Version

2 | 12 August 2022 e42998059cfc9a82a851685569385a20c8a73825 Initial Version
morpho-data-structures

V | Date Commit Hash Note

1 | 07 June 2022 83577ec6bdc18fc3c83b4a15969e0582a07c287e Initial Version
morpho-utils

V | Date Commit Hash Note

1 | 12 August 2022 cb43513ala2d6b2eed485b7e58a9724255ca417d Initial Version

For the solidity smart contracts, the compiler version 0. 8. 10 was chosen (for compatibility with Aave
contracts).

2.1.1 Included in scope

The scope of the aforementioned repositories is limited to:

2.1.2 morpho-contracts

« All files in the cont r act s/ aave- v3 folder except Lens. sol .

e comon/ rewar ds-di stri buti on/ RewardsDi stri butor. sol.

2.1.3 morpho-data-structures

econtracts/ HeapOrdering. sol

2.1.4 morpho-utils

« All files in sr ¢/ mat h except ConpoundMat h. sol .

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 5


https://chainsecurity.com

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Morpho Labs offers a peer-to-peer lending protocol that allows direct matches between suppliers and
borrowers of certain tokens. It builds upon existing lending protocols like Compound or AAVE and
utilizes these protocols' liquidity in order to allow users to enter / exit markets even when no other peers
are available as counterparty.

Morpho (Aave v3) specifically builds upon the AAVE v3 lending protocol. The amounts users want to
borrow or supply are saved into partially ordered Heap data structures. If no counter-party for a supplier /
borrower is found, the protocol leverages the underlying lending pool to match the request. Users
matched to this lending pool will pay the underlying pool's interest rates and are now available for
peer-to-peer matching. As soon as another user's request can be matched to one or multiple users on
the underlying lending pool, the positions are moved to peer-to-peer and all participating users now
benefit from Morpho (Aave v3)'s improved rates which always reside in the spread between the
underlying lending pool's supply and borrow rates.

2.2.1 Morpho

Mor pho is the main contract that all state-changing user actions take place through. Users can suppl y
funds to earn interest or deposit collateral, bor r ow funds, wi t hdr aw their supplied funds and r epay
borrowed funds. Additionally, any user can | i qui dat e borrow positions that are under water and users
that have been matched to the underlying pool can cl ai nRewar ds of the reward tokens that are
distributed to Morpho (Aave v3)'s position on this pool.

Due to Ethereum's contract size restrictions, Mor pho performs del egatecal | calls to external
contracts that define the logic for the respective functions (with the exception of cl ai mRewar ds):

e suppl y and bor r ow call logic in the Ent r yPosi t i onsManager .

W t hdraw, repay and | i qui dat e call logic in the Exi t Posi t i onsManager .

Furthermore, the contract exposes governance functions that allow for the update of callable contract
addresses and parameters. Market tokens are approved with t ype( ui nt 256) . max to the underlying
Aaave contract on market creation.

2.2.2 EntryPositionsManager

The EntryPositi onsManager contains the logic for supplying and borrowing. Because matching
users peer-to-peer requires their positions to be updated in a sorted Heap data structure, gas costs for
these transactions can increase dramatically depending on the state of the data structures. For this
reason, users can call the functions with a gas limit for matching other peer-to-peer users. If the limit is
exceeded, the remaining amount that has not yet been matched peer-to-peer is matched with the
underlying pool instead.

Both suppl yLogi ¢ and bor r owlLogi ¢ functions follow the same scheme:

* Reduce borrow / supply del t a and repay / withdraw the amounts to / from the underlying pool (this
mechanism is explained in the next section).

» Match borrowers / suppliers and repay / withdraw the amounts to / from the underlying pool.

 Supply / borrow the remaining amounts to / from the underlying pool.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 6


https://chainsecurity.com

2.2.3 ExitPositionsManager

The Exi t Posi ti onsManager contains the logic for withdrawing, repaying and liquidating. Contrary to
the supply and borrow logic, users cannot choose a gas limit because there is no incentive for choosing
anything other than 0. Instead, a constant gas limit is used for all functions. Because it is possible that
this gas limit is also exceeded, Morpho (Aave v3) employs a del t a mechanism. If it is not possible to
unmatch all peer-to-peer connections of a user, there is a mismatch between the amounts that are in
peer-to-peer and on pool: Some tokens that are still registered as peer-to-peer connections in Morpho
(Aave v3)'s ledger are now on the pool. The del t a contains these amounts and makes sure that the
pool rate that has to be payed is evenly split amongst all peer-to-peer users.

