

PUBLIC

Code Assessment

of the Protocol

Smart Contracts

May 02, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Findings 12

6 Resolved Findings 14

7 Notes 23

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Moebius with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Protocol according to Scope
to support you in forming an opinion on their security risks.

Moebius implements a transferrable token that represents stake in EigenLayer. Liquid staking tokens and
native tokens can be deposited into the protocol to mint such tokens. Deposited native tokens are
handled custodially by the protocol's third party operators running Ethereum validators.

The most critical subjects covered in our audit are functional correctness and front-running resilience.

Front-running resilience is good as long as operations admins deploy validators with the appropriate
arguments.

Functional correctness is high but some functionality is missing that will be added at a later stage (see
Verified validator balance not counted).

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 11

• Code Corrected 9

• Risk Accepted 2

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Protocol repository based on the
documentation files. All files inside the contracts directory were in scope of this audit. The table below
indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1 04 April 2024 4d502594d75f36e20cc03ad5d3c9efd1c719791a Initial Version

2 25 April 2024 3aba59e690c8d66bc3bd5800bfba801debcc4ac9 After Intermediate Report

3 30 April 2024 3c9cdfac5784c8d4289a2d63176169c0cd6fc856 Fixes After Discussion

For the solidity smart contracts, the compiler version 0.8.21 was chosen.

2.1.1 Excluded from scope
Any contracts inside the repository that are not mentioned in Scope are not part of this assessment. All
external libraries and imports are assumed to behave correctly according to their high-level specification,
without unexpected side effects.

Tests and deployment scripts are excluded from the scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Moebius offers a system facilitating depositing into and withdrawing from the EigenLayer M1 protocol.
Users willing to participate in the protocol can deposit either Liquid Staking Tokens (LSTs) or native funds
(ETH) and receive a protocol-native token, named moETH, in return.

LSTs are directly deposited into EigenLayer to receive share. These shares start generating yields as
soon as delegation is activated both on EigenLayer and Protocol depending on the operator the funds
are allocated to.

Native tokens are accumulated until the 32 ETH threshold to spin up a validator is reached. Privileged
operations admins can then deploy a validator and verify it - after it has been activated in the Beacon
Chain - to mint shares on EigenLayer.

The current state of the system only implements deposits. Other functionalities like migration (in case the
immutable DepositManager has to be upgraded) and withdrawals are not fully implemented during this
review.

In what follows, we elaborate on different parts of the system and how they interact with each other.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.1 MoebiusCNC and MoebiusBase
MoebiusCNC (Command and Control) implements the following functionalities:

1. Pausing/unpausing the contract.

2. Keeping an address repository.

3. Keeping a role repository.

MoebiusBase is a wrapper around MoebiusCNC. It performs access control through MoebiusCNC
(using the address and role repositories), as well as providing the system with pausing functionality. All
other contracts of the system inherit from this contract.

2.2.2 EigenLayerProxy
This contract acts as an adapter between EigenLayer M1 contracts and Moebius contracts and
implements an upgradeable proxy pattern to allow logical upgrades. When a new Moebius node operator
gets onboarded, a new EigenLayerProxy gets deployed and associated with this node operator. Node
operators cannot control the flow of funds through EigenLayer proxies, nor can they claim any funds
circulated in this system for themselves. They are responsible for running the validators associated with
ETH deposits to EigenLayer.

Proxies can deposit funds into EigenLayer strategies that have been added to the DepositManager.
Each proxy is always able to deposit into each onboarded strategy. The underlying balance of a proxy is
then determined by summing up all balances currently held in each of the strategies.

EigenLayerProxy allows the following operations:

• deprecateStrategy(): The owner can deprecate a strategy for a given token and set a mapping
from the new strategy to the old strategy. This is required in case a strategy is switched in the
DepositManager (DM) (see below for details) and the EigenLayerProxy still holds funds in the old
strategy. Multiple such mappings for one strategy are not supported.

