PUBLIC

Code Assessment

of the Mento Liquity v2

Smart Contracts

February 17, 2026

Produced for

mento

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG

10
11
12
18
20

https://chainsecurity.com

1 Executive Summary

Dear Mento Team,

Thank you for trusting us to help Mento with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Mento Liquity v2, according
to Scope, to support you in forming an opinion on their security risks.

Mento implements a fork of the Liquity v2 protocol, extending its functionality to enable users to open
collateralized debt positions (CDPs) by depositing the USDm stablecoin and borrowing non-USD
stablecoins against it. Key additions include governance-controlled SystemParams, an upgradable
Stability Pool that exposes liquidity to external strategies for rebalance operations, and an FX price feed.

The most critical subjects covered in our audit are functional correctness, system parameters, oracles
and implications of the new rebalance functionality. Functional correctness is now high after addressing
Batch Manager is not deleted in kickFromBatch. Correctness regarding boundaries for system
parameters has been improved after addressing minDebt Bounds Do Not Allow Configuring Low-value
Currencies Correctly. Governance choosing correct values continues to be essential to ensure the
security of the system. The oracle implementation is secure. However, it is intentionally not available over
weekends, which can cause delays in liquidations and leads to Cannot add collateral if market closed.
Finally, the new rebalance functionality as well as the permissionless oracle price relaying introduce
additional risks and break assumptions of Liquity v2, such as Redistributions Are More Likely To Happen.
These risks should be actively monitored.

We have also provided Notes on important considerations which can aid in understanding the system.
In summary, we find that the codebase provides a satisfactory level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

¥ Risk Accepted

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code

commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Mento Liquity v2 repository based on
the documentation files. The table below indicates the code versions relevant to this report and when

they were received.

V | Date Commit Hash Note
1 | 20 October 2025 €964b6a9637df990a92136d6455f90151ab507b5 Initial Version
2 | 2 February 2026 ea31dab1701be2d83096d3574c4bd18891961bb5 Fixes
3 | 17 February 2026 073a25f049f423b3336e3785d5f1e13235ced07b Final Version

For the solidity smart contracts, the compiler version 0. 8. 24 was chosen.

The following contracts were in scope for the review:

contracts/src/ Dependenci es/ Const ant s. sol
contracts/src/ Dependenci es/ Li qui tyBasel nit. sol

contract s/ src/ Dependenci es/ AddRenoveManager s. sol
contracts/src/ Dependenci es/ Aggr egat or V3l nt er f ace. sol
contract s/ src/ Dependenci es/ Const ant s. sol

contract s/ src/ Dependenci es/ Li qui t yBase. sol
contracts/src/ Dependenci es/ Li qui tyBasel nit. sol
contract s/ src/ Dependenci es/ Li qui t yMat h. sol

contract s/ src/ Dependenci es/ Oamabl e. sol

contracts/src/PriceFeeds/ FXPri ceFeed. sol

contracts/src/tokens/ pat ched/ ERC20Per mi t Upgr adeabl e. sol
contracts/src/tokens/ pat ched/ ERC20Upgr adeabl e. sol
contracts/src/tokens/ St abl eTokenV3. sol

contracts/src/ Types/ Bat chl d. sol
contracts/src/ Types/ Lat est Bat chDat a. sol
contracts/src/ Types/ Lat est TroveDat a. sol
contracts/src/ Types/ Tr oveChange. sol
contracts/src/ Types/ Trovel d. sol

contracts/src/ ActivePool . sol
contracts/src/ AddressesRegi stry. sol
contract s/ src/ Bat chManager Oper ati ons. sol
contracts/src/ Borrower Operations. sol
contracts/src/ Col | ateral Regi stry. sol
contracts/src/ Coll Surpl usPool . sol
contracts/src/ Def aul t Pool . sol
contracts/src/ GasPool . sol

contracts/src/ SortedTroves. sol

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG

https://github.com/mento-protocol/bold//tree/e964b6a9637df990a92136d6455f90151ab507b5
https://github.com/mento-protocol/bold//tree/ea31dab1701be2d83096d3574c4bd18891961bb5
https://github.com/mento-protocol/bold//tree/073a25f049f423b3336e3785d5f1e13235ced07b
https://chainsecurity.com

contracts/src/ StabilityPool . sol
contracts/src/ Syst enPar ans. sol
contracts/src/ TroveManager . sol
contracts/src/ TroveNFT. sol

In the following contracts were removed from the scope:

contracts/src/tokens/ pat ched/ ERC20Per mi t Upgr adeabl e. sol
contracts/src/tokens/ pat ched/ ERC20Upgr adeabl e. sol
contracts/src/tokens/ St abl eTokenV3. sol

2.1.1 Excluded from scope

All other contracts are out of scope.