The functions wi t hdr awl.ogi ¢ and r epayLogi ¢ follow the same scheme:
» Withdraw / repay all available amounts for the user from / to the underlying pool.
* Reduce supply / borrow del t a and withdraw / repay them from / to the pool.

* (Only repayLogi ¢) Remove the fee (spread between peer-to-peer supply and borrow rate) and
keep the amount on the contract.

» Match suppliers / borrowers and withdraw / repay the amounts from / to the underlying pool.

| i qui dat eLogi ¢ combines the logic by first repaying the debt of the account that is under water and
then withdrawing the account's collateral to the liquidator. Liquidation is only possible if a borrower falls
below a certain health factor. The health factor is determined by a liquidation threshold that is provided by
the underlying pool for each token. Similarly, withdrawals are only possible if the user health factor is still
above the threshold after the withdrawal is completed.

2.2.4 InterestRateManager

All Mor pho functions update the interest rate indices before performing any actions. Indices are updated
once per block and are set in the spread between the supply and borrow rate of the underlying pool
depending on the r eserveFact or (spread between the Morpho indices) and the p2pl ndexCur sor
(position between the indices of the underlying pool). For this purpose, the | nt er est Rat eManager
contains a function updat el ndexes which is called via del egat ecal | from other contracts.

2.2.5 RewardsManager

The Rewar dsManager handles the rewards AAVE distributes to Morpho (Aave v3)'s account. The
rewards are distributed to each user that holds any position on the underlying pool since the last update.

Rewar dsManager . cl ai nRewar ds is called from Mor pho. cl ai nRewar ds which can be called by any
user. The rest of the functions are copies of AAVE v3's Rewar dsControl | er that have been slightly
changed so that Morpho (Aave v3)'s position on AAVE can be used as the data source.

2.2.6 IncentivesVault

Users who wish to trade their claimed rewards for MORPHO tokens (not yet available at the time of this
writing) can call Mor pho. cl ai rRewar ds with a parameter that enables sending the rewards to the
I ncenti vesVaul t where the tokens are traded for an equivalent value of MORPHO tokens with a
small bonus.

2.2.7 RewardsDistributor

Apart from the rewards of the underlying protocol, Morpho (Aave v3) also aims to distribute MORPHO
tokens as incentive for the use of the protocol. The Rewar dsDi stri but or allows users to claim
rewards based on their usage of the contracts. The rules will be defined by the DAO (not yet available at
the time of this writing) and a Merkle-Tree will be constructed off-chain following these rules. The root of
the tree will then be added to the Rewar dsDi st ri but or contract once a month and users can claim
their rewards using the cl ai mfunction with a Merkle-Proof of their account balance.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 7


https://chainsecurity.com

2.2.8 Roles & Trust Model

The main Morpho contract and the RewardsManager contract are deployed as
Transpar ent Upgr adeabl ePr oxy with the admin address set to a ProxyAdm n contract. The
contract's i nitial i zer then registers the caller as the owner of the contract. The owner of the
Pr oxyAdmi n and the proxy itself has comprehensive power over the contracts. They can:

« Upgrade the contracts to any new implementation.
» Change the addresses of the contracts that are called via del egat ecal | .
« Change the parameters of the contracts.
All other contracts are directly deployed and have corresponding setter methods in the proxied contracts.

Morpho Labs claims to establish a DAO contract that will take ownership of Morpho (Aave v3)'s contracts
in the future.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 8


https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 9


https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 10


https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e

(C)-Severity Findings 1
+ Heap Data Structure Can Be Spammed

(Medium)-Severity Findings 1
« Interfaces Not Implemented / Available

(Low)-Severity Findings 5
« Ambiguous Naming ( )
« Gas Inefficiencies ( )
* Missing Sanity Checks ( )

+ Rewards Can Be Withdrawn by Admins
» Variable Shadowing

5.1 Heap Data Structure Can Be Spammed
D (D) (Version 1) G

The users' supply and borrow information is stored in Heap data structures. The parameter
_maxSor t edUser s sets the maximum sorted user amount in order to limit the gas spent on updating the
Heap. The data structure would halve the length of the Heap when maxSort edUser s is exceeded.
However, this behavior would potentially put an incoming user to a higher priority than an existing one.
This behavior can be abused by bad actors to fill the ordered portion of the Heap with dust:

Consider the following example:
* maxSort edUser s is set to 4.
« Step 1: User 1 and user 2 are legitimate users that supplied 400 and 300 tokens respectively.
 Step 2: An attacker now supplies 600, 500 and 1 token with three different addresses.
 Step 3: The attacker withdraws 599 and 499 tokens from accounts 3 and 4.

