

PUBLIC

Code Assessment

of the Mento Core v3

Smart Contracts

February 17, 2026

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 12

4 Terminology 13

5 Open Findings 14

6 Resolved Findings 18

7 Informational 29

8 Notes 30

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Mento team,

Thank you for trusting us to help Mento with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Mento Core v3, according to
Scope, to support you in forming an opinion on their security risks.

Mento offers Mento Core v3, a collateralized debt position (CDP)-backed Foreign Exchange (FX) system.
Mento Core v3 implements a Fixed Price Market Maker (FPMM) contract, which offers fixed-rate
stablecoin swaps based on oracle prices. The system also includes a separately audited Liquity v2 fork,
which allows users to open CDPs for different currencies by depositing USDm tokens and minting
stablecoins against them. The FPMM can also use the Liquity fork's StabilityPool and redemptions for
rebalancing.

The most critical subjects covered in our audit are functional correctness, oracle implementation and its
operational implications, as well as rounding issues. Functional correctness has been improved by
addressing Incorrect Redemption Fee Formula in CDPLiquidityStrategy. Rounding directions do not
consistently follow best practices (though no specific attack was uncovered), see Rounding Should Favor
Protocol LPs.

The general subjects covered are documentation and specification, observability, and correctness of
preview functions. Documentation is good thanks to detailed descriptions of the Liquity fork and
rebalancing flow, although practical liquidity caveats remain, see Forex Market Low-liquidity
Considerations. Helper utilities such as the zap parameter generators have known limitations, see Zap
Parameters Helpers Ignore Price/State Changes.

We have also provided Notes on important considerations which can aid in understanding the system.

In summary, we find that the codebase provides a satisfactory level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 7

• Code Corrected 3

• Specification Changed 1

• Code Partially Corrected 1

• Risk Accepted 2

Low -Severity Findings 9

• Code Corrected 6

• Risk Accepted 3

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Mento Core v3 repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 22 October 2025 683af1f4f396d2fbf60eb2c362dd2ee4e184c201 Initial Version

2 22 January 2026 095d4cec3253f1b693e1e1f14490b7a36644920a First fixes

3 2 February 2026 ebbaffece1ab0f5b62e5fb8981c55240617af436 Second fixes

4 13 February 2026 e77233608e1923b6aa1441aced757e27ca0aa6a9 Third fixes

5 17 February 2026 0e07807c222fabf93556bd48b263483f994b9332 Final Version

For the solidity smart contracts, the compiler version 0.8.24 was chosen.

The following contracts were in scope for the review:

contracts/libraries/LiquidityStrategyTypes.sol
contracts/libraries/TradingLimitsV2.sol
contracts/liquidityStrategies/CDPLiquidityStrategy.sol
contracts/liquidityStrategies/LiquidityStrategy.sol
contracts/liquidityStrategies/ReserveLiquidityStrategy.sol

contracts/oracles/OracleAdapter.sol
contracts/oracles/breakers/MarketHoursBreaker.sol

contracts/swap/router/Router.sol
contracts/swap/virtual/VirtualPool.sol
contracts/swap/virtual/VirtualPoolFactory.sol

contracts/swap/FactoryRegistry.sol
contracts/swap/FPMM.sol
contracts/swap/FPMMFactory.sol
contracts/swap/FPMMProxy.sol
contracts/swap/OneToOneFPMM.sol

contracts/tokens/StableTokenV3.sol
contracts/tokens/StableTokenSpoke.sol

Version 2In the following contract was added to the scope:

contracts/swap/ReserveV2.sol

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 5

https://github.com/mento-protocol/mento-core/tree/683af1f4f396d2fbf60eb2c362dd2ee4e184c201
https://github.com/mento-protocol/mento-core/tree/095d4cec3253f1b693e1e1f14490b7a36644920a
https://github.com/mento-protocol/mento-core/tree/ebbaffece1ab0f5b62e5fb8981c55240617af436
https://github.com/mento-protocol/mento-core/tree/e77233608e1923b6aa1441aced757e27ca0aa6a9
https://github.com/mento-protocol/mento-core/tree/0e07807c222fabf93556bd48b263483f994b9332
https://chainsecurity.com

2.1.1 Excluded from scope
All other contracts are out of scope.

The economic model and the choice of values for configurable parameters are also out of scope.

2.2 System Overview
Version 4This system overview describes of the contracts as defined in the Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Mento offers Mento v3, an evolution of the Mento stablecoin protocol that enables the creation of
fiat-pegged stablecoins backed by on-chain collateral.

While Mento v2 operated as a Reserve-backed stablecoin issuance protocol, v3 transitions to a
collateralized debt position (CDP)-backed Foreign Exchange (FX) system. This new design allows the
protocol to maintain peg stability through over-collateralized positions and redemption mechanisms.

At the core of Mento v3 is the Fixed Price Market Maker (FPMM) contract, which enables oracle-driven,
fixed-rate stablecoin swaps. The system integrates a Liquity v2 fork, enabling users to open CDPs by
depositing collateral and minting stablecoins against it, as well as rebalancing the FPMM by leveraging
Liquity v2's redemption mechanism and its Stability Pool.

This system overview focuses on the components that were introduced or modified in Mento v3
compared to v2.

2.2.1 Fixed Price Market Maker (FPMM)
The FPMM allows users to trade a pair of tokens at fixed prices (plus a fee) that correspond to those of
the global FX market. The prices are brought on-chain through a Chainlink oracle. It implements Uniswap
v2-like mechanics for swapping and providing liquidity:

• Oracle-based swaps: Every swap executes at the external FX rate supplied by the OracleAdapter.
Traders receive the oracle-priced amount of the opposite asset minus the configured LP and
protocol fees. Pool reserves never determine the quoted price, they only serve as depth to settle
trades. The swapCheck() function ensures that, at the end of a swap, the reserve value according
to the oracle price increased by at least the fees for the swap.

• Reserve-proportional liquidity: mint() and burn() follow the usual constant-share rules: on an
empty pool the first LP must deposit both tokens. LP tokens represent pro-rata claims on reserves.
Any subsequent LPs must mint by adding tokens in the same proportions as the current reserves.
burn() returns each token in proportion to the reserves. LP minting and burning is independent of
the oracle price used for swaps.

• Threshold-based rebalancing: As swap prices are independent of reserves, the FPMM reserves
can become imbalanced. When the pool's reserve-implied price diverges from the oracle rate by
more than the configured threshold, a registered LiquidityStrategy can call rebalance().
Strategies take the token which there is too much of out of the pool, source the opposite asset from
their backing facility (e.g., Liquity StabilityPool or the Reserve), and deposit it to the pool. The
liquidity source is awarded a rebalancing incentive, which is applied by giving a discounted price
during rebalancing compared to the oracle price. The FPMM's _rebalanceCheck() enforces that,
after the strategy returns tokens, the pool's reserve price must have moved closer to the oracle's
price and that the token coming back into the pool must cover at least the oracle-priced value of
what left.