• clearDeprecationState(): The owner can remove a deprecated strategy from being included
in balance calculations once the proxy does not hold any balance in the strategy anymore.

• deposit(): As can be seen in DepositManager, the DM forwards deposited tokens/ETH to this
contract. This function is access-controlled to allow only the DM to call it to deposit LSTs into
EigenLayer.

• stake(): After accumulating 32 ETH, the DM calls this function to deploy a validator. The ETH are
forwarded to the EigenLayer's EigenPodManager which deposits the tokens into the Beacon Chain
deposit contract along with withdrawal credentials pointing to the associated EigenPod of the proxy.

• verifyWithdrawalCredentials(): After a validator is included in the Beacon Chain state root,
the operations manager can call this function to verify the withdrawal credentials of the pod owner as
well as the current (not effective) balance of the validator, and the provided proof of the ETH
validator against the beacon chain state, by calling
EigenPod.verifyWithdrawalCredentialsAndBalance() which is exposed in the M1
version of EigenLayer contracts.

ETH donations sent to an EigenLayerProxy are getting forwarded to the DM and counted as a reward
to the system.

2.2.3 DepositManager
This contract provides the end-users with the required functionalities to deposit their funds (native or
ERC20 tokens) into the protocol. It implements the following interface, based on the type of user allowed
to call them:

1. Privileged:

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• migrate(): Callable only by the owner of the Deposit Manager (DM). It transfers the ETH
balance of the contract to the new destination. Furthermore, it transfers all support token
balances to the owner.

• recoverERC20(): The owner of the DM can move the balance of any token to a
preferred destination.

• deployValidator(): Any user holding the OPERATIONS_ADMIN role can call this
function. It deploys a new validator by staking through an EigenLayer proxy. The
operations admin calling this function should define its validator of interest by giving its
public key (and the respective signature) as an input parameter to this function.
Furthermore, the current Beacon Chain deposit contract state root is added to make sure
that no new deposits happen between the creation and execution of a transaction
containing this call. This is used to ensure that the transaction cannot be frontrun by the
node operator holding the private key to the given validator public key which could result in
the withdrawal credentials of the created validator being changed.

• addToken(): Called by the owner. It takes a token as well as the associated EigenLayer
strategy and stores them in the contract. An invariant of the system is that EigenLayer
proxies should all have an infinite approval for each added ERC20 token from DM. Hence,
upon adding a token to the system, DM approves all already existing proxies to access
infinite amounts of this ERC20 token.

• addProxy(): Only the owner can add new proxies to the system. As mentioned in the
paragraph above, EigenLayer proxies should have infinite approval for each ERC20 token.
Therefore, the newly added proxy receives approvals for all the already added tokens.

• removeProxy(): Callable only by the owner. To deactivate a proxy, its ETH as well as
supported ERC20 tokens should be completely withdrawn beforehand. It removes this
proxy from the local list of active proxies and revokes any approvals.

The owner of the system can also disable a token (stopping any deposits of this token) and set a strategy
for a given token. Tokens and their associated strategies cannot be removed from the system once they
have been added.

2. Non-privileged: End-users can deposit their funds into the system and receive moETH in return via:

• depositETH(): This function accepts ETH deposits and mints the corresponding
moETH.

• depositToken(): It firstly transfers the defined amount of the tokens to the DM, and
calculates the moETH amount to be minted. It then chooses an EigenLayer proxy with a
minimum overall (including both ETH and ERC20) balance and deposits the tokens to it.
Finally, it mints the required moETH. Please note, that in contrast to depositETH(), the
deposited funds get directly forwarded to an EigenLayer proxy, while depositETH()
holds the ETH in this contract until later an operations admin deploys a validator.

moETH are minted based on the current total supply of the token as well as the current total balances of
the system denominated in ETH. These balances are calculated by iteration over all existing proxies and
summing up their ETH balances as well as all LST balances (priced in ETH).