The described behavior is detailed in Figure 1. Blue boxes show accounts in the ordered portion of the
Heap, green boxes show accounts in the non-ordered portion.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 11


https://chainsecurity.com

Step 1 Step 2 Step 3
user3

’ usste)rOZ |:’\> | us:rS ‘ |:> | ut‘i:elr.éi us:aIrS |
/\ /\

user 1 user2 | user 1 | user2 |

400 300 400 300

Figure 1: Spam attack on the Heap

As a result, the supplied liquidity of users 1 and 2 is now only reachable after the dust of the attacker's
accounts has been matched.

Risk accepted:
Morpho Labs accepts the risk with the following statement:

We know that the heap structure has still some drawbacks (even if it's better than the double linked
list implemented on the compound contracts) and we acknowledge the manipulation of the heap. The
spam attack is likely to be costly to conduct, moreover, if users come after with greater amounts the
dust accounts will be pushed outside the heap.

5.2 Interfaces Not Implemented / Available

(D (Medium) (Version 1) G000

Mor pho does not extend the | Mor pho interface. This can lead to errors during development and
integration by third parties as the interface might not match up with the implementations. Indeed, the
| Mor pho interface lacks some public functions like set | nt er est Rat es ori ncenti vesVaul t.

Risk accepted:

Morpho Labs accepts the risk and tries to maintain correct interfaces.

5.3 Ambiguous Naming
[Low][Version 1][ ]

The function Mor phoCGover nance. set | nt er est Rat es is a setter for the | nt er est Rat eManager
address, contrary to the function name which implies it sets interest rate values.

Code partially corrected:

Mor phoGover nance. set | nt er est Rat es has been renamed to
Mor phoGover nance. set | nt er est Rat eManager but still emits an event | nt er est Rat esSet with
ambiguous naming.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 12


https://chainsecurity.com

5.4 Gas Inefficiencies
[Low] (Version 1)( ]

Gas efficiency can be improved in several places:

«The underlying token of AAVE's aTokens s fetched in some functions (e.g.
Ent r yPosi ti onsManager . suppl yLogi c). The addresses could be cached in the contract's
storage instead to avoid unnecessary external calls.

* Redundant storage reads are performed in some functions. The values could be cached in the stack
or in memory:

edel ta. p2pBorrowbel ta is read multiple times in
Ent ryPosi ti onsManager . suppl yLogi c.

euser Mar ket s[ _user] is read in every iteration of functions that call
Mor phoUti | s. _i sSuppl yi ngOr Bor r owi ng.
* Many more examples can be found.

* Redundant storage writes are performed in some functions. The values could be updated in a stack
or memory variable and written to storage at the end.

« Exi t Posi ti onsManager. _saf eRepaylLogi ¢ updates del t a. p2pBor r owAnmount up to 3
times.

« Exi t Posi ti onsManager. _saf eRepaylLogi ¢ updates del t a. p2pSuppl yAnmount up to 2
times.

* Redundant external calls are performed in some functions. The values could be cached in the stack
or memory and passed to other called functions:

* | AToken. UNDERLYI NG_ASSET_ADDRESS is called in
Ent ryPosi ti onsManager . borr owLogi ¢ and in the sub-call to _bor r owAl | owed.

e Calls to pool . get Configuration in ExitPositionsManager.|i qui datelLogic are
already performed by the sub-call to _| i qui dati onAl | owed.

* Mor phoGover nance. cr eat eMar ket calls pool.getConfiguration and then
pool . get Reser veDat a which also contains the configuration.

e In Mor phoGover nance. cr eat eMar ket , the values retrieved from
pool . get Reser veNor nal i zedl ncone and
pool . get Reser veNor mal i zedVar i abl eDebt could be computed from the already fetched
reserve data.

* Rounding errors can cause matching of dust. This could be avoided by using fractions to store
principal values: Instead of dividing token amounts by an index and later multiplying again by an
index (division before multiplication), principal values could be stored as (ui nt 128, ui nt128)
tuples of the base value and the index at that time. This change requires careful handling of
ui nt 128 casts though.

*« Some checks can be performed earlier in the code, saving callers some gas on reverting
transactions:

e _borrowAl | owed in Ent r yPosi ti onsManager . borrowLogi c.