The economic model and the choice of values for configurable parameters are also out of scope.

2.2 System Overview

This system overview describes of the contracts as defined in the Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Mento offers a fork of the Liquity v2 protocol, extending its functionality to enable users to open
collateralized debt positions (CDPs) by depositing the USDm stablecoin and borrowing non-USD
stablecoins against it. Protocol parameters can now be adjusted through governance, and multiple
contracts are now upgradable.

In addition, the fork introduces a rebalancing mechanism designed to maintain liquidity equilibrium in the
Mento FPMM. This mechanism leverages the Stability Pool from Liquity v2, enabling swaps between
collateral tokens from the FPMM and debt tokens from the Stability Pool.

This system overview focuses on the components that were modified from Liquity v2. A detailed
description of Liquity v2 can be found in the system overview of our Liquity v2 audit report.

2.2.1 Changes from Liquity v2

1. SystemParams: The newly added SystemParams contract manages system-wide parameters of
the protocol. Implementing an upgradable storage for all protocol parameters, it enables
modifications of the parameters through governance, instead of them being immutable after
deployment in Liquity v2.

2. Upgradability: The StabilityPool contract is now upgradable, as it extends the new LiquityBaselnit
contract, which is an upgradable version of the base contract. The Bold token is replaced with the
StableTokenV3 contract from Mento v3 core, which is also upgradable by governance.

3. BatchManagerOperations: some of the BorrowerOperations contract implementation was split to
the BatchManagerOperations contract to avoid exceeding the Solidity contract size limit following
the SystemParams modifications. The logic remains the same.

4. FXPriceFeed: The FXPriceFeed contract replaces the direct oracle price feeds with a Mento v3's
OracleAdapter feed.

5. StabilityPool: The StabilityPool contract was extended with a rebalancing functionality.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 6

https://ia601702.us.archive.org/5/items/chain-security-liquity-bold-audit/ChainSecurity_Liquity_Bold_Audit.pdf
https://chainsecurity.com

2.2.2 Rebalancing

The StabilityPool was extended with the swapCol | at er al For St abl e() and
_swapCol | at er al For St abl e() functions, which enable a Mento v3 core LiquidityStrategy to swap
collateral tokens from an unbalanced market maker against debt tokens from the StabilityPool. The
amounts of collateral tokens to receive and of debt tokens to send are set by the LiquidityStrategy and
are not verified. The LiquidityStrategy is therefore trusted to provide values that preserve the value of LP
positions, and its address is set during the initialization of the contract.

The mechanism is the same as a regular Liquity v2 liquidation: the removed debt tokens are removed
from the positions of the Liquidity Providers (LPs) of the StabilityPool, and the received collateral tokens
are added to the LP's collateral gains. The M N_BOLD AFTER REBALANCE parameter (the minimum
amount of debt tokens which must remain in the pool after a rebalance) is introduced to limit the rate of
scale changes of the pool's P product.

The CollateralRegistry was extended with function r edeentol | at er al Rebal anci ng, which enable a
Mento v3 core LiquidityStrategy to redeem collateralized debt positions (CDP's) similar to regular
redemptions except that the liquidity strategy pays the fee to the owner, not the registry.

2.2.3 FXPriceFeed

All prices are now fetched from the ownable and upgradable FXPriceFeed contract, which in turn fetches
prices from Mento v3's OracleAdapter. The OracleAdapter's address is set during initialization and can
be updated by the owner. The fet chPri ce() function returns the FX rate as a ui nt 256, optionally
inverting it when the i nver t Rat eFeed flag is set. Due to the implementation of OracleAdapter in Mento
v3 core, the f et chPri ce() function will revert when called outside of market hours. By extension, all
operations relying on the oracle price, such as liquidations, opening a new trove, or adding collateral, are
not possible outside of market hours.

The price feed queries an oracle for the status of the L2 Sequencer and reverts once sequencer
downtime is detected.