• Per-token trading limits: Governance can assign 5-minute and 1-day net-flow caps to each token,
via the TradingLimitsv2 library.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• Modifiable parameters: Parameters such as LP fee, protocol fee, incentive, thresholds, oracle
adapter, reference feed, invert flag, and protocol fee recipient are owner-settable. Storage follows
the ERC-7201 pattern so proxies can be upgraded safely.

During swaps, if the caller passes nonempty data in the call, the pool invokes IFPMMCallee.hook() on
the recipient after sending the output tokens to support flash-swap callbacks. During rebalances, the pool
calls ILiquidityStrategy.onRebalance() on the calling strategy so that it can source the opposite
asset before the transaction settles.

TradingLimitsv2 is a library for implementing trading limits on asset net-flows. It tracks two sliding
windows: L0 (5 minutes) and L1 (1 day). Net flows are stored at 15-decimal precision. Limits are
configured in native token units but scaled and stored at 15-decimal precision. Swaps that would push
cumulative inflows or outflows beyond those caps revert, until sufficient time has passed and the limit
resets. This limits the maximum value that can be lost to arbitrage within a short time. For example, it
limits value loss in case the oracle price lags the true market price during periods of high volatility.
Trading limits can be set in the FPMM by the owner using the configureTradingLimit() function.

OneToOneFPMM is an extension of FPMM. It overrides _getRateFeed() to always return a
one-to-one oracle price after verifying the reference feed is valid via the oracle adapter. This hardcodes
the exchange rate while keeping breaker protections. It is intended to be used for stablecoin-to-stablecoin
pools where both tokens represent the same currency. Note that such a pool should be expected to lose
value until the oracle starts reverting in case one of the stablecoins loses its peg.

FPMMFactory allows governance to deploy FPMM pools as FPMMProxy instances. The governance
registers implementations, manages default parameters (bounded to 2% combined fee and ≤10%
thresholds), and can deploy pools with custom configurations or reuse default values. Every deployment
records the address under both (token0, token1) and (token1, token0) to prevent duplicates, and marks
the created pool as valid for Router lookups. Ownership is transferred to the owner address provided
during initialization. FPMMFactory also offers a getOrPrecomputeProxyAddress() function to get
the precomputed or current proxy address for a token pair.

2.2.2 Liquidity Strategies
Liquidity strategies are used to rebalance FPMM pools when they become imbalanced. The strategy is
compensated for this service by receiving a better price during rebalancing, as defined by the strategy's
incentive parameters.

LiquidityStrategy is a base contract that stores a set of rebalancing pools. Governance can call
addPool() to register an FPMM plus its debt token, rebalance cooldown, and incentive, as well as
remove pools using removePool(). When rebalance(pool) is called, the strategy calculates how
many tokens need to be exchanged to bring the pool's reserves in line with the rebalance threshold. If the
ideal amounts cannot be exchanged due to a limitation, it uses the highest possible amount instead. It
calls IFPMM.rebalance() to receive tokens from the FPMM. Then, the rebalance hook calls back into
the strategy to complete the exchange. A liquidity strategy can only rebalance a pool if the rebalance
cooldown has passed since the last rebalance and the pool is imbalanced by at least the rebalance
threshold. Concrete strategies override _clampExpansion, _clampContraction, and
_handleCallback to receive and send funds from their respective liquidity source.

The CDPLiquidityStrategy contract connects FPMMs to Liquity v2's Stability Pool and redemption flows:

• Expansions withdraw debt from the Liquity Stability Pool using the newly added
swapCollateralForStable path and send collateral tokens from the FPMM in return. A
stabilityPoolPercentage parameter caps the proportion of pool deposits that can be used,
and the Liquity pool's MIN_BOLD_AFTER_REBALANCE constant enforces a floor of remaining debt
token. If insufficient debt is available, the helper recomputes the collateral owed to match the
reduced amount.

• Contractions redeem FPMM debt via
ICollateralRegistry.redeemCollateralRebalancing() with a fixed redemption fee

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

derived from the strategy's incentive parameters. A maxIterations field lets governance control
batched redemptions in Liquity's redeem loop.

• The callback path approves the Liquity Stability Pool or Collateral Registry for transfers, executes
the swap/redemption, and transfers the owed assets back to the FPMM after verifying balances.

• The rebalance parameters can be set via the CDPConfig value when the pool is added or
afterwards by the governance using setCDPConfig().

The ReserveLiquidityStrategy contract maintains compatibility with the Mento Reserve:

• Expansions mint the debt stablecoin in exchange for receiving the corresponding collateral from the
FPMM. Minting uses mint to create tokens directly in the pool's balance. There are no limits to the
amount of tokens that can be minted, as long as sufficient collateral is provided.

• Contractions pull collateral from the reserves and burn the stablecoin. If the Reserve does not hold
enough collateral to satisfy the ideal transfer, the amount is capped to the balance of the reserve.

• The strategy exposes setReserve() so governance can change the underlying reserve if needed.

The LiquidityStrategyTypes contract centralizes the math used by every strategy. It builds a Context by
querying the target FPMM for token, metadata, reserves, oracle prices, and incentive settings, then
exposes helpers to convert between debt/collateral units, normalize decimals, and generate Action
objects that express expansion (push debt in, pull collateral out) or contraction (pull debt out, push
collateral in) steps. These helpers ensure consistent handling of decimals, rate scaling, basis-point
incentives, and hook callback data across strategies. It ensures that strategies take and return the token
amounts the FPMM expects.

2.2.3 Stable Tokens
The existing Mento stablecoins will have their implementation upgraded from StableTokenV2 to
StableTokenV3. StableTokenV3 remains an ERC-20 token with EIP-2612 permits, but now implements a
role-based mint/burn/operator permission system that the governance can adjust after deployment:

• minters are allowed to call mint().

• burners can burn from arbitrary accounts.

• operators can transfer tokens between addresses using the sendToPool() and
returnFromPool() functions, which are required for compatibility with the StabilityPool. Only the
StabilityPool contract is expected to be added as an operator.

Initialization optionally mints seed balances to specific addresses, only when deploying a new token and
not when upgrading from a v2 token. The contract is upgradable. Ownership is transferred to
governance, and new minters/burners/operators can be added or removed via setter functions emitting
events.

StableTokenSpoke mirrors the mint/burn logic for remote chains. It omits operators and the
StabilityPool-related functions, but governance can still configure minters/burners and seed initial
balances on deployment if needed.