» Maximum number of markets check in Mor phoGover nance. cr eat eMar ket .

» Unnecessary computations:

* Exi t Posi ti onsManager . wi t hdr awLogi ¢ does not have to check if the user is supplying.
Instead, it could revert on t oW t hdr aw ==

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 13


https://chainsecurity.com

* Exi t Posi ti onsManager . _saf eW t hdr awLogi c potentially calls _updat eSuppl i er | nDS
2 times with no overlap.

« Changes in the Heap data structures that result in one account being removed and another account
being updated could be performed with a r epl ace action instead of pop + push.

« Tighter packing of storage variables is possible (careful casting is necessary though).

e p2pSuppl yl ndex and p2pBorr owl ndex could be packed as ui nt 128 into a single struct,
since most of the time, both values are read from the storage together.

« The fields of the structs Suppl yBal ance and Bor r owBal ance could be reduced to ui nt 128.

* Many variables in MorphoSt orage (e.g. entryPositi onsManager) could be defined as
i mmut abl e. Since the Mor pho contract is Upgr adeabl e, the values can be changed by updating
the proxy implementation.

*In ExitPositionsManager. _get User Heal t hFactor (and other functions with similar
use-case), each asset price is individually fetched with or acl e. get Asset Pri ce. Since the Aave
oracle exposes a function to fetch multiple asset prices at once, some external calls can be saved by
using or acl e. get Asset sPri ces.

Code partially corrected:
» Corrected: Underlying token addresses are now saved in the mar ket storage variable.

« Partially corrected: Redundant storage reads have been improved on some occasions but still
happen in various places.

* Not corrected: The mentioned examples have not been updated to reduce storage writes.

* Not corrected: The first example is obsolete because of another change, the other examples have
not been addressed.

* Not corrected: The suggested change has not been implemented.

 Partially corrected: creat eMar ket now checks for the maximum number of markets in the
beginning of the function.

» Corrected: The mentioned redundant computations have been removed.
* Not corrected: pop + push is still used.

» Not corrected: Variables are not packed more tightly.

» Not corrected: No variables have been changed to i nrut abl e.

* Not corrected: or acl e. get Asset Pri ces is not used.

5.5 Missing Sanity Checks
(Low] (Version 1)( ]

* Mor pho. cr eat eMar ket does not check if the _under | yi ngTokenAddr ess is the 0-address.

* Multiple Governance setters do not check if address parameters are the O-address.

* The initializer of Mor phoGover nance does not check if maxSor t edUser s is zero. However, the
check is applied in set MaxSor t edUser s.

* The Exi t Posi ti onsManager . | i qui dat eLogi ¢ can be called with an _anount of 0, while this
is not possible in other entry points.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 14


https://chainsecurity.com

Code partially corrected:
» Corrected: Mor pho. cr eat eMar ket now checks if _under | yi ngToken is the 0-address.

» Corrected: Setters now check for the 0-address except if the respective field can be intentionally set
to the O-address.

* Corrected: The Mor phoGover nance initializer now checks if maxSor t edUser s is zero.

* Not corrected: Exi t Posi ti onsManager . | i qui dat eLogi ¢ can still be called with an _anount
of 0.

5.6 Rewards Can Be Withdrawn by Admins
(Design (T VZETIBY] Risk Accepted)

Mor pho. cl ai rRewar ds transfers accrued rewards of Morpho (Aave v3)'s whole position from Aave
when a user claims their share of the rewards. This means that some tokens may now be owned by the
Morpho contract, which can later be claimed by other users.

If one of the reward tokens is however an active market on Morpho (Aave v3), the tokens are claimable
by the contract admin. In this case, both fees and user rewards are mixed together and the contract
admin could accidentally mistake all of the tokens for fees and withdraw them.

This would result in rewards not being claimable by all users that are entitled to them.

Risk accepted:

Morpho Labs accepts the risk stating that the admin (or DAO) is not advised to withdraw fees when there
is a running rewards program where the reward token is equal to one of the market tokens.

5.7 Variable Shadowing
D (Low) (Version 1) G

«In | nt erest Rat eManager . updat el ndexes and Mor phoGover nance. cr eat eMar ket, the
state variable pool | ndexes is shadowed by a local variable.

*In Mor phoUti | s. i siMar ket Cr eat edAndNot Paused and
i svar ket Cr eat edAndNot PausedNor Parti al | yPaused, the state variable nar ket St at us is
shadowed by a local variable.