The contract implements an emergency shutdown functionality via the shut down() function which can
only be called by a wat chdog, and only when the oracle is not yet shut down. The wat chdog address is
set during initialization and can be updated by the owner with set Wat chdogAddr ess(). When
triggered, the shutdown acts as a shut downFr onOr acl eFai | ur e.

2.2.4 Migration

A number of non-USD stablecoins have already been deployed previously with an early version of the
protocol. Mento plans to migrate these tokens to the new CDP system by creating an equivalent CDP
position and burning the debt tokens.

2.3 Changes in

« LiquidityStrategy now calls the r edeentCol | at er al Rebal anci ng function when redeeming to use
a custom fee. Previously it used the standard redemption path.

« Liquidations are disabled when the sequencer is down (and for a grace period after it comes back
up).

* FXPriceFeed now supports an i nvert Rat eFeed flag that computes the inverse of the oracle rate
when enabled.

* FXPriceFeed now has owner-only setter functions for the OracleAdapter address, the rate feed ID,
and the i nvert Rat eFeed flag.

» Rebalancing via swapCol | at er al For St abl e() is now disabled when the system is shut down.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.4 Trust Model

The Liquity system was designed to be immutable with limited trust assumptions. However, multiple
contracts are now upgradable, and the system parameters are now maodifiable, which introduces
additional trusted roles.

The Mento governance (fully trusted) can upgrade the StabilityPool and the StableTokenV3, modify all
system parameters, and reconfigure the FXPriceFeed. Malicious parameter values or a malicious
OracleAdapter could lead to all funds becoming stuck or lost. Additionally, governance can assign the
Minter, Burner, and Operator roles in StableTokenV3, enabling a compromised governance to mint
arbitrary amounts of unbacked stablecoins or seize any user's tokens. The roles are expected to be held
only by the Liquity smart contracts.

The OracleAdapter (fully trusted) is trusted to provide price updates within the expected threshold and
return correctly formatted prices, with the expected number of decimals. It is expected that it reverts
outside of market hours. Incorrect prices could lead to a loss of all value in the system.

The LiquidityStrategy (fully trusted) which is whitelisted in the StabilityPool is trusted to provide fair values
for the amounts of collateral tokens to receive and of debt tokens to send, as there are no additional
checks on those values. A malicious LiquidityStrategy could steal all tokens from the StabilityPool.
Further, trove owners must trust the liquidity strategy to calculate a fair fee for the rebalancing transaction
as a malicious strategy could set this fee to zero and trade with the trove owner at the oracle price.

The wat chdog role (partially trusted) of the FXPriceFeed is trusted, as an unintended shutdown of the
price feed would lead to a shutdown of the Liquity system, which would lead to losses and denial of
service.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

« CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0

ty g

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 1
ty g

» Redistributions Are More Likely To Happen

5.1 Redistributions Are More Likely To Happen
(Design (CTY|VCETTB] Risk Accepted)

Liquity V2 treats redistributions as a last resort: they only trigger when the Stability Pool is depleted and
large undercollateralized troves exist simultaneously. Redistributions are considered very unlikely, and a
high number of them could lead to the mechanism collapsing due to rounding (see Repeated
redistribution can eventually result in zero stake Troves). Deliberately triggering sizable redistributions is
considered difficult to engineer, since they require both the Stability Pool to be empty and large
liquidatable Troves to be available.

CS-MELI-004

Mento's extensions invalidate both assumptions:

« Anyone can create a new trove, then push a new price update permissionlessly that makes the trove
liquidatable.

» Rebalancing can empty the Stability Pool at any moment, even when the system is healthy, and can
also be triggered permissionlessly.

An attacker can therefore drain the StabilityPool through rebalancing, publish a new low FX price, and
liquidate large troves. Those liquidations now redistribute debt/collateral to other troves without paying
the gas compensation that direct liquidations provide, and the zero stake redistribution path becomes
more common because the attacker can repeat the sequence.

See also Stability Pool can be emptied out.

