

PUBLIC

Code Assessment

of the Mellow Vaults

Smart Contracts

Aug 09, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Findings 13

6 Resolved Findings 19

7 Notes 56

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Mellow team,

Thank you for trusting us to help Mellow Finance with this code assessment. Our executive summary
provides an overview of subjects covered in our code assessment of the latest reviewed contracts of
Mellow Vaults according to Scope to support you in forming an opinion on their security risks.

Mellow Finance implements an investment protocol that pools investors funds and manages these funds
according to an investment strategy smart contract.

We value the very good and professional communication with the Mellow team and the quick response
time. In the initial review and the following iterations, we uncovered an unusual number of issues with
many high severity issues. Many of these issues would have been caught by proper testing. The code
base appeared to be not ready for the review when the review started. After multiple iterations the code
base was improved significantly.

All raised issues were addressed and most were fixed by code changes. We conclude that the reviewed
contracts currently provide a satisfactory level of security. But our experience shows that a high amount
of discovered issues has an increased tail risk of more undiscovered issues. Additionally, not all code
was in scope of the review (see 2.1 Scope). Hence, we want to highlight that security reviews
complement but don't replace other vital measures to secure a project, like e.g., limited testing phases or
bug bounties. We did our best to help to eliminate all severe issues, but it is important to note that
security audits are time-boxed and cannot uncover all vulnerabilities.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 5

• Code Corrected 5

High -Severity Findings 14

• Code Corrected 14

Medium -Severity Findings 17

• Code Corrected 14

• Specification Changed 3

Low -Severity Findings 53

• Code Corrected 37

• Specification Changed 4

• Code Partially Corrected 2

• Acknowledged 10

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Mellow Vaults repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 25 Feb 2022 f79ea5fc82b8ae5e0fa488c5aae023e893edf7f0 Initial Version

2 18 Apr 2022 736b34243ced0ea0346dd874438354db6dafa135 Version 2

3 23 May 2022 b4250761505742c211428986ecb4189ae2e402fc Version 3

4 08 Jun 2022 3c73391bb182e910b3d714dab1930d4e885dfccf Version 4

5 15 Jun 2022 5e09b7372f02d8f81f6d66d827d5883323b86a03 Version 5

6 20 Jun 2022 bb66a637c4a5834c4dace90205776159726b8299 Version 6

7 11 Jul 2022 1fae4225ccd6164ad613e0860619ecd10287dd39 Version 7

8 29 Jul 2022 ff8f3ba89c362663ef9f3a0ff31d7bbf95457629 Version 8

9 03 Aug 2022 ed3e07e5b873dbe6f4e5d632d0adc1f5b47dec8e Version 9

For the solidity smart contracts, the compiler version 0.8.9 was chosen.

2.1.1 Excluded from scope
The following files were out of scope:

• contracts/ContractRegistry.sol

• contracts/libraries/SemverLibrary.sol

• contracts/oracles/UniV2Oracle.sol

• contracts/utils/BatchCall.sol

• contracts/utils/ContractMeta.sol

• contracts/utils/DefaultProxy.sol

• contracts/utils/DefaultProxyAdmin.sol

• contracts/libraries/external/*

Additionally, the MellowVault and the functions to compute the square root in CommonLibrary.sol,
were put out of scope while performing the code assessment.

2.1.2 Excluded from this report
During the engagement shortcomings inside the smart contracts were discovered by the Mellow team.
These shortcomings are not listed in this report.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Mellow Finance offers an investment protocol that pools investors funds and manages these funds
according to an investment strategy smart contract.

The overall system has certain parameters managed by The ProtocolGovernance smart contract.
Different vaults are responsible to keep the funds and/or invest them in other DeFi protocols like AAVE,
YEARN or Uniswap. A root vault is the overarching connector for all vaults. The root vault is the entry
point for a user to invest funds. Strategy contracts balance the ratios of tokens held in the vaults and
between the vaults.

A user who wants to invest funds will send the funds to the root vault. The root vault will in return issue a
corresponding amount of liquidity provider tokens to track the user's investment to the user. The funds
will end up in a special vault which acts as a cash position. As soon as a strategy manager invokes the
vault rebalancing in the connected strategy, the strategy will distribute the funds from the cash vault to
the investment/integration vaults. These vaults will use the funds to invest into the third party DeFi
protocols like Aave. When a user decides to redeem/withdraw their liquidity provider tokens for the
corresponding share of tokens, the root vault will drain the cash vault and if needed take more money
from the investment/integration vaults.

The system has multiple roles that need to be trusted fully or partially. These are:

The DefaultAccessControl smart contract uses OpenZeppelin's AccessControlEnumerable
scheme to set up the following roles:

• ADMIN_ROLE

• ADMIN_DELEGATE_ROLE

• OPERATOR

The contract is inherited by UnitPricesGovernance and, consequently, ProtocolGovernance. The
DefaultAccessControl is also used in the ChainlinkOracle, UniV3Oracle and LStrategy.

Initially, the deployer of these contracts can set an address that is granted the:

• OPERATOR and

• ADMIN_ROLE roles.

A slightly modified version of the DefaultAccessControl that features a late initialization to work with
proxies is used by the MStrategy.

Access for vaults is controlled by NFTs that are minted during registration of vaults in the
VaultRegistry. For example, when deploying the YearnVault by calling the createVault function
in YearnVaultGovernance, the contract is registered at the VaultRegistry, where an NFT is
minted to an owner address that can be specified when creating the vault.

When creating a root vault, the NFTs of the sub-vault are transferred to the root vault to give the root
vault the required control over the sub-vaults. The root vault's NFT itself stays under the ownership of the
address given by the deployer who can approve another address, giving it Strategy access level.
Strategies can therefore be managed by different entities than vaults.

The system deployment and setup are quite complicated. The following steps try to outline the setup
chronologically.

1. These steps can be performed in any order:

• Deploy the protocol ProtocolGovernance contract.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• Deploy the oracle contracts.

2. These steps can be performed in any order:

• Deploy the validator contracts.

• Deploy the ContractRegistry contract.

• Deploy the VaultRegistry contract.

3. Deploy the vault governance contracts.

4. Call createVault on the integration/sub-vaults that are needed.

5. In case a UniV3Vault is used:

1. Mint an initial Uniswap v3 liquidity position with a random EOA.

2. Approve the EOA for spending the NFT received from the VaultRegistry.

3. Transfer the Uniswap v3 LP NFT to the newly created UniV3Vault.

6. Deploy a strategy with the reference to the desired vaults (The MStrategy contract acts as a
factory whereas the LStrategy needs to be deployed normally).

7. Create the root vault with the desired integration/sub-vaults and the strategy.

The contracts have the following functionalities:

• ProtocolGovernance

Manages the following variables with a time delayed commit scheme:

• The protocol's Params struct that includes:

• uint256 maxTokensPerVault

• uint256 governanceDelay

• address protocolTreasury

• uint256 forceAllowMask

• uint256 withdrawLimit

• The permissions for certain addresses (e.g., creating a vault, registering a vault, being
a vault token or passing requirements set by the validators)

• The validator contracts that are called when an external call is done (e.g., swapping
tokens on an exchange)

Revoking/Removing permissions or validators can be done instantly with no time lock.

Roles: The admin role of this contract should be fully trusted as it sets all the critical parameters
of the system. In general, the parameters are updated with the stage-delay-commit pattern, so
users should continuously monitor the staged parameters for malicious values and react before
they are committed. However, for revoking permissions or validators, there is no delay enforced.