Furthermore, we assume that moETH itself cannot be restaked.

2.2.4 PriceProvider
As mentioned above, users can deposit ETH or ERC20 tokens and receive moETH in return. The
amount of moETH minted depends on the value of the deposited tokens/funds relative to ETH. To find
this relative value, the DM calls into the PriceProvider. This contract calls Chainlink oracles to provide
prices, expressed in ETH, for assets. This contract implements the following functionalities:

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• fetchPrice() / fetchPrices(): These functions fetch the last two rounds from the given
Chainlink feed(s). If they are valid, not stale, and do not diverge by more than 50%, the newly
fetched price is stored and returned. Tokens denominated in USD on Chainlink are converted to
ETH denomination. Additionally, the prices of tokens not directly supported by Chainlink can be
converted using a third-party oracle if available (e.g., wstETH's stEthPerToken() function can be
used to convert stETH to wstETH).

• readPrice() / readPrices(): Similar to fetchPrice() but does not update the storage.

2.2.5 LoadBalancingRouter
Deposits into the DM are balanced between existing EigenLayer proxies using a router contract.
Currently, this is done using the LoadBalancingRouter which selects the proxy with the lowest overall
balance.

2.2.6 Changes in Version 2
Version 2 of the protocol implemented some changes compared to the state of this section:

1. DepositManager contains a list that specifies which addresses' ETH transfers to the contract are
not counted as rewards.

2. EigenLayerProxy interacts with the EigenLayer M2 interface.

3. EigenLayerProxy implements the new function delegateTo() that allows operations admins
to delegate all shares of a proxy to an EigenLayer operator.

4. EigenLayerProxy implements the new function verifyAndProcessWithdrawals() that
allows operations admins to perform partial withdrawals of native tokens (i.e., beacon chain
rewards).

5. EigenLayerProxy implements the new function handleFailedStaking() that allows
operations admins to remove ETH of validators for which the verification failed from the system
balances.

6. EigenLayerProxy implements the new function
withdrawNonBeaconChainETHBalanceWei() that allows the owner to withdraw any ETH that
have been sent to an owned EigenPod and are not associated with a validator.

7. EigenLayerProxy implements the new function recoverTokens() that allows the owner to
withdraw any ERC-20 tokens that have been sent to an owned``EigenPod``.

2.2.7 Roles and Trust Assumptions
Owner of Deposit Manager: Fully trusted. This role can migrate the DM to a new address, as well as set
strategies for assets, enable and disable assets, remove proxies, and withdraw any ERC20 tokens in the
DM contract.

Owner of Proxy Factory: Fully trusted, as they can deploy new proxies and add them to the list of
EigenLayer proxies in their corresponding DM. Users holding this role can also change the
implementation contract of the proxies.

Owner of Proxies: Fully trusted as well, because they can deprecate strategies allowing them to change
the underlying balance calculation.

Operations Admin: Fully trusted. After accumulating enough ETH to deploy a validator, the operations
admin can transfer the required funds a chosen address. While this is supposed to be an EigenLayer
proxy contract, the operations admin can theoretically forward the funds to any contract of their choosing.
Apart from that, we assume the set of node operators and operations admins are disjoint as this would
otherwise introduce more abuse possibilities.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Operations admins are capable of calling EigenLayerProxy.verifyWithdrawalCredentials().
Due to some missing functionality in the current state of the contracts, we assume that this function is not
called until the functionality is added (see Verified validator balance not counted).

Guardian: Partially trusted, as they can pause the protocol.

Owner of Command and Control Contract: Fully trusted, because they are permitted to change roles and
the address registry of the system.

Node operators: Partially trusted, as they have no stake in the system and are running validators which
could get slashed if they misbehave. Fully trusted if the operations admins do not set frontrunning
protection in their calls to DepositManager.deployValidator().