Risk accepted:

Mento accepted the risk, but has decided to keep the code unchanged.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 11

https://github.com/liquity/bold?tab=readme-ov-file#22---repeated-redistribution-can-eventually-result-in-zero-stake-troves
https://github.com/liquity/bold?tab=readme-ov-file#22---repeated-redistribution-can-eventually-result-in-zero-stake-troves
https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0

(CL:0)-Severity Findings 1
« Batch Manager Is Not Deleted in kickFromBatch

(Medium)-Severity Findings 0

(Low)-Severity Findings 8

« Incorrect StabilityPool Interface
+ Rebalances Are Partially Allowed During Shutdown
» Swapping Collateral Does Not Accrue Interest

Informational Findings 7

« Insufficient Check in SystemParams

» LiquidityStrategy Cannot Be Changed

+ Missing Sanity Checks

« Redistribution Penalty Should Be Smaller Than MCR

* Whitepaper Deviations

+ minDebt Bounds Do Not Allow Configuring Low-Value Currencies Correctly
« swapCollateralForStable Event Indistinguishable From Liquidations

6.1 Batch Manager Is Not Deleted in
kKickFromBatch
D) (D) (Version 1) CRIRET)

Due to an oversight in moving functionality to Bat chManager Qper ati ons, ki ckFronBat ch() in
Bor r ower Oper at i ons does not delete i nt er est Bat chManager O [_trovel d] .

CS-MELI-001

As a result, TroveManager thinks the trove is standalone, while Bor r ower Qper at i ons still routes it
through the batched code paths. The implications are:

« Any subsequent call to cl oseTr ove takes the batch branch and subtracts the trove's debt/collateral
from Lat est Bat chDat a. This might allow a user to exit the protocol and repay no debt.

e The borrower can't adjust their interest rate or assign a new batch manager because
_requirel sNot I nBat ch() now always reverts.

* The mapping is never corrected elsewhere, so the trove remains permanently stuck unless the
contract is upgraded.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Code corrected:

Mento added the missing del ete interestBatchManagerO[_troveld]; statement in the
ki ckFronmBat ch() function.

6.2 Incorrect StabilityPool Interface

(Correctness YT Code Corrected)

In IStabilityPool, the swapCol | at er al For St abl e function lists its arguments in the opposite order
from the implementation. The interface should take amountCollln first, followed by
anmount St abl eCut , to match the contract.

CS-MELI-002

Code corrected:

Mento fixed the parameters order in the | St abi | i t yPool interface to match the implementation.

6.3 Rebalances Are Partially Allowed During
Shutdown
7D (Low) (Version 1) (CXNSIZRT)

In StabilityPool, the swapCol | at er al For St abl e function continues working during shutdown. This
means it can still be used by an FPMM to rebalance. However, the other rebalance direction using
redemptions is disabled during shutdown, as redemptions are disabled. Only urgent redemptions can be
done during shutdown.

CS-MELI-003

The swapCol | at er al For St abl e function should also be disabled during shutdown.

Code corrected:

Mento added a _r equi r eNoShut down() check to the swapCol | at er al For St abl e function.

6.4 Swapping Collateral Does Not Accrue Interest

(Correctness JCOEERTBY Code Corrected)

The function St abi | i t yPool . swapCol | at er al For St abl e does not accrue interest when collateral
is swapped, but reduces the values t ot al Bol dDeposi t s and P that are later used to distribute interest.
The next time interest is accrued (e.g., when pr ovi deToSp or bat chLi qui dat e is called), the interest
will be distributed using the reduced values.

CS-MELI-005

In detail, the function _updat eYi el dRewar ds Sumupdates the yield reward running sum as:

scaleToB = yield - ﬁ/totalDeﬁosits

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

where P and totalDe;Sosits denote the new state variables after interest accrual is called the next time.
These variables will generally be smaller than the correct values, since rebalancing reduced the total
deposits and running variable P.

These variables will then be wused to -calculate the yield gain for each depositor in
get Deposi torYiel dGin():

yield - P

yieldGain = -
totalDeposits - Pinjtia - SCALE_FACTOR

Since these values will be incorrect, we can estimate the relative error for yieldéain compared to
yieldGain that would use the correct state variables:

ieldGain
z -1

error = yieldGain

Interestingly, since the rebalancing simply reduces the total deposits by some amount Ad. We have
totalDeposits = totalDeposits — Ad and by definition of P, P =P - (totalDeposits — Ad)/totalDeposits,
plugging these in yields:

P - (totalDeposits — Ad)/totalDeposits totalDeposits

P ' totalDeposits — Ad -1=0

error =

In conclusion, while it is incorrect, the error is negligible.