• UnitPricesGovernance is a contract inherited by the ProtocolGovernance. It allows the
admin role to set reference prices used to calculate the withdraw limit in
ProtocolGovernance.withdrawLimit. The admin should carefully set the price values taking
into consideration the decimals of the respective token.

• ContractRegistry allows the protocol governance admin or operator to register contracts. The
contract is not used in the system at all but seems to be called externally to verify if contracts belong
to the system.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• VaultRegistry manages the vault's NFTs. Each time a vault is created, it will be registered in this
contract and receive a unique ID represented by an NFT. The NFT is also used for access control
purpose. The relevant roles are the owner and the approved spender of the NFT.

Version 5

Roles: The admin of the protocol governance has special privileges also in this contract.
Besides updating the state parameters, in the first versions of the code the admin could approve
any vault NFT to any arbitrary address via adminApprove, however this functionality was
removed in .

• Validator contracts are used to verify calls done by the externalCall function in the Integration
vaults. externalCall allows every vault nft owner or approved account to perform any low-level
call to other contracts as long as a validator contract for that contract has been set in the
ProtocolGovernance and the corresponding validator successfully verified the calldata.

• Oracles are used by the strategies to balance the portfolio between vaults and tokens. The root vault
uses oracles to convert the TVL of integration vaults to the same token in _getTvlToken0. The
UniV3Vault uses the oracle price in _getMinMaxPrice to determine TVL.

Roles: The Chainlink and UniV3Oracle inherit the DefaultAccessControl, and the admin
has the privileges to set the oracle address (in case of Chainlink) or the Uniswap pool.

• Vault governance contracts are factory contracts that can create new vaults. They additionally store
some vault type specific information in the delayedProtocolParams object (e.g., AAVE lending
pool address).

Roles: These contracts inherit the roles of protocol governance.

• There are two types of integration vaults. The ERC20Vault, which is a cash position vault, stores
tokens to act as a buffer when tokens are withdrawn. It is worth mentioning that the Yearn vault has
a default maxLoss parameter set to 100%, basically omitting any protection for the user if the Yearn
strategy had made a loss. ERC20Vault is also the hub which receives all deposits from the
aggregation/root vault. The tokens remain in the ERC20Vault until a strategy starts balancing and,
hence, distributing the tokens to the connected other integration vaults. The other integration vaults
are adapters to other DeFi projects (AAVE, Yearn, Uniswap, Mellow). They invest all tokens they
receive and only store the respective project tokens.

• The ERC20RootVault is the main entry and exit point for users. The vault acts as an aggregator
and oversees all sub-vaults that are connected to it. By calling withdraw and deposit users can
close or open a position. The user's position is represented by liquidity tokens minted to the
investing user.

Roles: The privileged roles in this contract are the admin of the protocol governance, the
strategy linked to the vault and owner of the vault NFT. End users also can access the
functionalities to deposit and withdraw funds.

2.3 Strategies
Strategy contracts manage the token distribution between and inside vaults. Operators can call certain
functions that rebalance tokens between vaults but cannot send tokens outside of the ecosystem.

2.3.1 MStrategy
MStrategy is a factory contract to create new strategies. Anyone can deploy a clone of the
implementation by calling the function createStrategy and providing the following parameters:
tokens_, erc20Vault (cash position), moneyVault_ (investment position), fee_ and admin.
MStrategy supports only vaults with exactly two tokens, and both erc20Vault and moneyVault_
should have same tokens.

The main functionality of MStrategy is rebalance which can be called only by the admin of the
strategy. The first operation of the rebalance is to transfer tokens between the erc20Vault and the
moneyVault to maintain a healthy ratio as defined in the parameters ratioParams. The ratio is

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

computed on terms of the total value locked (TVL) by both positions. This is achieved by calling the
internal function _rebalancePools. The second part of rebalance is to maintain the ratio of tokens in
the cash and investment position in line with the ratio of these tokens in a Uniswap pool. If the cash
position has more from one token than desired, the function _rebalanceTokens computes the amount
of tokens that need to be swapped in Uniswap, which is performed in _swapToTarget.

Roles: The admin address is important as it is a privileged address that can set other roles for the
contract as described above. Furthermore, this address has access to the following functionalities:

• rebalance: moves the funds between the cash position and the investment according to the
desired ratio. The function should be called with carefully crafted inputs for slippage protection.

• manualPull: can move any amount of funds at any time between the erc20Vault and
moneyVault.

• setOracleParams: updates the oracle parameters, such as the number of observations
considered for Uniswap oracles, maximum tick deviation supported, and slippage tolerance.

• setRatioParams: sets the ratio of funds in the cash position and the investment vault.

2.3.2 LStrategy
The second strategy of the project is LStrategy. This strategy is supposed to be deployed once, so it
does not provide any cloning functionalities. LStrategy operates on three vaults, the first is still the
cash position, while the other two are Uniswap positions that are setup in a such a way to cover the
current price tick and therefore optimize the earnings.

The Uniswap positions are referred as lowerVault - cover the current tick and a predefined number of
lower ticks, and upperVault - covers the current tick and a predefined number of upper ticks. Both
lowerVault and upperVault overlap with each other and ideally both should always cover the current
tick, where most of the activity happens. If the price goes up, i.e., current tick increases, the strategy
should move more liquidity to the upperVault, otherwise moves liquidity to the lowerVault. If one
position does not cover anymore the current tick, then all liquidity is moved to the other vault, and a new
position in Uniswap is minted. Note that, LStrategy should have enough tokens to open new Uniswap
positions in order to follow the price as intended. Given that LStrategy is not supposed to hold any
token, the strategy operator (or anyone) should continuously donate the required tokens to LStrategy.

The main functionalities of the strategy are:

• rebalanceERC20UniV3Vaults: moves the funds between the cash position (erc20Vault) and
the two Uniswap positions (lowerVault and upperVault) according to the desired ratio.

• rebalanceUniV3Vaults: this function moves the funds between the lowerVault and
upperVault depending on the price change by calling the internal function
_rebalanceUniV3Liquidity. If one of the Uniswap positions does not cover anymore the
current price tick, the function _swapVaults is called to close the outdated position and mint a new
one.

• postPreOrder and signOrder: LStrategy uses Cowswap for the token exchange and these
functions allow privileged accounts to save a pre-order as a state variable and sign the Cowswap
order.

• collectUniFees: this function calls collectEarnings in the Uniswap positions lowerVault
and upperVault.

• manualPull: allows the admin to transfer any amount of funds at any point from one vault to
another one.

• Updating params functions: allow the admin to update the tradingParams, ratioParams and
otherParams of the strategy.

Roles: The admin address is important as it is a privileged address that can set other roles for the
contract as described above. Furthermore, this address has access to the following functionalities:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

manualPull and the functionalities to set the strategy parameters, including the ones for the slippage
protection. The operator role can trigger the execution of functions rebalanceERC20UniV3Vaults,
rebalanceUniV3Vaults, postPreOrder, and collectUniFees.