2.2.4 Virtual Pools
The VirtualPool contract integrates the Mento v2 Broker to the new router, exposing existing
PoolExchanges via the BiPoolManager. It provides a Uniswap v2-like interface while using underlying
BiPoolManager exchange logic. Each virtual pool hardcodes a Broker and an exchange, and reports
reserves/metadata by reading the bucket balances from the underlying PoolExchange. During
initialization, the VirtualPool approves unlimited transfers of both its tokens to the Broker, so swaps do
not require additional permissions. Swaps trigger the Broker's swapOut() function, and then forward the
received tokens to the designated recipient. Because the buckets carry their own spread,
protocolFee() simply reflects the configured spread, and flash swaps are not supported (data must
be empty in swap() calls).

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

The VirtualPoolFactory contract deploys these wrappers per exchange pair. It determines canonical
(token0, token1) ordering, records the deployed address in bidirectional mappings so the VirtualPool can
be uniquely identified regardless of the tokens ordering, and exposes the IRPoolFactory interface,
allowing poolFor() to return virtual pools when the router is configured with this factory.
VirtualPoolFactory also offers the getOrPrecomputeProxyAddress() function, which returns the
existing pool address if deployed, or precomputes the deterministic CREATE3 address for the token pair
otherwise.

2.2.5 Oracle & Breaker
OracleAdapter is an ownable and upgradable contract that acts as a central adapter for oracle price
feeds and market condition validation. It integrates with SortedOracles for price data and BreakerBox for
circuit breakers, and validates FX market hours and trading modes before allowing operations. When
calling getFXRateIfValid(), the adapter ensures:

1. The breaker box reports bidirectional trading mode for this feed.

2. The rate timestamp is newer than reportExpiry seconds.

3. The FX market is currently open (checked via MarketHoursBreaker).

If these 3 conditions are not fulfilled, the call reverts. getRate() checks the same conditions but does
not revert if one of them is false, and instead returns the information in a RateInfo struct. Governance
can modify any dependency via setSortedOracles(), setBreakerBox(),
setMarketHoursBreaker(), or setL2SequencerUptimeFeed(), allowing the system to migrate
data providers without redeploying pools.

MarketHoursBreaker is a breaker that reverts when its shouldTrigger() function is called during FX
weekend hours (when the market is closed, from Friday 21:00 UTC to Sunday 23:00 UTC and on
January 1st / December 25th, as well as from 22:00 UTC on Dec 24 and Dec 31). It effectively pauses
new price consumption across the protocol until the market reopens and trading resumes. This means
that any functionality depending on oracle prices, such as swaps and rebalances in FPMM, will revert
while markets are closed.

2.2.6 Router
The Router is the user-facing entry point for swaps and liquidity management across all Mento pools. It
extends the Velodrome/Aerodrome router to handle FPMMs, VirtualPools, and any future pool type that
registers an IRPoolFactory in the governance-controlled FactoryRegistry. Its key capabilities are:

• The router holds a factoryRegistry that lists every approved pool factory. When a user specifies
a route hop, the Router resolves the correct pool address via the hop's factory by using poolFor()
(falling back to the default FPMM factory if none is provided) and rejects pools from unapproved
factories, ensuring that only official pools can be used. poolFor() uses each factory's
getOrPrecomputeProxyAddress() to retrieve the pool address, providing deterministic lookups.

• When executing a swap, users submit an ordered list of Route structs describing each hop (token
in/out plus optional factory address). The Router chains calls to each pool's swap function,
forwarding the correct amount of the intermediate token at every hop. It offers the standard
swapExactTokensForTokens() function, reverting if the final output is below amountOutMin.

• addLiquidity() and removeLiquidity() wrap the FPMM's minting and burning flows,
calculating optimal token ratios based on current reserves and transferring the required assets.

• quoteAddLiquidity(), quoteRemoveLiquidity(), and getAmountsOut() help users or
wallets precompute expected results for a given pool or multi-hop trade.

• Zap function zapIn() converts a single input token A into the precise amounts of tokens B and C
needed to provide liquidity to pool(B,C) in one transaction (A can be equal to B or C). zapOut()
provides the opposite functionality, removing liquidity from pool(B,C) and receiving a single output
token A in return. Both functions expect a Zap struct as well as swapping routes as inputs, and

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

make use of the quoting functions to calculate the ideal amounts of tokens. Functions
generateZapOutParams() and generateZapInParams() can be used to generate the
parameters required for zapping in or out. However, these only provide rough estimates, since the
actual execution can differ due to pool state changes (e.g. as result of the swap).

• Every state-changing function enforces a deadline, reverting if the transaction executes after the
timestamp, and validates the caller's minimum amount conditions.

The Router inherits from ERC2771Context, ensuring compatibility with meta transactions.

FactoryRegistry is an upgradable and ownable contract acting as a whitelist of pool factories. The registry
maintains a fallback factory (always approved) and only considers pools from approved factories valid,
ensuring that the router can only use whitelisted implementations.

2.3 Changes in Version 2
Version 2The following changes were introduced in of the contracts:

• Rebalancing now rebalances to the threshold, instead of to a 50/50 value distribution.

• A new ReserveV2 contract was introduced. It is a simplified version of the Reserve contract,
only supporting the functions needed by the ReserveLiquidityStrategy.

• All liquidity strategies are now upgradeable via proxy patterns.

• TradingLimitsV2 no longer counts swap fees in the trading limits.

• The rebalance incentive model was split into four separate parameters per pool: a protocol
incentive and a liquidity source incentive, each configured independently for expansion and
contraction. A protocol fee recipient receives the protocol share during rebalance callbacks.

• The rebalance callback was renamed from hook to onRebalance.

• Small swap amounts of tokens with more than 15 decimals can now round to zero in
TradingLimitsV2.

• The separate governance address in FPMMFactory was removed. It now just uses owner.
The maximum fee was increased from 1% to 2%.

• MarketHoursBreaker was modified to also revert from 22:00 UTC on Dec 24 and Dec 31.

• VirtualPoolFactory now uses CREATE3 via the CREATEX deployer contract for deterministic
pool deployment. The getOrPrecomputeProxyAddress() function now precomputes the
deterministic CREATE3 address for undeployed token pairs.

2.4 Trust Model
Roles and trusted components are enumerated below. All contracts in scope are upgradeable unless
noted otherwise. Proxy admins (usually governance) can replace implementations without on-chain
limitations.

• Governance (Fully trusted): Assumed to control all ownable contracts (e.g., FactoryRegistry,
FPMMFactory, Liquidity Strategies, OracleAdapter, StableTokenV3/Spoke, etc.). Governance can
deploy arbitrary pools, whitelist factories, upgrade proxies, assign strategy parameters, and appoint
minters/burners/operators. Compromised governance could mint unbacked stablecoins, seize users'
funds, approve malicious strategies, or swap oracle feeds to corrupt prices.