Code corrected:

Mento added the activePool.mntAgglnterest() call at the beginning of the
swapCol | at er al For St abl e function to accrue interest before the swap.

6.5 Insufficient Check in SystemParams

(Informational] [Version 1]

SystemParams only enforces that m nBol dI nSP is not zero before storing the value.

CS-MELI-006

However, the rest of the system assumes that at least 1e18 collateral tokens remain in the StabilityPool
at all times after the initial deposits. This can be seen in the following code comment:

Once total Bol dDeposits has becone M N BOLD IN SP, a liquidation nmay never fully
enpty the Pool a mnimmof 1 BOLD remains in the SP at all tines thereafter.

This is important to prevent P from reaching zero and introducing catastrophic rounding errors.

Code corrected:

Mento added proper validation for m nBol dI nSP in the Syst enPar ans constructor, ensuring that
m nBol dl nSP >= 1el8.

6.6 LiquidityStrategy Cannot Be Changed
[Informational] [Version 1]

CS-MELI-007

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Mento has stated that the liquidity strategy used by the StabilityPool should be changeable, but currently
there is no function to change it.

Code corrected:

The liquidity strategies were made upgradeable in the mento-core repository. This allows their logic to be
changed if needed.

6.7 Missing Sanity Checks
[Informational] [Version 1]

The contract enforces a minimum threshold amount of debt tokens after a rebalance, referred to as
M N_BOLD_AFTER_REBALANCE, in the swapCol | at er al For St abl e() function. However, there is no
explicit check to ensure that the value of M N_BOLD_AFTER_REBALANCE is greater than or equal to the
value of M N_BOLD_|I N_SP, which represents the minimum amount of debt tokens required to be
maintained in the Stability Pool after liquidations.

If M N_BOLD_AFTER_REBALANCE is set to a value less than M N_BCLD_| N_SP, the contract could allow
for a situation where the total Bold deposits fall below the required minimum threshold during rebalances.

CS-MELI-010

Code corrected:

Mento added a validation check in Syst enPar ans to ensure that
nm nBol dAf t er Rebal ance >= ni nBol dl nSP.

6.8 Redistribution Penalty Should Be Smaller
Than MCR
[Informational] [Version 1]

In Const ant s, the maximum penalty for liquidation during redistributions
(MAX_LI QUI DATI ON_PENALTY_REDI STRI BUTI ON) is set to 20%.

However, the redistribution penalty should be at most the system's overcollateralization margin
(MCR - 100%), since a trove can only lose at most its equity.

CS-MELI-011

For example, if the MCRis set to 110%, a trove falling slightly below MCR has at most 10% equity. A 20%
penalty could therefore never be fully applied. Setting the maximum penalty higher than the available
equity is inconsistent with the MCR chosen.

The constructor of Syst enPar ans did not enforce that
MAX_LI QUI DATI ON_PENALTY_REDI STRI BUTI ON <= MCR - 100%

Code corrected:

Mento added validation in the Syst enPar ans constructor to ensure that the redistribution penalty does
not exceed MCR - 100%

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.9 Whitepaper Deviations
[Informational] [Version 1]

The whitepaper states that, during a contraction rebalance, the CDP Liquidity Strategy can withdraw
collateral tokens from the Stability Pool in exchange for repaying debt tokens:

CS-MELI-013

Fl ash-swap contract — |If traders have reduced the USD. mreserves of the FPMM beyond
the tolerance, the strategy reverses the above trade: it withdraws USD.mfromthe Stability
Pool and repays an equival ent anpbunt of JPY.mto the Stability Pool.

However, this is not the case in CDPLi qui dityStrategy. sol. The strategy can only execute
contractions by using the redemption functionality of Liquity V2.

Specification changed:

Mento updated the whitepaper to accurately reflect the implementation.

6.10 minDebt Bounds Do Not Allow Configuring
Low-Value Currencies Correctly

[Informational] [Version 1]

The constructor of Syst enPar ans enforces a boundary of 0 < ninDebt < 10 _000el18 on the
minimum debt threshold for a Trove.

CS-MELI-014

While 10 000 units is enough for USD-pegged tokens, it is tiny for low-value currencies (e.g., 10 000
KRW = $7). Those branches often need much higher minimum debts to keep liquidations economically
viable and cover fixed gas/GasComp costs. However, the constructor does not allow any value above 10
000 tokens.