2.3.3 Tokens
We assume that only ERC20-compliant tokens with no callback features are whitelisted and used by the
system. The support of tokens with callback hooks, like ERC777 or ERC677, is out of scope.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 12

• AcknowledgedInconsistent Decimals of LP Token

• AcknowledgedPerformance Fee in Specific Setups

• Code Partially CorrectedPossible Optimization in AggregateVault

• AcknowledgedPossible Optimization on Deposits and Withdrawals

• AcknowledgedRedundant Calculation of LP Amounts

• AcknowledgedBroad Access Control for Functions

• AcknowledgedRedundant Check for baseSupply

• AcknowledgedRedundant Check for deltaSupply

• AcknowledgedRedundant Checks on Push Function

• Code Partially CorrectedState Updates After Reentrancy Possibility

• AcknowledgedMissing Slippage Protection in _mintNewNft

• AcknowledgedUniV3Vault Pulls More Tokens Than Requested

5.1 Inconsistent Decimals of LP Token
Correctness Low Version 5 Acknowledged

The function ERC20RootVault.deposit performs the following checks when new LP tokens are
minted to a user:

require(lpAmount + balanceOf[msg.sender] <= params.tokenLimitPerAddress, ExceptionsLibrary.LIMIT_OVERFLOW);
require(lpAmount + totalSupply <= params.tokenLimit, ExceptionsLibrary.LIMIT_OVERFLOW);

The LP tokens distributed by root vaults do not have pre-defined number of decimals but depend on the
token amounts of the first deposit, hence making difficult to set the params tokenLimitPerAddress
and tokenLimit in advance.

Acknowledged:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Mellow Finance acknowledges the issue and will take care to set the proper limits after initial LP shares
are minted and the respective decimals are known:

We don’t intend to stand limits in advance of the launch of the system, we rather want
to stand them as MaxUint256 initially and then have a possibility to set meaningful values
based on the supply of lp tokens during the work of the system.

5.2 Performance Fee in Specific Setups
Design Low Version 5 Acknowledged

The performance fee is charged in ERC20RootVault only if the price of LP tokens has increased in
value, which is calculated in the statement:

uint256 lpPriceD18 = FullMath.mulDiv(tvlToken0, CommonLibrary.D18, baseSupply);

However, in specific setups where the token0 is of high value but has low decimals, while the token1 is
of low value but with many decimals, the variable baseSupply would inherit the decimals of token1.
Therefore, in such setups it is possible that the statement above returns lpPriceD18 equal to zero.

Acknowledged:

Mellow Finance has decided to keep the code unchanged as they only will use only verified token
combinations that this issue does not occur. The response:

We decided that this situation would not be possible when calculating the performance fee,
since we agreed to use only verified tokens, for which the difference between decimals
would be less than 18.

5.3 Possible Optimization in AggregateVault
Design Low Version 5 Code Partially Corrected

The function AggregateVault._push performs the following actions:

1. Approves allowance with safeIncreaseAllowance for each token to destVault.

2. Calls destVault.transferAndPush, which transfers tokenAmounts to the ERC20Vault.

3. Resets approval to destVault for all tokens to 0.

Given that the _push function moves tokens to the ERC20Vault and allowance in the end should be 0,
the function can be revised to be more efficient. For instance, safeIncreaseAllowance performs
additional operations and is useful when the existing allowance is not zero and should be considered.
Also, the function consumes in step 2 the allowance given earlier, hence the last for-loop might be
omitted.

Code partially correct:

The function AggregateVault._push is made more efficient by performing the external calls
safeIncreaseAllowance and safeApprove only for tokens that non-zero amounts are being

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

transferred (tokenAmounts[i] > 0). However, for the other tokens two external calls are performed
for updating the allowance.

5.4 Possible Optimization on Deposits and
Withdrawals
Design Low Version 5 Acknowledged

The function ERC20RootVault.deposit can be optimized to be more gas efficient by transferring the
tokens directly from the user to the ERC20Vault. Currently, the tokens are first transferred from the user
to the root vault:

for (uint256 i = 0; i < tokens.length; ++i) {
 ...
 IERC20(tokens[i]).safeTransferFrom(msg.sender, address(this), normalizedAmounts[i]);
}

and then, in AggregateVault._push tokens are transferred again:

for (uint256 i = 0; i < _vaultTokens.length; i++) {
 IERC20(_vaultTokens[i]).safeIncreaseAllowance(address(destVault), tokenAmounts[i]);
}

Similarly, the function ERC20RootVault.withdraw can be made more efficient if the tokens are
transferred directly from the sub-vaults to the user instead of transferring to the root vault first and then to
the user.

Acknowledged:

Client acknowledges the optimization possibility but prefers to keep the code unchanged:

The main idea behind this behavior is for the root vault to be responsible for pushing
tokens onto different vaults. We consider the current design to be clearer with
pushing with the ```AggregateVault._push``` method.

5.5 Redundant Calculation of LP Amounts
Design Low Version 5 Acknowledged

The function ERC20RootVault.deposit calculates the LP amount that is rewarded to the user two
times:

{
 ...
 (preLpAmount, isSignificantTvl) = _getLpAmount(maxTvl, tokenAmounts, supply);
 for (uint256 i = 0; i < tokens.length; ++i) {
 normalizedAmounts[i] = _getNormalizedAmount(...);
 ...
 }
}
actualTokenAmounts = _push(normalizedAmounts, vaultOptions);
(uint256 lpAmount,) = _getLpAmount(maxTvl, actualTokenAmounts, supply);

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Initially, preLpAmount is calculated based on the tokenAmounts, then normalizedAmounts are
computed. Considering that _push moves tokens to the ERC20Vault, the returned
actualTokenAmounts is equal to normalizedAmounts. Hence, recomputing lpAmount is
redundant.

Acknowledged:

Client acknowledges the redundant calculation of LP amount but prefers to keep the code unchanged as
in the future the behavior of ERC20Vault might change, i.e., the returned actualTokenAmounts might
not be equal to normalizedAmounts.

5.6 Broad Access Control for Functions
Design Low Version 4 Acknowledged

The functions addDepositorsToAllowlist and removeDepositorsFromAllowlist in
ERC20RootVault restrict the access control with function _requireAtLeastStrategy. However,
neither MStrategy nor LStrategy call these functions. Similarly, multiple functions in VaultGovernance
use the same access control, although they are not called by the strategies.

Acknowledged:

Mellow Finance is aware that these functions are not called by smart contracts implementing the
strategies, but they can be called by an EOA in case it manages the vault system. Client replied:

The vault system can be managed not by strategy, but by some account. In such a
case this account should have the possibility to edit `depositorsAllowList`.
These 2 functions exist for this reason.

5.7 Redundant Check for baseSupply
Design Low Version 4 Acknowledged

The function ERC20RootVault._chargePerformanceFees performs a check of baseSupply is
equal to 0, and returns if this is the case:

if ((performanceFee == 0) || (baseSupply == 0)) {
 return;
}

However, this check is redundant because _chargeFees performs the same check and returns before
calling _chargePerformanceFees.

Acknowledged:

Client acknowledged the redundant check but has decided to keep it as it enhances the readability of the
code.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

5.8 Redundant Check for deltaSupply
Design Low Version 4 Acknowledged

The function _getBaseParamsForFees performs the following check on withdrawals:

baseSupply = 0;
if (supply > deltaSupply) {
 baseSupply = supply - deltaSupply;
}

The deltaSupply corresponds to the LP shares that a user is burning, which is less than or equal to the
balance of that user. Hence, it is always less or equal to the totalSupply.

Acknowledged:

Client acknowledged the redundant check but has decided to keep it as it enhances the readability of the
code.

5.9 Redundant Checks on Push Function
Design Low Version 4 Acknowledged

The function IntegrationVault.push performs the following checks that are always true when a
vault is linked to a root vault:

uint256 nft_ = _nft;
require(nft_ != 0, ExceptionsLibrary.INIT);
IVaultRegistry vaultRegistry = _vaultGovernance.internalParams().registry;
IVault ownerVault = IVault(vaultRegistry.ownerOf(nft_)); // Also checks that the token exists
uint256 ownerNft = vaultRegistry.nftForVault(address(ownerVault));
require(ownerNft != 0, ExceptionsLibrary.NOT_FOUND);

Acknowledged:

Mellow Finance has decided to keep the checks to prevent from pushing and pulling on uninitialized
vaults.