• ReserveV2 Owner (Fully trusted): Registers ReserveV2 roles. A compromised owner could register
a malicious spender to drain all reserve assets.

• ReserveV2 Liquidity Strategy Spenders (Fully trusted): Can move collateral from the reserve to any
address.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

• ReserveV2 Reserve Manager Spenders (Partially trusted): Can transfer collateral only to other
whitelisted reserve addresses, and can transfer stable assets (collected fees) to any address.

• Liquidity Strategies (Partially trusted): Only addresses added via
FPMM.setLiquidityStrategy() can call rebalance() on a given FPMM. The FPMM's
_rebalanceCheck() enforces that the strategies do not extract more value than the incentive
during a rebalance. Anyone can call rebalance on a registered pool, but the strategies and the
FPMM logic enforce invariants that protect the LP's assets.

• Liquity Components (Partially trusted): The Liquity StabilityPool, CollateralRegistry, SystemParams,
and overall governance must behave per Liquity's economic assumptions. A malicious Liquity
deployment could block swaps, overcharge redemption fees, or steal debt/collateral handed to it by
CDPLiquidityStrategy.

• StableToken Minters/Burners/Operators (Fully Trusted): Minters can inflate supply, burners can
destroy user balances, operators can move funds between any addresses. These roles must be
tightly controlled and are assumed to only be held by smart contracts.

• FPMM FeeSetter (Partially trusted): Can modify the LP fee, Protocol fee, and Rebalance Incentive,
subject to safety bounds (0 to hard-coded limits).

• Users / LPs (Untrusted): LPs provide liquidity via FPMMs, and users trade through the Router or
directly with pools. They can attempt to front-run trading limits or rebalances, but contract-level
checks enforce invariants. Anyone can call the Router's swap/liquidity/zap functions.

• External oracles (Partially trusted): The SortedOracles contract and its price sources (such as
Chainlink feeds) are assumed to provide accurate and timely FX rates. A compromised oracle could
misprice swaps, leading to losses for LPs. The maximum loss within a short time is bounded by the
trading limits.

• FX Market Assumptions: The system assumes FX markets are closed only during the periods
encoded in MarketHoursBreaker. If the breaker is misconfigured or if markets experience
extraordinary closures, oracle updates may not revert even if the price values should not be used.

All tokens used in Mento v3 are assumed to be non-malicious and to behave according to the
specifications. They are assumed to be ERC20-compliant with no special features (no transfer hooks
(reentrancy), rebasing, fees on transfer, etc.).

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

• Code Partially CorrectedMarketHoursBreaker Reports Inaccurate Market Hours

• Risk AcceptedRebalance Redemptions Can Hit Max Iterations

• Risk AcceptedRounding Should Favor Protocol LPs

Low -Severity Findings 3

• Risk AcceptedAdmin Reentrancy Possibilities

• Risk AcceptedOZ ERC2771 Has a Known Issue

• Risk AcceptedgetAmountOut Missing Insufficient Liquidity Check

5.1 MarketHoursBreaker Reports Inaccurate
Market Hours
Correctness Medium Version 1 Code Partially Corrected

CS-MECO-002

In MarketHoursBreaker, the reported market hours do not align with the actual trading hours of global
forex markets. The following discrepancies were identified:

1. Daylight Saving Time is not taken into account. As a result, the market is reported as closed during
the last hour of trading on Fridays, if it is winter time in the U.S. Additionally, the market is reported
as closed during the first two hours of trading on Sundays, if it is summer time in the U.S., and
during the first one hour of trading if it is winter time.

2. The _isHoliday function does not take into account time zones. It determines holiday dates
based on UTC time. This is inaccurate, as the market will actually close at 22:00 UTC on the
previous day for both Christmas and New Year's Day. The market will be reported as open between
22:00 UTC and 00:00 UTC, even though it is closed. Similarly, the market will open again at 22:00
UTC on the holiday, but the code will report it as closed until 00:00 UTC.

For further notes on the topic, see Forex market low-liquidity considerations

Code partially corrected:

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

The holiday timing issue has been addressed. The _isHoliday function now correctly closes the
market at 22:00 UTC on Christmas Eve (December 24th) and New Year's Eve (December 31st),
matching actual forex market behavior.

However, the Daylight Saving Time issue remains unaddressed. Mento acknowledged this limitation and
will accept the additional 1 hour downtime during the first release of V3.

5.2 Rebalance Redemptions Can Hit Max
Iterations
Design Medium Version 1 Risk Accepted

CS-MECO-003

In CDPLiquidityStrategy, if _handleCallback() does not get the full redemption amount that is
expected, the function reverts. For example, this could happen due to hitting the configured
maxIterations. There may be conditions where redemption rebalances can remain impossible until
the redemption list evolves, e.g., if there are many small troves at its beginning.

Risk accepted:

Mento has steated they will configure maxIterations to a high value within the block gas limit such
that a revert is very unlikely to happen.

5.3 Rounding Should Favor Protocol LPs
Security Medium Version 1 Risk Accepted

CS-MECO-005

In FPMM, the swap function performs rounding on token amounts in multiple places. In some cases, this
rounding can lead to a small loss of value for the protocol. It is considered best practice to always round
in favor of the protocol's LPs to ensure that they do not lose value due to rounding errors. Small losses
can potentially lead to critical exploits when combined with other vulnerabilities. While we have not
identified a specific exploit that takes advantage of this issue, it is important to address it to prevent
potential vulnerabilities.

The swap function does not round in favor of the protocol LPs in the following places:

1. When calculating the initial reserve value, the _totalValueInToken1Scaled function
rounds down, which can overestimate the user's transferred amount. The same function rounds
down later in _swapCheck, but there it benefits the protocol.

2. In _swapCheck, the expectedAmountIn is calculated using _convertWithRate(), which
rounds down. Additionally, the fees are rounded down twice. Once when calculating fee0 and
fee1, and again when calculating fee0InToken1.

The sum of these rounding issues can lead to a user receiving slightly more tokens than they should. It is
safer to round in a way such that protocol LPs always benefit from rounding.

Similar rounding happens in rebalance(). Swap and rebalance should have consistent rounding
behavior.

It should be noted that changing the rounding behavior may have implications on other functions. For
example, the getAmountOut function must never return an amount greater than what the user would
actually receive after fees and rounding. This should be validated through extensive fuzz testing.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Risk accepted:

Mento acknowledged that fixing all rounding issues across the codebase would take more effort than
originally anticipated and states:

Given that this doesn't present an immediate/significant
risk to the protocol we will provide a fix in a future
upgrade/follow up audit.
It's at the top of our list and we are actively working on it.