Code corrected:

Mento removed the maximum validation on the m nDebt parameter, allowing it to be configured higher
for low-value currencies.

6.11 swapCollateralForStable Event
Indistinguishable From Liquidations

(Informational) (Version 1)

In St abi | i t yPool , swapCol | at er al For St abl e() emits the same
St abi | i t yPool Col | Bal anceUpdat ed and St abi | i t yPool Bol dBal anceUpdat ed events that are
emitted during liquidations. There is no dedicated event to signal that the change came from a liquidity
strategy rebalance rather than a trove liquidation.

CS-MELI-015

As a result, external monitoring cannot tell when pool assets are taken by manual rebalances versus
regular liquidations.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Code corrected:

Mento added a dedicated Rebal anceExecuted event that is emitted by the
swapCol | at er al For St abl e function to distinguish rebalances from liquidations.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Missing Events
(Informational] [Version 1](j

CS-MELI-009
» Several modified contracts cache the address of Syst enPar ans in their constructors but do not
emit a corresponding event, even though events for other dependencies are emitted. A
non-exhaustive list of affected contracts includes:
* Act i vePool
* Borr ower Oper ati ons
* Bat chManager Oper at i ons
*Col | ateral Regi stry
*StabilityPool

* Tr oveManager

« Bat chManager Oper ati ons does not emit any event when setting the addresses of its
dependencies in the constructor.

e St abi |'i t yPool does not emit an event when setting the address of its | i qui di t ySt r at egy in
initialize().

These missing events make it more difficult to verify deployments and detect misconfigurations.

Acknowledged:

Client is aware of this behavior, but has decided to keep the code unchanged.

7.2 Stability Pool Can Be Emptied Out
(Informational] [Version 1]

As anyone can permissionlessly push chainlink prices in the ChainlinkRelayer, it is possible to
intentionally empty out the stability pool in the following way:

CS-MELI-012

1. Create a large trove with ICR equal or right above MCR
2. Push a price update that reduces the oracle price

3. Liquidate the freshly created trove

These steps can be done atomically with a flashloan.

Generally, liquidations should be profitable for the stability pool, so there is no incentive to do this.
However, there may be extreme market conditions in which liquidations are unprofitable for the stability

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

pool and profitable for the trove owner. Once the stability pool is empty, further liquidations will be done
as redistributions to other troves.

There is a similar known issue in Liquity V2. The difference is that in Liquity V2, it is not possible to
permissionlessly push the Chainlink price, so the actions cannot be executed atomically, and cannot use
a flashloan. For more information, reference the Liquity V2 audit report, issue CS-BOLD-019.

Risk accepted:

Mento has accepted the risk, but has decided to keep the code unchanged.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 19

https://ia601702.us.archive.org/5/items/chain-security-liquity-bold-audit/ChainSecurity_Liquity_Bold_Audit.pdf
https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 CCR and SCR Considerations

Note that the CCR and SCR must be set in such a way that they are not too close to each other to
prevent intentional triggering of branch shutdown.

In particular, the CCR should be higher than the SCR by an amount that is greater than the largest
expected price change in a single oracle update. Otherwise, an attacker could intentionally trigger
shutdown by frontrunning the oracle update.

8.2 Cannot Add Collateral if Market Closed

The FXPriceFeed reverts outside of market hours. As a result, users cannot add collaterals to their troves
while the market is closed, as adding collateral requires an oracle price. This means that users cannot
top up their troves in case they expect a price drop of the collateral token while the market is closed.

It should also be noted that interest continues to accrue on troves while the market is closed. As a result,
it is possible that a trove is not liquidatable when the market closes, but becomes liquidatable while the
market is closed due to interest accrual.

8.3 Changing Upgradeable Parameters Can Be
Dangerous

In Liquity V2, all parameters are constants. In Mento, most parameters were made upgradeable. Any
upgrade of the parameters once the contracts are live should be carefully reviewed and simulated to
ensure that it does not break the contracts.

The Syst enPar ans contract is itself upgradeable, meaning that all of its stored values can be changed.
Below is a non-exhaustive collection of parameters that could be problematic to change:
The ETH_GAS_COWPENSATI ON should never be changed.

1. Increasing the ETH_GAS_COWVPENSATI ON will lead to insolvency, since the amount of
ETH_GAS_COMPENSATI ON deposited for each user is not cached, so users would be able to
get more out than they originally paid in. Similarly, liquidators would receive more.