5.10 State Updates After Reentrancy Possibility
Design Low Version 4 Code Partially Corrected

When creating a vault, _mint is called to mint the NFT. This calls the receiver and gives an opportunity
to reenter the system.

_safeMint(owner, nft);
_vaultIndex[nft] = vault;
_nftIndex[vault] = nft;
_vaults.push(vault);
_topNft += 1;
emit VaultRegistered(tx.origin, msg.sender, nft, vault, owner);

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

State updates and events are emitted after the possible reentrancy in this function and the calling
functions. Coding guidelines suggest following the check-effects-interaction pattern to mitigate reentrancy
vulnerabilities.

Code partially corrected:

The minting statement _safeMint has been moved to the end of the function registerVault.
However, state is still updated afterwards in functions createVault of vault governance contracts.

5.11 Missing Slippage Protection in _mintNewNft
Security Low Version 1 Acknowledged

The function _mintNewNft in LStrategy sets the parameters amount0Min and amount1Min of the
MintParams to zero, hence disabling any slippage protection. However, the risk exposure in this case is
limited as a new position in Uniswap should be open with small amounts minTokenXForOpening. The
exact amount depends on admin who sets the otherParams.

Acknowledged:

Version 3Sanity checks were introduced in to check if the variables minTokenXForOpening are smaller
than 10**9. This adds another layer of protection to ensure that the number of tokens is relatively low.
Still, the number of tokens does not guarantee that the value is small.

5.12 UniV3Vault Pulls More Tokens Than
Requested
Correctness Low Version 1 Acknowledged

UniV3Vault._pullUniV3Nft first calculates the amount of tokens to pull, then decreases the liquidity
inside the Uniswap position and then collects the tokens. When the earnings have not been collected
before, the last step additionally collects the earnings, returning more tokens than intended.

The function should take the tokens owed into consideration when calculating the amount to pull.

Acknowledged

Mellow Finance acknowledged the issue and replied that the strategy maintainer can call the
collectEarnings function to collect all the fees.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 5

• Code CorrectedMismatch of Specification With Uniswap V3 Oracle

• Code CorrectedChainlink Oracle Returns Empty Prices

• Code CorrectedIncorrect LP Token Calculation in ERC20RootVault

• Code CorrectedMissing Access Control in UniV3Oracle

• Code CorrectedUniV3Oracle Returns Reverse Prices for Token Pairs

High -Severity Findings 14

• Code CorrectedIncorrect TVL Conversion

• Code CorrectedAdding up Total Value Locked on Different Tokens

• Code CorrectedCalling _liquidityDelta Incorrectly

• Code CorrectedCalling _liquidityDelta With Incorrect Inputs

• Code CorrectedIncorrect Observation Index in _getAverageTick

• Code CorrectedIncorrect Parameters on externalCall

• Code CorrectedInsufficient Testing

• Code CorrectedOpposite Vaults Are Swapped

• Code CorrectedPossibility to Exit Positions of Any Address

• Code CorrectedPossible DOS From First Depositor

• Code CorrectedSetting Wrong State Variable

• Code CorrectedWrong Formula in _rebalanceUniV3Liquidity

• Code CorrectedWrong TVL Calculation in ERC20RootVault

• Code Correctedliquidity Gets Overwritten in the Loop

Medium -Severity Findings 17

• Code CorrectedWrong State Variable Updated

• Specification ChangedInconsistent Access Control for Rebalance in LStrategy

• Code CorrectedInconsistent Sanity Check on First Deposit's Amounts

• Specification ChangedSafety Level of Returned Prices Can Silently Downgrade

• Code CorrectedUnfair Distribution of LP Shares in ERC20RootVault

• Specification ChangedConflicting Specifications for MStrategy

• Code CorrectedImplementation Differs From Specification on _targetTokenRatioD

• Code CorrectedIncorrect Access of Addresses in EnumerableSet

• Code CorrectedMissing Checks for Dust Amounts When Rebalancing Pools

• Code CorrectedMissing Delay Restriction in BaseValidator

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

• Code CorrectedMissing Sanity Checks in signOrder

• Code CorrectedNo Slippage Protection in Multiple Contracts

• Code CorrectedPossible Underflow in UniV3Oracle.price

• Code CorrectedRebalance in LStrategy Can Leave Tokens in the Vault to Be Closed

• Code CorrectedSubvault Tokens Are Not Checked in AggregateVault

• Code CorrectedTransferring Tokens Only to lowerVault

• Code CorrectedUse of Libraries

Low -Severity Findings 41

• Code CorrectedMissing Sanity Checks for intervalWidthInTicks

• Specification ChangedPossible Attack by First Depositor

• Code CorrectedPossible Optimization on _chargePerformanceFees

• Code CorrectedPossible Violation of the Minimum Token Amounts After the First Deposit

• Code CorrectedMisleading Function Name and Natspec

• Code CorrectedMismatch of Specifications for StrategyParams

• Code CorrectedMissing Sanity Check for maxSlippageD in MStrategy

• Code CorrectedMissing Sanity Checks for oracleSafetyMask

• Code CorrectedPossible Struct Optimization in Strategies

• Code CorrectedRedundant Comparisons

• Code CorrectedRedundant Storage Read in ERC20Vault._pull

• Code CorrectedVariables Can Be Declared as Constant

• Specification ChangedIncorrect Specification for reclaimTokens

• Code CorrectedMissing Natspec Description for minDeviation

• Code CorrectedCasting of maxTickDeviation

• Code CorrectedCheck Requirements First

• Code CorrectedDuplicate Code _permissionIdsToMask

• Code CorrectedDuplicate Storage Read in Deposit

• Specification ChangedInconsistent Specifications

• Code CorrectedInefficient Array Shrinking

• Code CorrectedInefficient State Variable Packing

• Code CorrectedMisleading Naming of Variables in UniV3Oracle

• Code CorrectedMissing Sanity Check in MStrategy.createStrategy

• Code CorrectedMissing Sanity Checks for Params

• Code CorrectedMisspelled Variable Names

• Code CorrectedPossible Struct Optimization

• Code CorrectedRebalance in MStrategy Is Inconsistent

• Code CorrectedSpecification for minDeviation Not Enforced

• Code CorrectedStoring Redundant Data in Storage

• Code CorrectedUnnecessary Approval to Vault Registry

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

• Code CorrectedUnused Constant in ERC20Validator

• Code CorrectedUnused Event DeployedVault

• Code CorrectedUnused Function LStrategy._priceX96FromTick

• Code CorrectedUnused Imports

• Code CorrectedWrong Check of Minimum Token Amounts in ERC20RootVault.withdraw

• Specification ChangedWrong Specification for YearnVault.tvl

• Code CorrectedContractRegistry DOS

• Code CorrectedERC20Vault._pull Forces Push of Wrong Amount of Tokens

• Code CorrectedIntegrationVault._root Does Not Check the NFT of the Root Vault

• Code CorrectedVaultGovernance.commitInternalParams Does Not Delete Staged Parameters

• Code Correctedregistry.ownerOf Is Called Twice in IntegrationVault.pull

6.1 Mismatch of Specification With Uniswap V3
Oracle
Correctness Critical Version 2 Code Corrected

The specifications of the function price for oracles are in the interface IOracle as following:

/// @dev The price is token1 / token0 i.e. how many weis of token1
/// required for 1 wei of token0.

function price(
 address token0,
 address token1,
 uint256 safetyIndicesSet
) external view returns (uint256[] memory, uint256[] memory);

According to the specification, priceA_B = price(tokenA, tokenB) should be the inverse of
priceB_A = price(tokenB, tokenA), meaning the following relation should hold:
priceA_B = 1 / priceB_A.