5.4 Admin Reentrancy Possibilities
Design Low Version 1 Risk Accepted

CS-MECO-007

The functions in the contracts are generally protected against reentrancy using reentrancy guards.
However, admin functions do not have reentrancy guards. This could be problematic, even if the admin
behaves correctly, as the admin contract is a governance timelock that allows for permissionless
execution of initiated transactions after the delay has passed.

Depending on the parameters being changed, this may lead to vulnerabilities where an attacker could
initiate a transaction with an arbitrary call (such as a swap hook), then trigger the admin function to
change parameters, and then complete the transaction with the new parameters.

Note that reentrancy guards only protect against reentrancy within the same contract. To fully eliminate
this risk (assuming the admin behaves correctly), the permissionless execution of timelocked
transactions in the governance contract would need to be disabled.

Risk accepted:

Mento stated:

We will keep this in mind for future Governance proposals/parameters upgrade,
however permissionless execution is an important part of our governance system
which we intend to keep.

5.5 OZ ERC2771 Has a Known Issue
Security Low Version 1 Risk Accepted

CS-MECO-010

The ERC2771 contract from the OpenZeppelin library uses an outdated version (v4.7.0). This version
has a known issue.

Generally, only the last minor version of a major release gets critical security fixes from OpenZeppelin, as
stated in their security policy.

Risk accepted:

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 16

https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-g4vp-m682-qqmp
https://github.com/OpenZeppelin/openzeppelin-contracts/security
https://chainsecurity.com

Mento reviewed the OpenZeppelin issue and determined it irrelevant to their use case. Mento therefore
decided to keep the current version as is.

5.6 getAmountOut Missing Insufficient Liquidity
Check
Design Low Version 1 Risk Accepted

CS-MECO-013

In FPMM, getAmountOut() computes the oracle-priced output for a given input but never verifies that
the pool actually has enough reserves to cover the result. For example, if reserves are zero (before any
liquidity is added or after the pool has been emptied by burns), getAmountOut() still returns a positive
amount even though the subsequent swap call would revert. Divergent behavior between the view helper
and the executable path can be misleading for users and integrating contracts.

Risk accepted:

Mento has accepted the risk, but has decided to keep the code unchanged.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 4

• Code CorrectedExcessive Approval in CDPLiquidityStrategy._handleCallback()

• Code CorrectedIncorrect Redemption Fee Formula in CDPLiquidityStrategy

• Code CorrectedRedemption Fee Calculation Does Not Round Correctly

• Specification ChangedZap Parameters Helpers Ignore Price/State Changes

Low -Severity Findings 6

• Code CorrectedRedemption Incentive Depends on Protocol Fee

• Code CorrectedInconsistent Denominators in Rate Feed Functions

• Code CorrectedFPMMFactory Redundant Governance Role

• Code CorrectedMissing FeeCurrency Interface

• Code CorrectedTradingLimits Incorrect Rounding Correction

• Code CorrectedUnnecessary Price Fetching

Informational Findings 13

• Code CorrectedDeprecated Comments in _rebalanceCheck

• Code CorrectedDeprecated Fee-on-transfer Tokens Functions

• Code CorrectedFPMM Mint Event Omits Recipient Address

• Code CorrectedIncorrect ERC20Permit Initialization

• Code CorrectedMissing Token Decimals Check in FPMM

• Code CorrectedOutdated FPMM Invariant

• Code CorrectedOverlapping Hook Function Signatures

• Code CorrectedRepeated Pool Lookups in Router _Swap

• Code CorrectedStableTokenV3.initializeV3 Does Not Update EIP712 Version

• Code CorrectedTradingLimitsV2 Accepts Unknown Flag Bits

• Code CorrectedUnindexed Address Parameters in FPMM Configuration Events

• Code CorrectedVirtualPoolFactory Returns Zero for Undeployed Pools

• Code CorrectedgetAmountsOut Returns Zero on Invalid Swap

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6.1 Excessive Approval in
CDPLiquidityStrategy._handleCallback()
Correctness Medium Version 2 Code Corrected

CS-MECO-029

In CDPLiquidityStrategy._handleCallback(), the function approves the CollateralRegistry
contract for collAmount collateral, but later only consumes collAmount - protocolIncentive
when calling swapCollateralForStable(). As such, a residual approval of protocolIncentive
will persist after the first time this function is called.

The project uses OpenZeppelin's safeApprove function as a wrapper to support uncommon collateral
types. However, this function is considered deprecated and has some footguns. One of them is that it
reverts when the approval is to be set to a non-zero value if it is currently non-zero.

function safeApprove(IERC20 token, address spender, uint256 value) internal {
 // safeApprove should only be called when setting an initial allowance,
 // or when resetting it to zero. To increase and decrease it, use
 // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
 require(
 (value == 0) || (token.allowance(address(this), spender) == 0),
 "SafeERC20: approve from non-zero to non-zero allowance"
);

As a result of the residual approval of protocolIncentive after the first call to
swapCollateralForStable(), the _handleCallback() function will revert on any subsequent call,
blocking rebalancing operations.

Code corrected:

The function was modified to approve for collAmount - protocolIncentive instead of
collAmount collateral.

6.2 Incorrect Redemption Fee Formula in
CDPLiquidityStrategy
Correctness Medium Version 1 Code Corrected

CS-MECO-001

In CDPLiquidityStrategy, _calculateMaxRedeemableDebt mirrors Liquity’s redemption-fee logic, so
that the strategy can clamp contractions when the Liquity fee would exceed the FPMM incentive budget.
However, the implementation multiplies by REDEMPTION_BETA when computing the fee:

uint256 redemptionFee = decayedBaseFee + (contractionAmount * 1e18 * redemptionBeta) / totalDebtTokenSupply;

Whereas the formula used in ._getUpdatedBaseRateFromRedemption() Liquity's
CollateralRegistry's divides by REDEMPTION_BETA:

uint256 redeemedBoldFraction = _redeemAmount * DECIMAL_PRECISION / _totalBoldSupply;
uint256 newBaseRate = decayedBaseRate + redeemedBoldFraction / systemParams.REDEMPTION_BETA();

This discrepancy causes the strategy to overestimate the redemption fee, leading to unnecessarily
restrictive contraction limits or reverts.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Code corrected:

The CDPLiquidityStrategy no longer obtains collateral by calling the standard redeem function. Instead, it
uses the entrypoint CollateralRegistry.redeemCollateralRebalancing, which takes the
redemption fee charged to the strategy as an argument. The redemption fee is independently calculated
by the strategy and does not depend on the base rate or other Liquity-internal parameters.