Risk accepted:

Morpho Labs accepts the risk. Furthermore, additional storage variables are shadowed in some functions
now.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 15


https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E)-Severity Findings 0

(CL:0)-Severity Findings 0

(Medium)-Severity Findings 1
+ Unadapted amountToLiquidate

(Low)-Severity Findings 14

» Free Borrowing of Small Amounts Possible

» Function Can Be Restricted to Pure

» Incorrect and Missing Specs

» Limited Liquidation Amount

* MorphoToken Not Safely Transferred

+ P2pBorrowDelta Always Zero

» Potentially Different RewardsController Address

* Redundant Code {&Le eI e
* Similar Code Abstraction (el e{J{Z=Io{ LN ]

» Unused Imports / Errors

» Use of Deprecated Function

« Withdrawal Denial of Service

» Withdrawals Do Not Check Oracle Health

* Wrong Event Data (&l e{e )

6.1 Unadapted amountToLiquidate
CITD) (Viedium) (Version 1) (CXIYSIRT)

Inli qui dat eLogi ¢, anpbunt ToLi qui dat e is computed before anount ToSei ze is capped. However,
anount ToLi qui dat e is not adapted to the capped anobunt ToSei ze, which may cause the liquidator to
repay more than the value of the collateral they obtain.

Code corrected:

If amount ToSei ze exceeds the amount of the liquidated user's collateral balance of the requested
token, anount ToLi qui dat e is adjusted as follows:

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 16


https://chainsecurity.com

anount ToLi qui dat e ((col | at eral Bal ance collateral Price vars. borrowedTokenUni t)
(borrowedTokenPri ce vars. col | at eral TokenUnit))
. percent Di v(vars. | iquidationBonus) ;

6.2 Free Borrowing of Small Amounts Possible

(Correctness JITEEETEY Code Corrected)

Certain circumstances allow for the borrowing of very small amounts of tokens without supplying
collateral beforehand:

Ent ryPosi ti onsManager. borrowAl | owed computes the values of the supplied and borrowed
tokens in a base currency and checks whether an additional borrowed amount would result in the
account being underwater.

For an account with 0 supplied and borrowed balances, the following computation determines if a borrow
is allowed:

[ i qui dityData. debt Val ue
(_bor r onedAnmount asset Dat a. under | yi ngPri ce)
asset Dat a. t okenUni t ;

Depending on the decimals of the token and the decimals of the price oracle, a small
_borrowedAnount might result in integer division that rounds to 0. This would satisfy the final check
and allow the borrowing of the given amount:

l'i qui di tyDat a. debt Val ue i quidityData. maxLoanToVal ue

Morpho (Aave v3) uses the oracles of the underlying AAVE pool, which in turn uses Chainlink price
feeds. On ETH Mainnet, AAVE uses Chainlink price feeds in ETH base currency, which have 18
decimals (this is true for AAVE v2. AAVE v3 is not yet live on Mainnet at the time of this writing). On other
chains (e.g. Optimism), AAVE uses feeds with USD base currency, which only have 8 decimals. In this
case, many tokens become susceptible to this problem.

Since the claimable amounts are significantly lower than the amount of gas that has to be paid, the bug is
of very low severity.

Code corrected:

The division by t okenUni t is now performed using the function Mat h. di vUp. This function adds 1 wei
to the debt if (_borrowedAnount * underlyingPrice) % tokenUnit != 0. Therefore,
borrowing small amounts of tokens without sufficient collateral is not possible anymore.

6.3 Function Can Be Restricted to Pure

(D (Low) (Version 1) ST

The function Rewar dsManager . _get Rewar ds can be restricted to pur e as it does not read from the
storage.

Code corrected:

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 17


https://chainsecurity.com

_get Rewar ds is now marked as pur e.

6.4 Incorrect and Missing Specs

D (Low) (Version 1) RIS

* In Mor phoGover nance, doc comments wrongly specify a _pool TokenAddr ess parameter for the
Mar ket Cr eat ed event.

» Function comments in Mat chi ngEngi ne. sol should mention Aave instead of Conpound.

* All fields of struct Types. Del t a are expressed in underlying decimals instead of in WAD as claimed
in the specs.

» Some parameters are missing in the specs of Rewar dsManager . _updat eRewar dDat a.

Code corrected:
» Corrected: The Mar ket Cr eat ed event is now correctly documented.
» Corrected: The correct protocol name has now been added to all comments in Mat chi ngEngi ne.
» Corrected: The correct decimal types are now documented for all Types. Del t a fields.

e Corrected: Rewar dsManager . updat eRewar dDat a parameters are now correctly documented.