Version 2The function UniV3Oracle.price in returns the same price for a pair of tokens without
differentiating in which denomination token the price should be. Namely, the function returns the same
prices when calling price(tokenA, tokenB) or price(tokenB, tokenA). This behavior is
enforced in the first if statement of the function:

if (token0 > token1) {
 (token0, token1) = (token1, token0);
}

Code corrected:

The Uniswap V3 Oracle has been revised, the Uniswap's OracleLibrary is now used and a flag
isSwapped is added to track the correct denomination of the returned price.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

6.2 Chainlink Oracle Returns Empty Prices
Correctness Critical Version 1 Code Corrected

ChainlinkOracle maintains the mapping oraclesIndex which stores addresses of chainlink oracles
for each token. The mapping is populated by the admin through the function _addChainlinkOracles:

function _addChainlinkOracles(address[] memory tokens, address[] memory oracles) internal {
 ...
 oraclesIndex[token] = oracle;
 ...
}

The function price(token0,token1,safetyIndicesSet) checks if the mapping oraclesIndex
has the addresses for the respective Chainlink oracles:

if ((address(chainlinkOracle0) != address(0)) || (address(chainlinkOracle1) != address(0))) {
 return (pricesX96, safetyIndices); // returns empty values
}

The condition above is incorrect as it returns empty values if the Chainlink oracles exist in the mapping.
This makes the Chainlink oracle - assumed to be the safest by the specifications and the code -
unusable.

Code corrected:

The above check in function price has been revised to return empty prices only if there is no entry for at
least one of the tokens in mapping oraclesIndex:

 if ((address(chainlinkOracle0) == address(0)) || (address(chainlinkOracle1) == address(0))) {
 return (pricesX96, safetyIndices);
}

6.3 Incorrect LP Token Calculation in
ERC20RootVault
Correctness Critical Version 1 Code Corrected

ERC20RootVault._getLpAmount incorrectly calculates the minimum of given token amounts. An
attacker can issue more LP tokens than he is entitled to and can then exchange them back for additional
tokens.

The following code incorrectly resets the MIN calculation for as many iterations as tokenLpAmount is
equal to 0:

for (uint256 i = 0; i < tvlsLength; ++i) {
 if ((amounts[i] == 0) || (tvl_[i] == 0)) {
 continue;
 }

 uint256 tokenLpAmount = FullMath.mulDiv(amounts[i], supply, tvl_[i]);
 if ((tokenLpAmount < lpAmount) || (lpAmount == 0)) {
 lpAmount = tokenLpAmount;

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

 }
}

If tokenLpAmount == 0 in the first iteration, lpAmount will be set to 0. If tokenLpAmount > 0 in the
next iteration, lpAmount will be set to tokenLpAmount although it is larger than the already set value.

In a later step, ERC20RootVault._getNormalizedAmount normalizes the sent token amounts to the
calculated lpAmount. This function however does not increase the normalized amount to a value greater
than the sent one. An attacker can therefore exploit this by calling deposit with all token amounts but
the last one being set to 0 and then calling withdraw with the LP tokens that have just been minted to
obtain his initial investment plus an amount of all other tokens in the Vault equal to the current ratio of
tokens.

Code corrected:

The function _getLpAmount has been refactored to set the lpAmount to the minimum of
tokenLpAmount calculated on each iteration of the for loop. The flag isLpAmountUpdated is set to
true on the first iteration that a non-zero value is assigned to lpAmount.

6.4 Missing Access Control in UniV3Oracle
Security Critical Version 1 Code Corrected

The function addUniV3Pools populates the mapping poolsIndex with the address of a Uniswap pool
for a pair of tokens. The function should be accessible only to trusted accounts, however, it does not
implement any access restriction. As the function is external anyone can set arbitrary addresses as
Uniswap pools, hence freely manipulate the oracle prices.

Code corrected:

The updated code resolves the issue by restricting the access to the function addUniV3Pools only to
the admin, hence preventing malicious users from setting arbitrary addresses as Uniswap pools:

function addUniV3Pools(IUniswapV3Pool[] memory pools) external {
 _requireAdmin();
 _addUniV3Pools(pools);
}

6.5 UniV3Oracle Returns Reverse Prices for
Token Pairs
Correctness Critical Version 1 Code Corrected

The UniV3Oracle computes the price for two tokens using the Uniswap V3 observations. As the tokens
in Uniswap are always sorted by their address (Token0 < Token1), the function price uses a flag
revTokens to distinguish if the price from Uniswap corresponds to the order of function parameters, or if
it should be reversed. The respective code is:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

function price(address token0,address token1,uint256 safetyIndicesSet)
 external view returns (uint256[] memory pricesX96, uint256[] memory safetyIndices) {
 ...
 bool revTokens = token1 > token0;

 for (uint256 i = 0; i < len; i++) {
 if (revTokens) {
 pricesX96[i] = FullMath.mulDiv(CommonLibrary.Q96, CommonLibrary.Q96, pricesX96[i]);
 }
 pricesX96[i] = FullMath.mulDiv(pricesX96[i], pricesX96[i], CommonLibrary.Q96);
 }
}

The flag revToken is set to true if the tokens in the function parameters are ordered as in Uniswap,
hence incorrectly reverses the computed price.

Code corrected:

Version 2

The contract UniV3Oracle has been refactored due to the bug presented above and other issues
reported for this contract. The code above that mistakenly reversed the prices is not present anymore in

, however, another issue has been introduced on the fix.

6.6 Incorrect TVL Conversion
Correctness High Version 3 Code Corrected

The function _getTvlToken0 incorrectly converts the TVL amount of a given token i into token 0. The
oracle returns a price in x96 format. This price is directly used as if it would be a correctly formatted price
to convert the amounts. As the TVL in most cases will be lower than the price in x96 format the
calculation will return 0.

tvl0 = tvls[0];
for (uint256 i = 1; i < tvls.length; i++) {
 (uint256[] memory prices,) = oracle.price(tokens[0], tokens[i], 0x28);
 require(prices.length > 0, ExceptionsLibrary.VALUE_ZERO);
 uint256 price = 0;
 for (uint256 j = 0; j < prices.length; j++) {
 price += prices[j];
 }
 price /= prices.length;
 tvl0 += tvls[i] / price;

Additionally, the calculation would be more precise if the price would be multiplied to convert the
amounts.

Code corrected:

The issue about the conversion of TVLs in function _getTvlToken0 has been addressed. The last
statement of the for-loop has been changed:

tvl0 += FullMath.mulDiv(tvls[i], CommonLibrary.Q96, priceX96);

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

6.7 Adding up Total Value Locked on Different
Tokens
Correctness High Version 1 Code Corrected

The function postPreOrder calls the function _liquidityDelta with tvl[0] and
tvl[0] + tvl[1] (see the issue reported in Calling _liquidityDelta incorrectly).

Additionally, the calculations are performed on tvl with different underlying tokens. Namely, tvl[0] is
in the denomination of token0, while tvl[1] in the denomination of token1.

Code corrected:

Version 2The issue is resolved in code base , the first argument tvl[0] is converted into the domination
of token1 before passed to _liquidityDelta, while the second parameter tvl[1] remains in the
denomination of token1.