6.3 Redemption Fee Calculation Does Not Round
Correctly
Correctness Medium Version 1 Code Corrected

CS-MECO-004

In CDPLiquidityStrategy, the expected collateral received from a redemption is calculated. If the received
amount is lower than expected, the redemption will revert.

As multiple troves can be redeemed in a single redemption, there can be rounding errors from each trove
that accumulate. This accumulation of rounding errors is not taken into account in CDPLiquidityStrategy.

As a result, there can be cases where the redemption should succeed, but reverts due to the received
amount being slightly lower than expected because of accumulated rounding errors.

Code corrected:

A tolerance mechanism was added to handle precision loss in redemptions. The contract now allows
redemptions to succeed even if there is a small shortfall (up to REDEMPTION_SHORTFALL_TOLERANCE).
When a shortfall occurs within the tolerance, the contract subsidizes it from its own balance and emits a
RedemptionShortfallSubsidized event. Surpluses from redemptions are retained to offset future
shortfalls.

In case shortfalls are more common that surpluses, a small amount of external funds must be added to
cover them.

Note on the audit process:

This issue was identified both by the auditors and by the Mento team in parallel during the audit.

6.4 Zap Parameters Helpers Ignore Price/State
Changes
Design Medium Version 1 Specification Changed

CS-MECO-006

In Router, generateZapInParams() and generateZapOutParams() build recommended
amountOutMin/amountAMin values by chaining getAmountsOut and
quote{Add,Remove}Liquidity calls, assuming pool prices and routing state stay constant between
the view call and the actual zap.

In practice, pool state can change between parameter generation and execution. Also, zapIn() can
trade in the pool, which changes the reserves and will lead to reverts, as this change is not taken into

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

account in the minimum amounts for providing liquidity. Additionally, some limitations in the pools are not
taken into account, such as reduced available liquidity for the swap after removing liquidity in zapOut().
Also, trading limits (from TradingLimitsV2) could be hit and cause a revert, as they are not taken into
account.

Due to these factors, the suggested values can be stale or outright incorrect. Rather than returning
optimistic guesses, a more robust solution would be for off-chain integrators to simulate the actual zap
call via eth_call to capture the precise values under current pool conditions. Documenting this
limitation would prevent users from relying on numbers that don't reflect real execution.

Specification changed:

The limitations of these helper functions have been documented in the contract.

6.5 Redemption Incentive Depends on Protocol
Fee
Design Low Version 3 Code Corrected

CS-MECO-027

In CDPLiquidityStrategy, _calculateRedemptionFee() intentionally inflates the incentive fee rate so that
trove owners are compensated based on the original debt amount (including the protocol's cut).

However, the trove owner only experiences a redemption of the reduced amount.

As a result, the trove owner's compensation is dependent on the protocol fee.

For example, if 1000 BOLD leaves the pool and the protocol takes 10 BOLD, only 990 BOLD is
redeemed from the trove. The trove owner's incentive fee is applied to the full 1000.

The Stability Pool is also affected by a similar coupling.

Code corrected:

Version 4The CDPLiquidityStrategy has been updated to no longer inflate the fee rate in . The fee of
liquidity sources (i.e., trove owners or stability pool) is now calculated on the amount minus the protocol
fee. As such, the amount after applying protocol and incentive fees is now calculated as

 instead of .

6.6 Inconsistent Denominators in Rate Feed
Functions
Correctness Low Version 2 Code Corrected

CS-MECO-030

The FPMM._getRateFeed() function accepts denominators other than 1e18. However, the price feed
used in Liquity v2 fork (i.e. FxPriceFeed.fetchPrice()) does not support this flexibility and reverts
with a denominator other than 1e18.

The protocol assumes throughout the code that both protocols are using the same price (i.e. when
rebalancing with the Liquity V2 fork). If the denominator were set to anything other than 1e18, the Mento
core could continue operating while the Liquity v2 fork breaks.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

Code corrected:

The following assertion was added in OracleAdapter._getOracleRate():

assert(denominator == 1e24);

As both the numerator and denominator are then divided by 1e6, this ensures that the denominator
received by the FPMM is 1e18.

6.7 FPMMFactory Redundant Governance Role
Design Low Version 1 Code Corrected

CS-MECO-008

In FPMMFactory, there is a governance role. However, the owner role is already expected to be held
by governance, and covers all needed governance actions. As a result, the governance role is
redundant and can be removed to simplify the contract.

Code corrected:

The redundant governance role has been removed from FPMMFactory. The contract now uses only the
owner role for governance actions.

6.8 Missing FeeCurrency Interface
Design Low Version 1 Code Corrected

CS-MECO-009

According to Celo's specification, fee tokens are expected to implement the IFeeCurrency interface:

creditGasFees(address[] calldata recipients, uint256[] calldata amounts)

StableTokenV3 does not implement this interface.

Code corrected:

StableTokenV3 has been modified to implement the IFeeCurrency interface.

6.9 TradingLimits Incorrect Rounding Correction
Correctness Low Version 1 Code Corrected

CS-MECO-011

In TradingLimitsV2, if the scaledDelta value rounds down to zero, it is set to 1e3, to avoid rounding to
zero. However, it should actually be set to 1.

Code corrected:

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

The trading limits implementation was updated to track only the first 15 decimals of precision. Values
below this threshold are now rounded to zero.

6.10 Unnecessary Price Fetching
Design Low Version 1 Code Corrected

CS-MECO-012

In FPMM, the _rebalanceCheck function fetches the price a second time, even though the price was
already fetched in the rebalance function. The code assumes that the price is the same in both calls,
so there is no need to fetch it again. Currently, there is no untrusted external call made in the liquidity
strategies, so the price cannot change between the two calls. However, if in the future a strategy is added
that makes an untrusted external call before the second price fetch, the price could change between the
two calls, which would be incorrect behavior.

Code corrected:

The second price fetch has been removed from the code.

6.11 Deprecated Comments in _rebalanceCheck
Informational Version 2 Code Corrected

CS-MECO-028

The _rebalanceCheck function contains outdated comments that reference a "10 wei difference"
related to rounding and precision loss. These comments no longer accurately reflect the current
implementation.

Code corrected:

The comments were removed.

6.12 Deprecated Fee-on-transfer Tokens
Functions
Informational Version 1 Code Corrected

CS-MECO-014

In Router.sol, the functions swapExactTokensForTokensSupportingFeeOnTransferTokens
and _swapSupportingFeeOnTransferTokens are deprecated and should be removed, as
fee-on-transfer tokens are explicitly not supported.

Code corrected:

The deprecated functions for fee-on-transfer tokens have been removed from the Router contract.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

6.13 FPMM Mint Event Omits Recipient Address
Informational Version 1 Code Corrected

CS-MECO-015

In FPMM, the mint function emits a Mint event with (sender, amount0, amount1, liquidity) but does not
include the address that receives the LP tokens:

emit Mint(msg.sender, amount0, amount1, liquidity);

In contrast, the Burn event includes the to address that received the withdrawn tokens.