Additionally, we assume that the system is correctly configured. Correct addresses are set in the CNC
address repository, roles are assigned appropriately to the parties, Chainlink oracles in the price provider
contract are set and configured (e.g., heartbeat, etc.) correctly and strategies are not replaced if an
existing deprecation exists that still holds value.

We further assume that the first deposit in the protocol is performed by the team in order to mitigate risks
of inflation attacks.

Most of the contracts in the scope are immutable to ensure predictability. However, EigenLayer proxies
are deployed through a beacon proxy pattern.

The system is expected to only be used with standard and rebasing ERC20 tokens and that only
single-token EigenLayer strategies are used.

Version 2In , delegation has been enabled. Since the system for detection of operator undelegations is
not fully implemented yet, we assume that funds are not delegated at this point. |

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Risk AcceptedLoss on Transfer

• Risk AcceptedReward Frontrunning

5.1 Loss on Transfer
Correctness Low Version 1 Risk Accepted

CS-MEOP-007

Some LSTs (like stETH) are rebasing. Transferring these tokens can result in less tokens transferred
than originally anticipated. For example, a transfer of stETH could result in a difference of up to 2 wei.
Since a token deposit performs multiple such transfers, the actual amount transferred to EigenLayer
could be multiple weis smaller than the amount used to calculate the minting amount for a user, resulting
in small losses.

Risk accepted:

Moebius accepts the risk with the following statement:

Losses are trivial.

5.2 Reward Frontrunning
Security Low Version 1 Risk Accepted

CS-MEOP-011

Rewards are distributed by donating ETH to the protocol (either by calling processReward() or
sending ETH directly to the contract). Depending on the size of the donation, the call can be frontrun to
gain instant yields. This is especially true if there will be a way to directly redeem the shares of moETH
afterwards when withdrawal functionality is added.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Risk accepted:

Moebius accepts the risk with the following statement:

It will be mitigated with delayed withdrawals.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code CorrectedNo Approvals to StrategyManager

• Code CorrectedValidator Verification DoS

Low -Severity Findings 9

• Code CorrectedDepositManager Not Locked After Migration

• Code CorrectedETH Deposits Are Not Routed

• Code CorrectedIncorrect Chainlink Validation

• Code CorrectedIncorrect Chainlink roundId Calculation

• Code CorrectedMissing Checks

• Code CorrectedNo Safe Approvals

• Code CorrectedPending Validator ETH Cannot Be Removed

• Code CorrectedResponse Timeout Buffer

• Code CorrectedValidity of Current Chainlink Response Not Checked

Informational Findings 8

• Code CorrectedUnused Variables

• Code CorrectedWrong Comment of depositToken

• Code CorrectedMissing Automatic Deprecation

• Code CorrectedPrice Deviation Not Calculated From Current Price

• Code CorrectedGas Optimizations

• Code CorrectedMisleading Comment

• Code CorrectedCode Copy

• Code CorrectedEvents Not Indexed

6.1 No Approvals to StrategyManager
Correctness Medium Version 1 Code Corrected

CS-MEOP-002

EigenLayerProxy.deposit() calls EigenLayer's StrategyManager.depositIntoStrategy()
which transfers tokens from the proxy to the given strategy. The required approval for this operation is,
however, not granted.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Code corrected:

Upon adding a token by calling addToken(), the proxy grants the strategy manager with an infinite
approval by calling approveStrategyManager().

6.2 Validator Verification DoS
Security Medium Version 1 Code Corrected

CS-MEOP-003

EigenLayerProxy.stake() deposits ETH to EigenLayer (and in turn to the Beacon Chain deposit
contract) in chunks of 32 ETH. These 32 ETH are then added to the ethPendingVerification
variable. To activate a validator and earn EigenLayer shares, the validator must be verified on
EigenLayer. This is done in a second step in the function
EigenLayerProxy.verifyWithdrawalCredentials() once the validator public key is in the
Beacon Chain state root. The function then proceeds to subtract the current validator balance from the
ethPendingVerification variable.