6.8 Calling _liquidityDelta Incorrectly
Correctness High Version 1 Code Corrected

The function postPreOrder in Lstrategy calls _liquidityDelta as follows:

(uint256 tokenDelta, bool isNegative) = _liquidityDelta(
 tvl[0],
 tvl[0] + tvl[1],
 ratioParams.erc20TokenRatioD,
 ratioParams.minErc20TokenRatioDeviationD
);

As already pointed out in the issue Calling _liquidityDelta with incorrect inputs, the function
_liquidityDelta also performs the addition, hence computing incorrectly the result.

Code corrected:

The parameters passed to the function _liquidityDelta have been corrected, namely the addition of
tvl[0] + tvl[1] is removed and only tvl[1] is passed as the second argument of the function call.

6.9 Calling _liquidityDelta With Incorrect
Inputs
Correctness High Version 1 Code Corrected

The function rebalanceERC20UniV3Vaults in LStrategy calls _liquidityDelta as follows:

(capitalDelta, isNegativeCapitalDelta) = _liquidityDelta(
 erc20VaultCapital,
 erc20VaultCapital + lowerVaultCapital + upperVaultCapital,
 ratioParams.erc20UniV3CapitalRatioD,

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

 ratioParams.minErc20UniV3CapitalRatioDeviationD
);

Note that, the first parameter is included in the sum used as the second parameter. However, the
function _liquidityDelta also performs the addition on the code below, hence computing
targetLowerLiquidity incorrectly:

uint256 targetLowerLiquidity = FullMath.mulDiv(
 targetLiquidityRatioD,
 lowerLiquidity + upperLiquidity,
 DENOMINATOR
);

Code corrected:

In rebalanceERC20UniV3Vaults the calculation does not add erc20VaultCapital anymore.

6.10 Incorrect Observation Index in
_getAverageTick
Correctness High Version 1 Code Corrected

Function _getAverageTick computes the averageTick and the tickDeviation based on the most
recent observation and a previous observation referred as observationIndexLast. The latter index is
computed as follows:

uint16 observationIndexLast = observationIndex >= oracleObservationDelta
 ? observationIndex - oracleObservationDelta
 : observationIndex + (type(uint16).max - oracleObservationDelta + 1);

If oracleObservationDelta is larger than observationIndex (e.g., by 1), the code above returns
a value that is close (or equal) to type(uint16).max. It is very likely that the Uniswap pool has a
smaller cardinality of observations than the computed observationIndexLast, hence 0s would be
returned for this observation.

Code corrected:

The formula to compute observationIndexLast when
oracleObservationDelta > observationIndex has been revised, type(uint16).max has
been replaced with observationCardinality.

obsIdx = 20 delta = 30 card = 50 --- 20 + 50 -30 = 40

obsIdx = 30 delta = 30 card = 50 --- 0

obsIdx = 30 delta = 31 card = 50 --- 30 + 50 -31 = 49

obsIdx = 30 delta = 49 card = 50 --- 30 + 50 - 49 = 31

generalized: obsIdx + card - delta % card

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

6.11 Incorrect Parameters on externalCall
Correctness High Version 1 Code Corrected

The function signOrder in LStrategy performs few externalCall s, and for one of them sets the
wrong parameters as input:

bytes memory setPresignatureData = abi.encode(SET_PRESIGNATURE_SELECTOR, uuid, signed);
erc20Vault.externalCall(cowswap, SET_PRESIGNATURE_SELECTOR, setPresignatureData);

Note that the function selector is part of the abi.encode and then is set as the second parameter in
externalCall, which also appends the selector when executing the call, hence causing the external
function to always fail:

(bool res, bytes memory returndata) = to.call{value: msg.value}(abi.encodePacked(selector, data));

Code corrected:

The external call in LStrategy.signOrder does not encode the SET_PRESIGNATURE_SELECTOR
twice anymore.

6.12 Insufficient Testing
Security High Version 1 Code Corrected

We found an unusual high number of issues that would have been easily detected with proper tests. The
current unit and integration tests are insufficient.

Code corrected:

The tests have been extended significantly on the latest iterations of the review process to cover more
functions and call paths.

6.13 Opposite Vaults Are Swapped
Correctness High Version 1 Code Corrected

The function _swapVaults in LStrategy should close the position with no liquidity and open a new
one given the price move in positiveTickGrowth. The decision on which vault to close is done in the
following if condition:

/// @param positiveTickGrowth `true` if price tick increased
...
if (!positiveTickGrowth) {
 (fromVault, toVault) = (lowerVault, upperVault);
} else {
 (fromVault, toVault) = (upperVault, lowerVault);
}

The function closes the fromVault and creates the new vault according to the current position of
toVault. However, the code above assigns fromVault wrongly to lowerVault if the tick is

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

decreasing, and vice-versa if the tick is increasing. Given this error and the following requirement, the
function would fail always (as fromVault has all liquidity):

require(fromLiquidity == 0, ExceptionsLibrary.INVARIANT);

Code corrected:

The vaults were switched like:

if (!positiveTickGrowth) {
 (fromVault, toVault) = (upperVault, lowerVault);
 } else {
 (fromVault, toVault) = (lowerVault, upperVault);
 }

6.14 Possibility to Exit Positions of Any Address
Security High Version 1 Code Corrected

In ERC20RootVault.withdraw, LP tokens are burned in a call to _burn from the address that is
specified in the to parameter. Neither _burn nor any other statement in withdraw performs access
control checks to verify if the msg.sender is allowed to burn the tokens of the given address. Thus, any
user can burn LP tokens of a given address and transfer the underlying tokens to that address.

Finally, an incorrect event is emitted with msg.sender.

Code corrected:

Version 2The issues have been resolved in the updated code . The function withdraw now burns only
the LP tokens of the msg.sender, while transfers the underlying tokens to the address to specified by
the caller.

6.15 Possible DOS From First Depositor
Security High Version 1 Code Corrected

The first user that calls deposit in ERC20RootVault can choose freely any amount (including zero) for
each vault token, while the LP shares are set to the largest amount by the following loop in
_getLpAmount:

for (uint256 i = 0; i < tvl_.length; ++i) {
 if (amounts[i] > lpAmount) {
 lpAmount = amounts[i];
 }
}

However, if the first user (on initialization or whenever totalSupply is zero) chooses to deposit only
one token (e.g., token[0]) it makes impossible for other users to deposit other tokens (e.g., token[1])
as the totalSupply is not zero anymore, and _getNormalizedAmount considers the existing TVL:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

// normalize amount
uint256 res = FullMath.mulDiv(tvl_, lpAmount, supply); // if tvl_ == 0, res = 0

The intended use of the function might be that the first deposit is done by a trusted account, but this is not
enforced.

Code corrected:

A new constant FIRST_DEPOSIT_LIMIT is introduced and a require checks that each token amount is
above this limit with tokenAmounts[i] > FIRST_DEPOSIT_LIMIT.

6.16 Setting Wrong State Variable
Correctness High Version 1 Code Corrected

The function _setOperatorParams in VaultGovernance, as the name suggests, should update the
state variable _operatorParams, instead it overwrites the variable _protocolParams:

function _setOperatorParams(bytes memory params) internal {
 _requireAtLeastOperator();
 _protocolParams = params;
}

This mistake has severe consequences: operator gets admin privileges to set _protocolParams or can
set a vault state to incorrect parameters. Finally, the functionality to initialize or update the
_operatorParams is missing.

Code corrected:

The issue is resolved and now the function _setOperatorParams sets the operator params as
intended. The natspec description has been updated accordingly also.