Code corrected:

The recipient address has been added to the Mint event.

6.14 Incorrect ERC20Permit Initialization
Informational Version 1 Code Corrected

CS-MECO-016

In StableTokenV3.sol, the initialize function incorrectly initializes the ERC20Permit with the
token symbol instead of the token name. According to OZ's ERC20Permit documentation:

It's a good idea to use the same `name` that is defined as the ERC20 token name.

StableTokenV2 also incorrectly initialized ERC20Permit with the symbol, so it must be weighed if
changing it now is worth it, or if compatibility is more important.

Code corrected:

The initialization has been updated to pass the token name instead of the token symbol, following the
ERC20Permit documentation.

6.15 Missing Token Decimals Check in FPMM
Informational Version 1 Code Corrected

CS-MECO-018

FPMM does not include checks to ensure that the token's decimals do not exceed 18.

However, it is assumed throughout the contract that tokens have a maximum of 18 decimals. For
example, in _totalValueInToken1Scaled():

amount1 = amount1 * (1e18 / $.decimals1);

If $.decimals1 is greater than 18, the division will round down to zero, leading to amount1 being equal
to zero.

Code corrected:

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

A decimals validation check has been added to the FPMM initialize function to ensure tokens have not
more than 18 decimals.

6.16 Outdated FPMM Invariant
Informational Version 1 Code Corrected

CS-MECO-019

In FPMM, the contract comment states the following invariant:

Rebalance does not change the direction of the price difference

However, the design was changed to allow rebalances that change the direction of the price difference,
as long as the price difference after the rebalance is small enough.

Version 2 :

Version 1The comment was updated to reflect the behavior of the code in :

Rebalance can change the direction of the price difference but
not by more than the rebalance incentive

Code corrected:

Version 3In , the comment was updated again to reflect this version's behavior of the code (rebalance can
no longer change the direction of the price difference).

6.17 Overlapping Hook Function Signatures
Informational Version 1 Code Corrected

CS-MECO-020

In FPMM, the swap and rebalance functions both call the hook interface. This may be a dangerous
pattern, as the swap hook can be called on an arbitrary to address, while the rebalance hook is only
called on registered liquidity strategies. The current strategies do sufficient validation to ensure that their
hook cannot be called through swap() with arbitrary data, so there is no immediate issue. However, if a
new strategy added in the future does not perform sufficient validation, or if it allows calling swap() from
the strategy, it may be vulnerable to attacks through the swap hook.

Using separate function signatures for the swap and rebalance hooks could help prevent this class of
issues in the future, by making it impossible to call the rebalance hook through swap().

Code corrected:

The rebalance hook has been renamed from hook to onRebalance to prevent any potential collision.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

6.18 Repeated Pool Lookups in Router _Swap
Informational Version 1 Code Corrected

CS-MECO-021

In Router, _swap() computes two pool addresses in each hop using poolFor(), one for the
destination address and another for executing the swap:

address to = i < routes.length - 1 ? poolFor(routes[i + 1]
 .from, routes[i + 1].to, routes[i + 1].factory) : _to;
IRPool(poolFor(routes[i].from, routes[i].to, routes[i].factory))
 .swap(amount0Out, amount1Out, to, new bytes(0));

Since poolFor() deterministically derives the address from the token pair and factory, calling it twice in
the same loop iteration wastes gas. Caching the result of address to and reusing it for the next loop
iteration could eliminate the duplicate lookup and slightly reduce per-hop costs without changing
behavior.

Code corrected:

A cache has been added to the router to store pool addresses and reduce redundant poolFor()
lookups, optimizing gas usage during multi-hop swaps.

6.19 StableTokenV3.initializeV3 Does Not Update
EIP712 Version
Informational Version 1 Code Corrected

CS-MECO-022

In StableTokenV3.sol, the initializeV3 function, called when upgrading from StableTokenV2,
does not update the EIP712 version used in ERC20Permit. This allows for permits created for the
previous implementation to remain valid.

Code corrected:

The initializeV3 function has been updated to set the EIP712 version to 3.

6.20 TradingLimitsV2 Accepts Unknown Flag Bits
Informational Version 1 Code Corrected

CS-MECO-023

In TradingLimitsV2, validate() checks that limit0 and limit1 are nonzero when their respective
bits are set, and that limit1 exceeds limit0 when both limits are enabled.

However, the function does not reject flag values containing bits outside L0 and L1. As a result, callers
can pass flags > 3 without reverting, even though such values have no defined meaning and could
mask configuration mistakes.

Code corrected:

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

The TradingLimitsV2 implementation was refactored to remove the flag-based validation system. Limits
are now derived directly from the configuration, eliminating the possibility of passing invalid flag values.

6.21 Unindexed Address Parameters in FPMM
Configuration Events
Informational Version 1 Code Corrected

CS-MECO-024

Several FPMM configuration events emit address parameters without indexing them:

event ReferenceRateFeedIDUpdated(address oldRateFeedID, address newRateFeedID);
event OracleAdapterUpdated(address oldOracleAdapter, address newOracleAdapter);
event ProtocolFeeRecipientUpdated(address oldRecipient, address newRecipient);

Indexing would let indexers and monitoring systems query configuration changes more efficiently.

Code corrected:

The address parameters in FPMM configuration events have been indexed.

6.22 VirtualPoolFactory Returns Zero for
Undeployed Pools
Informational Version 1 Code Corrected

CS-MECO-025

In VirtualPoolFactory, getOrPrecomputeProxyAddress simply returns the entry in
_pools[token0][token1].

When no virtual pool has been deployed for the pair, this mapping entry is zero, so the function reports
address(0) instead of a deterministic precomputed address (or an explicit error). Callers that treat
getOrPrecomputeProxyAddress like the FPMM factory's version (which always returns a usable or
predictable address) may misinterpret the zero value and attempt to interact with a non-existent pool.

Code corrected:

The VirtualPoolFactory now returns the precomputed address for undeployed pools instead of returning
zero.

6.23 getAmountsOut Returns Zero on Invalid
Swap
Informational Version 1 Code Corrected

CS-MECO-026

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

The function Router.getAmountsOut calculates the amount of tokens returned from multiple swaps.
However, when a user provides a route without a pool deployed by the factory, the function will return
zero tokens instead of reverting.

amounts[0] = amountIn;
uint256 _length = routes.length;
for (uint256 i = 0; i < _length; i++) {
 address factory = routes[i].factory == address(0) ? defaultFactory : routes[i].factory;
 address pool = poolFor(routes[i].from, routes[i].to, routes[i].stable);
 if (IPoolFactory(factory).isPool(pool)) {
 amounts[i + 1] = IPool(pool).getAmountOut(amounts[i], routes[i].from);
 }
}

As a result, any other application calling getAmountsOut could continue with zero amount out when
provided an invalid route. Provided an invalid route, the function will continue execution and only revert
later when a call to the swap function on a non-existent pool address reverts due to Solidity's extcodesize
check.