6.5 Limited Liquidation Amount
D) (Low) (Version 1) (AL

Liquidations in Morpho (Aave v3) are only allowed up to a maximum of 50% of the user's borrowed
assets. This is true even when the health factor of the user is below 95%. This is contrary to the
implementation of the underlying Aave pool, which allows for a liquidation of the whole user position
when the user's health factor drops below 95%.

This behavior can increase the risk of Morpho's position on Aave becoming liquidatable (for example
because liquidation bots on Morpho are not working efficiently).

Code corrected:

User positions with a health factor below 95% can now be liquidated completely.
Exi t Posi ti onsManager. _| i qui dati onAl | owed returns the respective liquidation close factor.

6.6 MorphoToken Not Safely Transferred
7D (Low) (Version 1) CXSIZET)

I ncentivesVaul t.tradeRewar dTokensFor Mor phoTokens transfers MORPHO tokens without
checking a possible return. It is advised to use Saf eTr ansf er Li b. saf eTr ansf er in this case.

This might not be necessary depending on the implementation of the MORPHO token. At the time of this
writing, no such contract is known to us. Therefore, we are unable to verify if the use of t r ansf er is safe
in this case.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 18


https://chainsecurity.com

Code corrected:
t radeRewar dTokensFor Mor phoTokens now uses saf eTr ansf er to transfer MORPHO tokens.

6.7 P2pBorrowDelta Always Zero
D) (Low) (Version 1) (XTI

When repaying the fee in Exi t Posi ti onsManager. _saf eRepaylLogi c, del t a. p2pBorrowbel t a
has already been reduced to 0 at this point and could be safely removed from the equation.

Code corrected:

_saf eRepayLogi ¢ does not take del t a. p2pBor r owDel t a into account anymore.

6.8 Potentially Different RewardsController
Address
7D (Low) (Version 1) (CXSIZRT)

The Mor pho and Rewar dsManager contracts may have different Rewar dsCont r ol | er addresses as
there is no synchronization between them at initialization.

Code corrected:

Rewar dsManager does not store the Rewar dsCont r ol | er address anymore. Instead, the address is
passed to its functions as an argument.

6.9 Redundant Code
7D (Low) (Version 1) (Y SRTD)

*In Ent ryPosi ti onManager the second i f check is redundant as shown below.

if (toWthdraw > 0) {
ui nt 256 toAddl nP2P = t oWt hdraw. rayDi v( p2pBorrow ndex[ _pool TokenAddr ess] ) ;

del t as[ _pool TokenAddr ess] . p2pBor r owAnount t oAddIl nP2P;
bor rowBal ancel nOf [ _pool TokenAddr ess] [ nsg. sender ] . i nP2P t oAddI nP2P;
em t P2PAnpunt sUpdat ed(_pool TokenAddr ess, delta. p2pSuppl yAnount, del ta. p2pBorrowAnount ) ;

if (toWthdraw > 0) _wi t hdrawrronPool (under|yi ngToken, _pool TokenAddress, toWthdraw);

«In EntryPosi ti onManager. sol, the function _borrowAl | owed does not need to check if
_amount == 0, because this is already checked at the beginning of bor r owLogi c.

eIn i qui dat eLogi c, the check _i sBorrow ngAny(_borrower) is redundant, because it is
already checked at the beginning by
_isBorrow ng(_borrower, _pool TokenBorrowedAddress).

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 19


https://chainsecurity.com

Code corrected:
The redundant code parts have been removed / are not relevant anymore.

6.10 Similar Code Abstraction
D) (Low) (Version 1) (XTI

The functions Exi t Posi ti onsManager. _get User Heal t hFact or and
Ent ryPosi ti onsManager . _borrowAl | owed share a similar code base that should be abstracted
away to avoid maintenance problems.

Code corrected:

The common logic of Exi t Posi ti onsManager. _get User Heal t hFact or and
EntryPosi ti onsManager. _borrowAl | owed has been abstracted into the  function
Mor phoUti|s. _IiquidityData.

6.11 Unused Imports / Errors

(D (Low) (Version 1) (CXIEEIEED)

Mor phoGover nance defines the Amobunt | sZer o error, but it is never used in the inheritance hierarchy
of the contract.

Code corrected:

The Anount | sZer o error has been removed from Mor phoGover nance.

6.12 Use of Deprecated Function
7D (Low) (Version 1) (Y SIRETD)

Posi ti onsManager Uti | s. suppl yToPool calls the pool . deposi t function which is deprecated in
Aave.