6.17 Wrong Formula in
_rebalanceUniV3Liquidity
Correctness High Version 1 Code Corrected

The function _rebalanceUniV3Liquidity in LStrategy updates the value of liquidity as
follows:

liquidity = uint128(
 FullMath.mulDiv(
 availableBalances[i],
 shouldDepositTokenAmountsD[i] - shouldWithdrawTokenAmountsD[i],
 DENOMINATOR
)
);

The formula above is wrong, it multiplies two amounts in token[i], then divides the result with
DENOMINATOR.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

Code corrected:

The formula now multiplies with DENOMINATOR and divides by the token amount.

6.18 Wrong TVL Calculation in ERC20RootVault
Correctness High Version 1 Code Corrected

ERC20RootVault._getTvlToken0 calculates the TVL of the Vault denominated in the token at
position 0 of an array of tokens. It iterates over all the tokens in the array, but only ever compares token
with index 0 to token with index 1. It should, however, compare token with index 0 to the token with the
current iteration's index. The function is only used in _calculatePerformanceFees.

for (uint256 i = 1; i < tvls.length; i++) {
 (uint256[] memory prices,) = oracle.price(tokens[0], tokens[1], 0x28);

Code corrected:

The issue has been resolved as the correct index is now used when querying the price of tokens inside
the loop.

6.19 liquidity Gets Overwritten in the Loop
Correctness High Version 1 Code Corrected

The following loop in LStrategy._rebalanceUniV3Liquidity updates the liquidity for vault tokens
in a loop:

for (uint256 i = 0; i < 2; i++) {
 ...
 liquidity = uint128(
 FullMath.mulDiv(
 availableBalances[i],
 shouldDepositTokenAmountsD[i] - shouldWithdrawTokenAmountsD[i],
 DENOMINATOR
)
);
}

The final value of liquidity after the loop exists should be the minimum value calculated in each
iteration, however, the loop above overwrites the liquidity on each iteration without performing any
check.

Code corrected:

Version 2In the potentialLiquidity is computed on each iteration of the loop and it is compared
with liquidity, hence liquidity can only decrease in the loop:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

liquidity = potentialLiquidity < liquidity ? potentialLiquidity : liquidity;

6.20 Wrong State Variable Updated
Design Medium Version 8 Code Corrected

The function LStrategy.rebalanceUniV3Vaults updates the wrong state variable when storing the
timestamp of the ongoing rebalance:

require(
 block.timestamp >= lastRebalanceUniV3VaultsTimestamp + otherParams.secondsBetweenRebalances,
 ExceptionsLibrary.TIMESTAMP
);
lastRebalanceERC20UniV3VaultsTimestamp = block.timestamp;

Due to this error the throttling mechanism does not work as expected for the function rebalancing the two
uniswap vaults. Furthermore, this also affects the throttling mechanism of the function
rebalanceERC20UniV3Vaults.

Code corrected:

The issue has been fixed and the correct state variable is updated in rebalanceUniV3Vaults:

lastRebalanceUniV3VaultsTimestamp = block.timestamp;

6.21 Inconsistent Access Control for Rebalance in
LStrategy
Design Medium Version 4 Specification Changed

The function LStrategy.rebalanceERC20UniV3Vaults restricts the access to only accounts with
operator or admin roles. However, functions deposit and withdraw in the ERC20RootVault do not
have any access restriction (unless the vault is private). The root vault has the operator role in
LStrategy and for any deposit or withdraw operation, the vault triggers the rebalance function in
LStrategy, hence circumventing the access control of the rebalance function.

Specification changed:

Mellow Finance has decided to remove the callback feature that triggered the rebalance in LStrategy.
Now, the rebalance functions rebalanceERC20UniV3Vaults and rebalanceUniV3Vaults can be
called only by whitelisted addresses with either admin or operator role. Note that, the callback feature
is still present in ERC20RootVault in case future strategies will support the callback feature.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

6.22 Inconsistent Sanity Check on First Deposit's
Amounts
Design Medium Version 4 Code Corrected

The function ERC20RootVault.deposit runs the following loop for the first deposit (whenever
totalSupply is 0) to check that all amounts are above a threshold FIRST_DEPOSIT_LIMIT
(hard-coded to 10000):

if (totalSupply == 0) {
 for (uint256 i = 0; i < tokens.length; ++i) {
 require(tokenAmounts[i] > FIRST_DEPOSIT_LIMIT, ExceptionsLibrary.LIMIT_UNDERFLOW);
 }
}

The contract uses another set of thresholds per token _pullExistentials which are initialized as:
10**(token.decimals() / 2). Hence for tokens with more than 8 decimals, there is a gap between
the two thresholds FIRST_DEPOSIT_LIMIT and _pullExistentials. If the first deposit includes an
amount for a token in this gap, the contract does not allow new deposits for the token from other users as
the respective TVL will be always below the threshold _pullExistentials. This behavior is enforced
in _getLpAmount:

for (uint256 i = 0; i < tvlsLength; ++i) {
 if (tvl_[i] < pullExistentials[i]) {
 continue;
 }
 ...
}

and in the function _getNormalizedAmount:

if (tvl_ < existentialsAmount) {
 // use zero-normalization when all tvls are dust-like
 return 0;
}

Code corrected:

Mellow Finance now requires that the amount in the first deposit is 10 times the _pullExistentials.

6.23 Safety Level of Returned Prices Can Silently
Downgrade
Security Medium Version 4 Specification Changed

The function UniV3Oracle.price returns more than one price depending on the value of
safetyIndicesSet. UniV3Oracle supports 4 safety levels:

• Safety level 1: spot price.

• Safety level 2: average price based on observations from last 2.5 minutes.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

• Safety level 3: average price based on observations from last 7.5 minutes.

• Safety level 4: average price based on observations from last 30 minutes.

If a Uniswap pool does not have enough observations required for a safety level, the oracle skips the
prices for such safety levels and returns only prices with lower safety levels. The respective code:

for (uint256 i = 2; i < 5; i++) {
 ...
 (int24 tickAverage, , bool withFail) = OracleLibrary.consult(address(pool), observationTimeDelta);
 if (withFail) {
 break;
 }
 ...
}

Specifications changed:

The natspec description of IOracle.priceX96 has been updated to be more explicit about this
behavior:

/// @notice It is possible that not all indices will have their respective prices returned.

Also, more detailed description has been added in UniV3Oracle.priceX96:

/// If there is no initialized pool for the passed tokens, empty arrays will be
 returned.
/// Depending on safetyIndicesSet if the 1st bit in safetyIndicesSet is non-zero, then
 the response will contain the spot price.
/// If there is a non-zero 2nd bit in the safetyIndicesSet and the corresponding
 position in the pool was created no later than |l|_OBS_DELTA seconds ago,
/// then the average price for the last |l|_OBS_DELTA seconds will be returned. The
 same logic exists for the 3rd and MID_OBS_DELTA, and 4th index and |hl|_OBS_DELTA.

6.24 Unfair Distribution of LP Shares in
ERC20RootVault
Design Medium Version 3 Code Corrected

The ERC20RootVault charges the management, protocol and performance fees by minting new LP
shares, hence inflating the total supply. The function _chargeFees is triggered on every deposit (and
withdraw) action, hence the total supply of LP shares after a deposit increases more than the amount of
LP shares awarded to the depositor. In this way, a second deposit of the same token amounts after the
fees have been charged, receives more LP shares than the first one.

For example, assume that the ERC20RootVault has been initialized and a first user deposits 10
TokenA and 10 TokenB (assuming 0 decimals for simplicity) and receives 10 LP shares. As the fees will
be charged on deposit, let's suppose another 1 LP share will be minted, hence in total there are 11 LP
shares minted after the deposit. If a second user deposits the same amounts 10 TokenA and 10
TokenB, the function _getLpAmount will award 11 LP shares to the user although the same amounts
were deposited.