Code corrected:

The Router now reverts when an invalid pool is passed to getAmountsOut.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Initializers Must Be Called on Deployment
Informational Version 1 Risk Accepted

CS-MECO-017

It must be ensured that all initializers are called immediately during deployment or upgrade of upgradable
contracts.

In particular, when upgrading to StableTokenV3, the initializeV3 function must be called by the
owner immediately, otherwise the permissionless initialize function will be callable by anyone to
take over the contract.

Risk accepted:

Mento acknowledged the risk and provided the following statement:

[Initialization] will be correctly handled during deployment.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 FPMM Profitability Critically Depends on Fees
Note Version 1

The profitability of an FPMM depends critically on the fees it charges for swaps and the incentive it gives
for rebalances. In particular:

1. The swap fee must be high enough that the oracle price rarely lags the true market price by
more than the swap fee. Whenever the deviation is greater than the fee, an arbitrageur can
profit by swapping against the FPMM up to the TradingLimit.

2. The swap fee must be high enough compared to the rebalance incentive. If it is not, it can be
profitable to intentionally make the FPMM imbalanced, and then rebalance it to earn the
rebalance incentive repeatedly. The redemption side of the CDPLiquidityStrategy is more
susceptible to this, as redemptions pay the rebalance incentive to a single trove owner. On the
stability pool side, the rebalance incentive is shared among all stability pool depositors. This
makes the strategy less profitable, as the attacker will pay the full trading fee to imbalance the
pool, but only receive part of the incentive, unless they are the only Stability Pool depositor.

The profitability also depends on the limits set in TradingLimitsV2. Lower limits reduce the potential profit
from a single arbitrage, limiting the downside risk. The rebalance cooldown also limits the frequency of
rebalances, reducing the potential profit from repeated imbalancing and rebalancing.

8.2 Forex Market Low-Liquidity Considerations
Note Version 1

Liquidity can be non-uniform throughout the trading day. For example, the first 2 hours of the Sydney
session tend to have lower liquidity than the rest of the session, when Tokyo joins.

There are regional holidays that will affect certain trading sessions of certain days. For example, the New
York session is closed on US public holidays, such as Good Friday, Memorial Day, and others. On these
days, the liquidity during the New York session will be significantly reduced, though other sessions on the
same day may remain open. Regional holidays are not taken into account in the MarketHoursBreaker,
although they may cause liquidity to drop to very low levels during affected sessions.

For Christmas and New Year's Eve, liquidity tends to drop significantly during the last few hours of
trading before the holiday closure, as some markets close early. For example, the U.S. Stock market
closes at 18:00 UTC on Christmas Eve, which can lead to reduced liquidity during the remainder of the
forex trading day (18:00 UTC to 22:00 UTC).

For each currency used, it should be carefully evaluated how its liquidity is affected by different times.
Especially for less commonly traded currencies, liquidity can be very low during certain sessions or times
of the day.

If the FPMM offers trades at forex oracle prices during times of low liquidity, there is a greater risk that
those trades happen at unfavorable prices.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

8.3 Liquidity Strategies Should Not Have Arbitrary
Calls
Note Version 1

Currently, there are only two liquidity strategies. They do not implement arbitrary calls. Any future liquidity
strategies should also avoid implementing arbitrary calls, as this could lead to reentrancy issues. In the
current audit, it was assumed there cannot be arbitrary calls in liquidity strategies. In case this is a
requirement in the future, the security implications on the rest of the codebase must be carefully
considered.

8.4 Oracle Staleness Threshold
Note Version 1

The oracle staleness threshold for FX prices must be smaller than a weekend, to avoid using the market
close price when the market opens again after the weekend.

It should also be larger than the heartbeat time of the Chainlink oracle, as it can take some time for the
price to be available on-chain after the heartbeat time has passed.

Mento - Mento Core v3 - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Fixed Price Market Maker (FPMM)
	2.2.2 Liquidity Strategies
	2.2.3 Stable Tokens
	2.2.4 Virtual Pools
	2.2.5 Oracle & Breaker
	2.2.6 Router

	2.3 Changes in Version 2
	2.4 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 MarketHoursBreaker Reports Inaccurate Market Hours
	5.2 Rebalance Redemptions Can Hit Max Iterations
	5.3 Rounding Should Favor Protocol LPs
	5.4 Admin Reentrancy Possibilities
	5.5 OZ ERC2771 Has a Known Issue
	5.6 getAmountOut Missing Insufficient Liquidity Check

	6 Resolved Findings
	6.1 Excessive Approval in CDPLiquidityStrategy._handleCallback()
	6.2 Incorrect Redemption Fee Formula in CDPLiquidityStrategy
	6.3 Redemption Fee Calculation Does Not Round Correctly
	6.4 Zap Parameters Helpers Ignore Price/State Changes
	6.5 Redemption Incentive Depends on Protocol Fee
	6.6 Inconsistent Denominators in Rate Feed Functions
	6.7 FPMMFactory Redundant Governance Role
	6.8 Missing FeeCurrency Interface
	6.9 TradingLimits Incorrect Rounding Correction
	6.10 Unnecessary Price Fetching
	6.11 Deprecated Comments in _rebalanceCheck
	6.12 Deprecated Fee-on-transfer Tokens Functions
	6.13 FPMM Mint Event Omits Recipient Address
	6.14 Incorrect ERC20Permit Initialization
	6.15 Missing Token Decimals Check in FPMM
	6.16 Outdated FPMM Invariant
	6.17 Overlapping Hook Function Signatures
	6.18 Repeated Pool Lookups in Router _Swap
	6.19 StableTokenV3.initializeV3 Does Not Update EIP712 Version
	6.20 TradingLimitsV2 Accepts Unknown Flag Bits
	6.21 Unindexed Address Parameters in FPMM Configuration Events
	6.22 VirtualPoolFactory Returns Zero for Undeployed Pools
	6.23 getAmountsOut Returns Zero on Invalid Swap

	7 Informational
	7.1 Initializers Must Be Called on Deployment

	8 Notes
	8.1 FPMM Profitability Critically Depends on Fees
	8.2 Forex Market Low-Liquidity Considerations
	8.3 Liquidity Strategies Should Not Have Arbitrary Calls
	8.4 Oracle Staleness Threshold