This is problematic in the following cases:

1. The EigenLayer verification succeeds even when the validator balance has since decreased by at
maximum 1 ETH (for example due to validator inactivity). This reduced amount is then locked
forever in the variable.

2. Once a validator public key has been successfully added to the set of known validator keys, beacon
chain nodes process further deposits to that validator without checking the signature supplied in the
deposit transaction. This allows anyone to top-up validators and might result in an underflow in the
function verifyWithdrawalCredentials() until the additional balance is distributed back to
the associated EigenPod which can take up to 5 days.

Code corrected:

The ethPendingVerification variable is now always incremented and decremented by exactly 32
ETH in the described steps.

6.3 DepositManager Not Locked After Migration
Design Low Version 1 Code Corrected

CS-MEOP-004

DepositManager allows the protocol owner to migrate the currently held ETH balance to a new
contract. Since there is only protocol-wide pausing functionality, it is still possible to deposit tokens to this
contract after a migration has taken place. Depending on the changes going to be implemented in the
new DepositManager contract, this could be problematic either for the health of the protocol or for the
users depositing into the old contract.

Code corrected:

Moebius has addressed this issue by defining a state variable migrated to DepositManager. After
migration, this flag is set to true. Hence, the following modifier stops calls to depositETH() and
depositToken():

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

modifier whenNotMigrated() {
 if (migrated) revert DepositManagerInactive();
 _;
}

6.4 ETH Deposits Are Not Routed
Design Low Version 1 Code Corrected

CS-MEOP-020

LST user deposits are assigned to the different EigenLayerProxy deployments (and thereby to
different operators) using the configured router contract. This is not true for deposited ETH. The
OPERATIONS_ADMIN decides to which operators these tokens are staked.

Code corrected:

Moebius has modified the deployValidator() function to forward the deposited ETH to the proxy with
the lowest balance.

6.5 Incorrect Chainlink Validation
Correctness Low Version 1 Code Corrected

CS-MEOP-005

PriceProvider._isValidResponse() checks that the answer of a given Chainlink price feed is
non-zero. However, the prices can theoretically also be negative. This case is not covered.

Code corrected:

_isValidResponse() now checks that the answer is greater than zero.

6.6 Incorrect Chainlink roundId Calculation
Correctness Low Version 1 Code Corrected

CS-MEOP-006

PriceProvider._fetchPrevFeedResponse() retrieves data for a roundId that is calculated in the
following way:

_currentRoundId - 1

Chainlink feed round IDs, however, are not continuously increasing. As explained in Chainlink Docs,
upon updating the underlying aggregator implementation, phaseId gets incremented, in which case the
new roundId is not incremented by 1 but jumps significantly. It means that this function can temporarily
result in a DoS until another price update is performed.

Code corrected:

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 16

https://docs.chain.link/data-feeds/historical-data#roundid-in-proxy
https://chainsecurity.com

The aggregatorRoundId is extracted out of the roundId of each call to a Chainlink oracle. In case
the phaseId is increased and the corresponding new aggregatorRoundId of the phase starts at 1,
the contract makes an exemption and does not check the previous roundId.

6.7 Missing Checks
Correctness Low Version 1 Code Corrected

CS-MEOP-008

Some checks are missing that could result in invalid state. Here is a list of some examples:

1. DepositManager.setStrategy() does not check that a new strategy set for a certain token is
valid (i.e., non-zero, valid EigenLayer strategy).

2. EigenLayerProxy.deprecateStrategy() does not check if there is an existing deprecation
for a given strategy. If that existing deprecated strategy holds any value for the proxy, this can
result in loss of funds.

3. EigenLayerProxy.deprecateStrategy() does not check whether a given index corresponds
to the canonicalStrategy. Additionally, deprecatedStrategy is not checked to be non-zero.
In any of these cases, the whole system might become DoSed.