2. Reducing the ETH_GAS_COVPENSATI ON will lead to stuck funds.

The Critical Collateralization Ratio (CCR), Shutdown Collateralization Ratio (SCR), and Maintenance
Collateralization Ratio (MCR) should only be changed with utmost care. It must be ensured that changing
them does not create bad debt or trigger shutdown. Not only is their absolute size important, but also
their relation to LI QUI DATI ON_PENALTY_SP, LI QUI DATI ON_PENALTY_REDI STRI BUTI ON,
COLL_GAS COVPENSATI ON_DI VI SOR, the volatility of the collateral pairs, as well as the chainlink

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

deviation. Changes could result in liquidations not being profitable enough, creating bad debt, or making
self-liquidation profitable.

A Buffer Collateralization Ratio (BCR) lower than a chainlink update can enable the issue CS-BOLD-019
Upfrontfee Can Bring Troves Bel ow MCRfrom the Liquity V2 audit report.

8.4 Gas Compensation Must Be Sufficient

(D (Version 1)

The gas compensation for liquidations must be set sufficiently high to ensure that it is always profitable to
liquidate troves. In particular, it must be high enough to cover the gas when the network is highly
congested, not just the average gas cost.

8.5 LIQUIDATION PENALTY_SP Must Be Large
Enough

(D (Version 1)

The LI QUI DATI ON_PENALTY_SP parameter defines the penalty applied to troves when they are
liquidated through the Stability Pool. It is important that this penalty is set sufficiently high, such that
liquidations are profitable for the Stability Pool. If it is too low, it can be profitable to intentionally create a
liquidatable position and liquidate it through the Stability Pool.

In particular, the penalty should be higher than the Chainlink deviation threshold for the FX pair.
Whenever the current oracle price deviates from the true market price by more than the
LI QUI DATI ON_PENALTY_SP, liquidations are unprofitable for the Stability Pool.

Note that price updates can be larger than the Chainlink deviation threshold, so this is a lower bound.
The value should be high enough that an oracle deviation larger than the penalty is unlikely to happen.

Note that it is easier to create a liquidatable position in Mento than in Liquity V2, since anyone can
permissionlessly push a price update. See also Stability Pool can be emptied out.

8.6 MCR Must Be Sufficient for Expected Volatility
(D) (Version 1

The MCR must be chosen in a way that accounts for the largest price swing the FX pair can experience
before liquidations can react. For example, an MCR of 110 % assumes the price will not drop by more
than 10 % in the time it takes to liquidate.

In particular, it must also not move by this amount between the market close and the market open.
Markets could be closed for three days in a row when a weekend overlaps with a holiday.

8.7 Rebalancing via Redemptions Can Fail

(D) (Version 1)

Rebalancing via redemptions reverts if the total redeemable debt is lower than the requested rebalance
amount. Under normal conditions this is not expected, since all debt tokens are issued by the Liquity
system and max| t er at i ons can be set sufficiently high.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 21

https://ia601702.us.archive.org/5/items/chain-security-liquity-bold-audit/ChainSecurity_Liquity_Bold_Audit.pdf
https://chainsecurity.com

However, the Liquity system prohibits redemptions of certain troves, which can reduce the total
redeemable amount:

1. Under-collateralized troves: If a trove's collateralization ratio drops below 100%, the system
skips it during redemption to avoid decreasing its collateral ratio further. These troves should
be liquidated instead.

2. Unapplied redistribution debt: Troves that have been fully redeemed can receive new debt
via redistributions. This debt is not redeemable until appl yPendi ngDebt is called on the trove
or the trove owner syncs their position.

Both scenarios are considered unlikely under normal operating conditions. If they do happen,
under-collateralized troves are expected to be liquidated promptly, and appl yPendi ngDebt can be
called permissionlessly by anyone to make redistribution debt redeemable again.

8.8 Redemption Fee Floor Must Account for
Oracle Arbitrage

FXPri ceFeed relays prices that inherit Chainlink’s deviation threshold behavior: a hew Chainlink price is
pushed if it moves beyond the configured threshold, or when the heartbeat time has passed.