Code corrected:

suppl yToPool now calls pool . suppl y on Aave instead.

6.13 Withdrawal Denial of Service
(Correctness (XY AVIETIRY Code Corrected)

Exi t Posi ti onsManager . wi t hdr awLogi ¢ calls _get User Heal t hFact or if the user is borrowing
any tokens. If the user's borrow balance is small and if the called Aave oracle returns a number with

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 20


https://chainsecurity.com

lower decimals than the token's, then _get User Heal t hFact or will revert on division by zero,
preventing any withdrawals by the user.

This issue is related to Free borrowing of small amounts possible.

Code corrected:

The division by t okenUni t is now performed using the function Mat h. di vUp. This function adds 1 wei
to the debt if (_borrowedAnmount * wunderlyingPrice) % tokenUnit != 0. Therefore, a
division by zero even with small debts is not possible anymore.

6.14 Withdrawals Do Not Check Oracle Health
7D (Low) (Version 1) (XIS

On withdrawals, Morpho (Aave v3) does not check for oracle health through the
PriceO acl eSenti nel of AAVE. While AAVE does this the same way, there are still risks associated.
Consider the following example:

* A tokens and B tokens are both worth exactly 1 USD.
* A user supplies 500 A tokens and borrows 200 B tokens.
* The user can withdraw up to 200 A tokens and still maintain a good health factor.

* Now the price of A tokens rapidly changes to 0.2 USD, but the price oracle for A tokens has not
updated for a few days and still shows 1 USD / A token.

* The user is now still able to withdraw 200 A tokens while in reality, his position is already under
water.

As the recent debacle with Chainlink price feeds of LUNA has shown, oracles that are not updating prices
in a timely manner can become very problematic for lending protocols. It is therefore advised to check the
health of such oracles.

Unfortunately, at the time of this writing, AAVE has not deployed a Pri ceCOracl eSenti nel so the
problem persists also for liquidations and borrowing until AAVE deploys these mechanisms.

Code corrected:

Exi t Posi ti onsManager. wi t hdrawAl | owed now checks the oracle health by calling
priceOracl eSentinel .isBorrowAl | owed().

6.15 Wrong Event Data
CERITED (Low) (Version 1) (CXIEIEED

The following events contain wrong data:

* Exi t Posi ti onsManager. saf eWthdrawlLogi ¢ emits the event P2PBor r owDel t aUpdat ed
with del t a. p2pBor r owArmount instead of del t a. p2pBor r owDel t a.

« Exi t Posi ti onsManager. saf eRepayLogi ¢ emits the event P2PSuppl yDel t aUpdat ed with
del t a. p2pBorr owDel t a instead of del t a. p2pSuppl yDel t a.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 21


https://chainsecurity.com

Code corrected:

The mentioned events are now emitted using the correct parameters.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG

22


https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Accidental Ownership Transfers

Morpho (Aave v3) contracts use OpenZeppelin's Oanabl e contract to store ownership. Oanabl e
employs a single-step ownership transfer. Accidental transfers to the wrong address will lock out the
owner indefinitely. For this reason, special care has to be taken when updating the ownership of the
contracts.

7.2 Delta Reduced When P2P Is Disabled

If p2pDi sabl ed is set to true, the peer-to-peer delta is reduced instead of borrowers / suppliers
unmatched.

7.3 IncentivesVault Security Relies on Oracle
Implementation

The Security of |IncentivesVault.tradeRewardTokensFor Mor phoTokens relies on the
implementation of the oracle that is set to calculate the value of the given rewards. Since there is no
implementation available at the time of this writing, we cannot attest if the use of this function is secure.

Morpho Labs aims to implement a TWAP oracle based on Uniswap v3 in the future.

7.4 Lack of Balance Functions

The Mor pho contract does not expose view functions for user balances.

7.5 Liquidation Risk on Aave

If Morpho's position on Aave is liquidated, the unmatched accounting of Morpho and Aave would break
Morpho's availability and possibly lock users' funds. Besides, fully pausing Morpho would increase the
liquidation risk on Aave. Efficient arbitrage bots are required to run on Morpho so that the underlying
position on Aave does not become liquidatable.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 23


https://chainsecurity.com

7.6 Liquidations May Affect Rates of P2P Users
(D) (Version 1

Exi t Posi ti onsManager . | i qui dat eLogi c calls repayLogi ¢ and wi t hdr awLogi ¢ with O gas for
matching. This can lead to worse rates for P2P users as supply / borrow delta can be increased by these
operations.