4. EigenLayerProxy.deprecateStrategy() does not check that canonicalStrategy is not
equal to deprecatedStrategy. In this case, funds would be counted double.

5. PriceProvider._setOracle() does not check that sharePriceProvider and
sharePriceDecimals have been set if sharePriceSignature is set. This could potentially
lead to DoS.

Code corrected:

While DepositManager.setStrategy() still allows to set the 0-address, the checks are now
sufficient.

6.8 No Safe Approvals
Correctness Low Version 1 Code Corrected

CS-MEOP-009

Some functions (e.g., DepositManager.addToken()) set approvals using the default ERC-20
approve() function. The return value is, however, not checked.

Code corrected:

approve() calls have been replaced with safeApprove() calls.

6.9 Pending Validator ETH Cannot Be Removed
Correctness Low Version 1 Code Corrected

CS-MEOP-010

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

EigenLayerProxy.stake() adds 32 ETH to the variable ethPendingVerification for every
validator that is created. This validator must then be verified on EigenLayer using the function
EigenLayerProxy.verifyWithdrawalCredentials(). This verification can fail for two reasons:

1. The validator has been slashed (lost more than 1 ETH) in the time between instantiation and
verification.

2. The stake() function has been called with an empty validatedDepositRoot and the
transaction has been frontrun by the associated node operator resulting in wrong withdrawal
credentials being added to the validator.

In both cases, there is currently no way to remove the added 32 ETH from ethPendingVerification.

Code corrected:

Moebius has implemented a function handleFailedStaking() - callable by the operations admin -
that allows to adjust the pending ETH.

6.10 Response Timeout Buffer
Security Low Version 1 Code Corrected

CS-MEOP-021

RESPONSE_TIMEOUT_BUFFER in the PriceProvider is added to the actual heartbeat of a price
feed. Assuming that the heartbeat is equal to a Chainlink oracle's heartbeat, the additional buffer
decreases security as the staleness of a feed can only be detected an hour later than it becomes evident.

Code corrected:

RESPONSE_TIMEOUT_BUFFER has been removed.

6.11 Validity of Current Chainlink Response Not
Checked
Correctness Low Version 1 Code Corrected

CS-MEOP-012

PriceProvider._getUpdatedRecords() checks the validity of Chainlink responses when calling
_processFeedResponses() which in turn calls _isFeedWorking(). If this check fails, then the
variable isFeedWorking of the respective oracle record is accordingly updated. This is, however, not
the case if the current response's roundId is invalid because _fetchFeedResponses() always
returns updated = false in the case that the roundId is smaller or equal to the last stored roundId:

currResponse = _fetchCurrentFeedResponse(oracle);
if (lastRoundId == 0 || currResponse.roundId > lastRoundId) {
 prevResponse = _fetchPrevFeedResponse(oracle, currResponse.roundId);
 updated = true;
}

This results in _getUpdatedRecords() not returning an action indicating that the oracle state must
be updated even though it should be.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

Code corrected:

updated is set to true if for any reason the currResponse.roundId is not equal to lastRoundId.

6.12 Code Copy
Informational Version 1 Code Corrected

CS-MEOP-013

The functionality of EigenLayerProxy.getTokenBalance() is replicated in
EigenLayerProxy.getBalances(). getBalances() could directly call getTokenBalance() in
order to avoid maintenance problems in future revisions.

Code corrected:

EigenLayerProxy.getBalances() now calls getTokenBalance().