Meanwhile, the protocol allows redemption fees as low as the redenpti onFeeFl oor set in
Syst enPar ans. Whenever the oracle underreports the true price by more than the minimum redemption
fee, a stale feed can be exploited to redeem collateral tokens at a discount.

Consider the following example, assuming a minimum redemption fee of 0.5%:

1. The FX pair moves to a price that is 0.6% higher than the last oracle price.

2. An arbitrageur acquires debt tokens, calls r edeentol | at eral (), and receives collateral at
the oracle price plus the redemption fee floor (0.5%). They can immediately sell the received
collateral at spot. As the oracle is stale, the arbitrageur profits from the 0.1% difference (0.6% -
0.5%).

As a result, the r edenpt i onFeeFl oor should be set to a sufficiently high value based on the expected
volatility of the FX pair, the Chainlink deviation threshold, and the heartbeat time. In case the volatility is
high, a single price update can be larger than the deviation threshold. E.g., if the price moves by 1% in a
single update, and the deviation threshold is set to 0.5%, the oracle price will change by 1%.

Note that the FXPri ceFeed requires someone to trigger the price update after it has been pushed by
Chainlink, by calling the ChainlinkRelayer's r el ay function. If this is not done immediately, it can lead to
greater staleness.

8.9 Redemptions Are Less Punishing in Mento

(D) (Version 1)

In Mento, redemptions are less punishing compared to Liquity. In Liquity, redemptions generally happen
only when they are profitable to do, as the redeemer is the one paying for the redemption. However, in
Mento, redemptions can also be used to rebalance an FPMM. In this case, the FPMM is paying to
execute the redemption even if it is not profitable to do so. In fact, the rebalance incentive is expected to
be used to pay the redeemer.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

This changes the game theory of redemptions. In Liquity, trove owners generally want to avoid
redemption, as they will most likely lose money. If getting redeemed is profitable, this will cause trove
owners to choose a rate close to the lowest possible interest rate.

8.10 Stability Pool Users Can Dodge Bad Debt
(D) (Version 1

Liguidations are performed against the stability pool. Generally, liquidations are profitable. However, if
the price of the collateral asset drops significantly, it is possible for liquidations to be unprofitable for the
stability pool. In this case, stability pool users can avoid taking on bad debt by withdrawing their stake
before the liquidation occurs. This is also the case in Liquity V2.

In Mento, this is more likely to happen in case the price drop occurs while the markets are closed (while
the MarketHoursBreaker reverts). During this time, most actions in the Liquity system are blocked,
including liquidations. However, stability pool users can still withdraw their stake, as the Stability Pool
contract does not use the price oracle. As a result, stability pool users may remove their stake over a
trading weekend in case they expect a significant price drop when the markets open again.

I:$: Mento - Mento Liquity v2 - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Changes from Liquity v2
	2.2.2 Rebalancing
	2.2.3 FXPriceFeed
	2.2.4 Migration

	2.3 Changes in
	2.4 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Redistributions Are More Likely To Happen

	6 Resolved Findings
	6.1 Batch Manager Is Not Deleted in kickFromBatch
	6.2 Incorrect StabilityPool Interface
	6.3 Rebalances Are Partially Allowed During Shutdown
	6.4 Swapping Collateral Does Not Accrue Interest
	6.5 Insufficient Check in SystemParams
	6.6 LiquidityStrategy Cannot Be Changed
	6.7 Missing Sanity Checks
	6.8 Redistribution Penalty Should Be Smaller Than MCR
	6.9 Whitepaper Deviations
	6.10 minDebt Bounds Do Not Allow Configuring Low-Value Currencies Correctly
	6.11 swapCollateralForStable Event Indistinguishable From Liquidations

	7 Informational
	7.1 Missing Events
	7.2 Stability Pool Can Be Emptied Out

	8 Notes
	8.1 CCR and SCR Considerations
	8.2 Cannot Add Collateral if Market Closed
	8.3 Changing Upgradeable Parameters Can Be Dangerous
	8.4 Gas Compensation Must Be Sufficient
	8.5 LIQUIDATION_PENALTY_SP Must Be Large Enough
	8.6 MCR Must Be Sufficient for Expected Volatility
	8.7 Rebalancing via Redemptions Can Fail
	8.8 Redemption Fee Floor Must Account for Oracle Arbitrage
	8.9 Redemptions Are Less Punishing in Mento
	8.10 Stability Pool Users Can Dodge Bad Debt