7.7 No Delay Mechanism for Parameter Updates

(D) (Version 1)

There is no delay mechanism for the updates of parameters to take into effect. Users who are not
satisfied with the upcoming updates would not have time to leave the market.

7.8 Potentially Exceeding maxGasForMatching
(D) (Version 1

As shown below, the matching functions potentially use slightly more gas than the users' given
_maxGasFor Mat chi ng.

while (
remai ni ngToMat ch 0 &&
(firstPool Suppli er suppl i er sOnPool [ _pool TokenAddr ess] . get Head()) addr ess(0)

) |
unchecked {
i f (gasLeft At TheBegi nni ng gasl eft() _maxGasFor Mat chi ng) break;

}

7.9 Unsupported Tokens

Note]

The following tokens can not be used in Morpho Markets without repercussions:
* Aave siloed assets.
* Aave isolated assets.

e Tokens with high decimals (e.g. 27) because the ampuntToSeize calculation in
Ent ryPosi ti onsManager . | i qui dat eLogi ¢ might overflow on realistic token amount values.

» Tokens that charge a transfer fee (e.g. STA, PAXG).

7.10 Year 2106 Problem for Uint32 Timestamps

Timestamps are written to storage which could impose problems on the storage layout in the year 2106.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 24


https://chainsecurity.com

7.11 safeTransferFrom Does Not Revert on Calls
to an EOA
(D) (Version 1

Morpho (Aave v3) uses Rari Capital's Saf eTr ansf er Li b to support tokens that revert on transfers as
well as tokens that return a boolean value. The functions, especially saf eTr ansf er Fr om however do
not revert if the called token is not a contract. In this case, Morpho (Aave v3) contracts could be tricked
into thinking that a token transfer from a user was successful when in fact nothing happened.

As of now, Morpho (Aave v3) is not affected by this behavior since all token addresses are directly taken
from Aave which correctly checks for contracts in its saf eTr ansf er Fr omfunction.

Future changes of the code should take this into account.

@ Morpho Labs - Morpho (Aave v3) - ChainSecurity - © Decentralized Security AG 25


https://chainsecurity.com

	1   Executive Summary
	1.1   Overview of the Findings

	2   Assessment Overview
	2.1   Scope
	2.1.1   Included in scope
	2.1.2   morpho-contracts
	2.1.3   morpho-data-structures
	2.1.4   morpho-utils

	2.2   System Overview
	2.2.1   Morpho
	2.2.2   EntryPositionsManager
	2.2.3   ExitPositionsManager
	2.2.4   InterestRateManager
	2.2.5   RewardsManager
	2.2.6   IncentivesVault
	2.2.7   RewardsDistributor
	2.2.8   Roles & Trust Model


	3   Limitations and use of report
	4   Terminology
	5   Findings
	5.1   Heap Data Structure Can Be Spammed
	5.2   Interfaces Not Implemented / Available
	5.3   Ambiguous Naming
	5.4   Gas Inefficiencies
	5.5   Missing Sanity Checks
	5.6   Rewards Can Be Withdrawn by Admins
	5.7   Variable Shadowing

	6   Resolved Findings
	6.1   Unadapted amountToLiquidate
	6.2   Free Borrowing of Small Amounts Possible
	6.3   Function Can Be Restricted to Pure
	6.4   Incorrect and Missing Specs
	6.5   Limited Liquidation Amount
	6.6   MorphoToken Not Safely Transferred
	6.7   P2pBorrowDelta Always Zero
	6.8   Potentially Different RewardsController Address
	6.9   Redundant Code
	6.10   Similar Code Abstraction
	6.11   Unused Imports / Errors
	6.12   Use of Deprecated Function
	6.13   Withdrawal Denial of Service
	6.14   Withdrawals Do Not Check Oracle Health
	6.15   Wrong Event Data

	7   Notes
	7.1   Accidental Ownership Transfers
	7.2   Delta Reduced When P2P Is Disabled
	7.3   IncentivesVault Security Relies on Oracle Implementation
	7.4   Lack of Balance Functions
	7.5   Liquidation Risk on Aave
	7.6   Liquidations May Affect Rates of P2P Users
	7.7   No Delay Mechanism for Parameter Updates
	7.8   Potentially Exceeding maxGasForMatching
	7.9   Unsupported Tokens
	7.10   Year 2106 Problem for Uint32 Timestamps
	7.11   safeTransferFrom Does Not Revert on Calls to an EOA