6.13 Events Not Indexed
Informational Version 1 Code Corrected

CS-MEOP-014

Event parameters are not indexed in cases where it would make sense. This makes it harder for off-chain
applications to gather data about the state changes in the contracts. Following is a non-exhaustive list of
such parameters:

• StrategySet: asset and strategy

• DepositManagerMigrated: newDepositManager

• TokenAdded: token and strategy

• ProxyAdded and ProxyRemoved: proxy

• AssetStatusSet: token

• RewardReceived: sender

• StrategyDeprecated: tokenIdx, oldStrategy, and newStrategy

• DeprecationStateCleared: tokenIdx, canonicalStrategy, and deprecatedStrategy

• EigenPodCreated: eigenPod

• AddressSet: key and value

• roleSet: key and account

• NewOracleRegistered: token and chainlinkAggregator

• PriceFeedStatusUpdated: token and oracle

Code corrected:

Apaert from AssetStatusSet, all events have been indexed correctly.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

6.14 Gas Optimizations
Informational Version 1 Code Corrected

CS-MEOP-015

The following parts of the code could be optimized:

1. Since strategies cannot be removed from the DepositManager and the order of the strategies is
important for the deprecation feature in the EigenLayerProxy, each proxy always iterates over all
strategies even if the associated token is disabled and the proxy does not hold any funds in the
strategy.

2. DepositManager.depositToken() could transfer the tokens straight to the respective
EigenLayerProxy (after the mint amount is calculated).

3. The updates in PriceProvider to the lastUpdated timestamp in each block only make sense if
the oracle is called multiple times per block. Otherwise, it is cheaper to remove them in order to
save gas on the extra storage writes that occur every block the oracle is called.

4. DepositManager._getSystemBalances() unnecessarily copies tokenBalances[j] to a
local variable tokenBalance.

5. DepositManager._calculateMintAmount() checks if amount is less than minDeposit.
This check can be done before fetching the prices.

Code corrected:

Some of the aforementioned optimizations have been implemented.

6.15 Misleading Comment
Informational Version 1 Code Corrected

CS-MEOP-016

Doc comments of the receive function in EigenLayerProxy state the following:

Handles incoming ETH payments, routing them based on the sender or purpose.

The function, however, does not perform such routing.

Code corrected:

This comment has been removed and the functionality of the receive() function has been updated to
count rewards based on the senderStatus.

6.16 Missing Automatic Deprecation
Informational Version 1 Code Corrected

CS-MEOP-017

When a strategy is replaced with another one in the DepositManager, the replaced strategies are no
longer accounted for in the proxies. For this reason, each EigenLayerProxy allows the protocol owner
to deprecate a strategy so that it can still be used for balance calculations until it has been emptied
completely. This process has to be done for all existing proxies and is error-prone. If not all deprecations
are set up properly, the system loses value resulting in cheaper shares for new depositors.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

DepositManager.setStrategy() should therefore automatically deprecate a strategy in all proxies
for which the strategy has a userUnderlyingView() greater than 0.

Code corrected:

DepositManager.setStrategy() now automatically deprecates strategies on each proxy. The
proxies, in turn, only deprecate the strategies if they still hold value in them.

6.17 Price Deviation Not Calculated From Current
Price
Informational Version 1 Code Corrected

CS-MEOP-022

PriceProvider._isPriceChangeAboveMaxDeviation() calculates the deviation always
denominated in the maxPrice even though that results in different outcomes depending from which
direction the price is moving.

Code corrected:

The max deviation is now always denominated in the current price.

6.18 Unused Variables
Informational Version 1 Code Corrected

CS-MEOP-019

The following variables are not used anywhere:

1. DepositManager.maxNodeDelegatorLimit

2. Roles.MINTER

Code corrected:

The unused variables have been removed.

6.19 Wrong Comment of depositToken
Informational Version 1 Code Corrected

CS-MEOP-018

Doc comments of DepositManager.depositToken() read:

Accepts a token deposit, mints moETH to the depositor, and optionally deposits the token into a
selected proxy.

However, depositing a token to a proxy is not optional, as either there exists a proxy or the call reverts.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

Code corrected:

The following part has been removed from the comment: and optionally deposits the token into a
selected proxy.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 LST Decimals
Note Version 1

The contracts are designed with the assumption that all LSTs are generally using 18 decimals. Special
care has to be taken when onboarding new LSTs as there is a chance (even though it might be slim) that
an LST uses a different decimal count.

7.2 Lower Capital Efficiency With ETH
Note Version 1

Protocol allows users to deposit LSTs as well as native ETH to the protocol. While LSTs are counted 1:1,
ETH deposited to EigenLayer only mint shares for 31 ETH even though 32 ETH are deposited (per
validator). This results in a slightly lower capital efficiency of native ETH deposits in comparison to LST
deposits.

7.3 Operator Undelegation
Note Version 2

Version 2Since , Protocol interacts with version M2 of the EigenLayer contracts and allows for delegation
to EigenLayer operators. In M2, operators are able to undelegate all shares of a delegatee (forcing a
withdrawal). Since this undelegation would result in decreased system balances, Protocol reverts in case
this is detected.

It is worth to note that, at the time of this report, this mechanism is not fully implemented.

It is further worth to note that, upon full implementation, operators can temporarily DoS the Protocol
contracts.

7.4 Verified Validator Balance Not Counted
Note Version 1

Protocol, in its current state, does not support the verification of validators on EigenLayer even though
the function verifyWithdrawalCredentials() is already implemented. It is of importance that the
operations admin does not call this function until the correct counting of the ETH balance of verified
validators has been implemented to prevent the following issue from happening:

The value of shares in Protocol is calculated by dividing the total amount of currently held tokens
(denominated in ETH) by the total supply of the MOETH contract. This total amount is calculated in the
function DepositManager._getSystemBalances() by iterating over all proxies and accumulating
their stake in the associated EigenLayer strategies as well as their currently held ETH balance.

The ETH balance in a proxy is calculated in the function EigenLayerProxy.getETHBalance():

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

function getETHBalance() public view returns (uint256) {
 return ethPendingVerification + ethInFlight + address(eigenPod).balance;
}

Once a validator is deployed, the respective 32 ETH are added to the variable
ethPendingVerification and the tokens themselves are sent to the EigenPod which in turn
deposits them to the Beacon Chain deposit contract. The function now returns a value of 32 ETH. When
the validator is activated, it must further be verified using the function
EigenLayerProxy.verifyWithdrawalCredentials(). This function now removes the validator
balance from the ethPendingVerification variable, resulting in getETHBalance() returning 0 (the
EigenPod balance only contains the accrued rewards except when the node operator exits the
validator).

This means that, after a validator has been successfully deployed, the corresponding ETH are removed
from the overall value calculation, resulting in reduced share prices.

Moebius - Protocol - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 MoebiusCNC and MoebiusBase
	2.2.2 EigenLayerProxy
	2.2.3 DepositManager
	2.2.4 PriceProvider
	2.2.5 LoadBalancingRouter
	2.2.6 Changes in Version 2
	2.2.7 Roles and Trust Assumptions

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Loss on Transfer
	5.2 Reward Frontrunning

	6 Resolved Findings
	6.1 No Approvals to StrategyManager
	6.2 Validator Verification DoS
	6.3 DepositManager Not Locked After Migration
	6.4 ETH Deposits Are Not Routed
	6.5 Incorrect Chainlink Validation
	6.6 Incorrect Chainlink roundId Calculation
	6.7 Missing Checks
	6.8 No Safe Approvals
	6.9 Pending Validator ETH Cannot Be Removed
	6.10 Response Timeout Buffer
	6.11 Validity of Current Chainlink Response Not Checked
	6.12 Code Copy
	6.13 Events Not Indexed
	6.14 Gas Optimizations
	6.15 Misleading Comment
	6.16 Missing Automatic Deprecation
	6.17 Price Deviation Not Calculated From Current Price
	6.18 Unused Variables
	6.19 Wrong Comment of depositToken

	7 Notes
	7.1 LST Decimals
	7.2 Lower Capital Efficiency With ETH
	7.3 Operator Undelegation
	7.4 Verified Validator Balance Not Counted