Code corrected:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

The issue has been addressed by modifying the functions deposit to charge fees first and then
compute the LP shares awarded to the user according to the new LP supply.

6.25 Conflicting Specifications for MStrategy
Correctness Medium Version 1 Specification Changed

The specifications of MStrategy have conflicting instructions. The section "TickMin and TickMax update"
states:

tickMin and tickMax are initially set to some ad-hoc params.
As soon as the current price — tick is greater than tickMax - tickNeiborhood
or less than tickMin + tickNeiborhood the boundaries of the interval
is expanded by tickIncrease amount.

In the rebalance steps, tickNeiborhood is used instead of tickIncrease:

- tick is greater than tickMax - tickNeiborhood then new
 boundaries are [tickMin, tickMax + tickNeiborhood]

- tick is less than tickMin + tickNeiborhood then new
 boundaries are [tickMin - tickNeiborhood, tickMax]

Specification changed:

The specification was changed accordingly.

6.26 Implementation Differs From Specification
on _targetTokenRatioD
Correctness Medium Version 1 Code Corrected

The specifications use the following formula to compute the portions of tokens in a Uniswap v3 pool: |

wx = tick − tickMax
tickMin − tickMax

However, the implementation uses the following code:

return (uint256(uint24(tick - tickMin)) * DENOMINATOR) / uint256(uint24(tickMax - tickMin));

which corresponds to the following formula: |

wx = tick − tickMin
tickMax − tickMin

Code corrected:

The implementation of MStrategy._targetTokenRatioD has been updated to comply to the
specification.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

6.27 Incorrect Access of Addresses in
EnumerableSet
Correctness Medium Version 1 Code Corrected

Function commitAllValidatorsSurpassedDelay in the protocol governance contract has a for
loop that iterates through _stagedValidatorsAddresses and commits the ones for which the delay
period has passed. The respective code is:

for (uint256 i; i != length; i++) {
 address stagedAddress = _stagedValidatorsAddresses.at(0);
 if (block.timestamp >= stagedValidatorsTimestamps[stagedAddress]) {
 ...
 }
}

The variable stagedAddress inside the loop points always to the hard-coded index 0, hence if there is
at least one address in staged validators for which the deadline has not passed, the loop will just run until
it reaches i==length.

Code corrected:

The 0 was replaced by the index variable i. The loop exit conditions were changed to:

uint256 length = _stagedValidatorsAddresses.length();
...
uint256 addressesCommittedLength;
for (uint256 i; i != length;) {
 address stagedAddress = _stagedValidatorsAddresses.at(i);
 ...
 addressesCommitted[addressesCommittedLength] = stagedAddress;
 ++addressesCommittedLength;
 --length;
 ...
 } else {
 ++i;
 }

6.28 Missing Checks for Dust Amounts When
Rebalancing Pools
Design Medium Version 1 Code Corrected

The function _rebalancePools in MStrategy rebalances the erc20Vault and moneyVault to
comply to the specified ratio erc20MoneyRatioD. The rebalancing is performed always when a
non-zero amount should be moved from one vault to the other, i.e., even for dust amounts. Considering
that pull is relatively costly, the strategy would be more efficient if it performs the rebalancing of the two
pools only if a minimum threshold of tokens should be moved.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

Code corrected:

The updated code does not perform the token transfers if only dust amounts should be moved:

if ((absoluteTokenAmounts[0] < minDeviation) && (absoluteTokenAmounts[1] < minDeviation)) {
 return tokenAmounts;
}

6.29 Missing Delay Restriction in BaseValidator
Correctness Medium Version 1 Code Corrected

Setting the new params in BaseValidator follows the pattern stage-wait-commit. On staging the new
parameters, the respective timestamp is updated:

_stagedValidatorParamsTimestamp = block.timestamp + governance.governanceDelay;

However, the admin of the governance can commit the staged parameters at any time, e.g.,
immediately after staging them, by calling commitValidatorParams as the function does not check if
the delay period has passed.

Code corrected:

The function now checks the delay with a require validating
block.timestamp >= _stagedValidatorParamsTimestamp.

6.30 Missing Sanity Checks in signOrder
Security Medium Version 1 Code Corrected

The function signOrder in LStrategy performs some sanity checks if the submitted order is in line
with the values of the posted preOrder. However, the check for order.receiver is missing, therefore
the caller can set any arbitrary address and receive the buyToken.

Code corrected:

The code doing the sanity checks for order in signOrder has been moved to the separate function
LStrategyOrderHelper.checkOrder which includes the check that the receiver is the
erc20Vault.

6.31 No Slippage Protection in Multiple Contracts
Security Medium Version 1 Code Corrected

push and pull functions in UniV3Vault take options arguments that contain the minimum amount of
tokens for slippage protection.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

push and pull functions in MellowVault take an options argument that contains the minimum amount
of LP tokens for slippage protection.

In the following cases, these options are not used:

• ERC20RootVault.deposit calls AggregateVault._push without options, which could result in
a call to _push of one of the described
Vault``s without slippage protection if the first ``subVault of the
ERC20RootVault is one of the described Vault s. With the current contract setup, this is not
possible though.

• ERC20RootVault.withdraw calls AggregateVault._pull without options, which could result
in a call to _pull of one of the described ``Vault``s without slippage protection.

• MStrategy.manualPull calls pull of an arbitrary Vault without options, which could result in a
call to _pull of one of the described ``Vault``s without slippage protection.

• MStrategy._rebalancePools calls pull of an arbitrary Vault without options, which could
result in a call to _pull of one of the described ``Vault``s without slippage protection.

• MStrategy._swapToTarget calls pull of an arbitrary Vault without options, which could result
in a call to _pull of one of the described ``Vault``s without slippage protection.

Code corrected:

A new parameter with option for slippage protection was introduced.

6.32 Possible Underflow in UniV3Oracle.price
Correctness Medium Version 1 Code Corrected

The UniV3Oracle computes the price of two tokens based on two observations obs1 and obs0 from
the Uniswap. The respective code is:

uint256 obs1 = (uint256(observationIndex) + uint256(observationCardinality) - 1) %
 uint256(observationCardinality);
uint256 obs0 = (uint256(observationIndex) + uint256(observationCardinality) - bfAvg) %
 uint256(observationCardinality);
int256 tickAverage;
{
 (uint32 timestamp0, int56 tick0, ,) = IUniswapV3Pool(pool).observations(obs0);
 (uint32 timestamp1, int56 tick1, ,) = IUniswapV3Pool(pool).observations(obs1);
 uint256 timespan = timestamp1 - timestamp0; // reverts
 ...
}

The obj1 points to the previous observation (the one before the most recent observation), while the
obj0 should point to bfAvg observations before obj1. However, in case:

bfAvg == observationCardinality

obj0 would point to the most recent observation, which would have a more recent timestamp than obj1,
hence the statement to compute timespan would cause an underflow which reverts.

Code corrected:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

The possibility of the underflow as described above has been mitigated in the updated code as the
bfAvg cannot be equal to obersvationCardinality:

if (observationCardinality <= bfAvg) {
 continue;
}

Note that, the oracle does not return a price if for some pool bfAvg is equal to the observations
cardinality.

6.33 Rebalance in LStrategy Can Leave Tokens in
the Vault to Be Closed
Design Medium Version 1 Code Corrected

The internal function _rebalanceUniV3Liquidity should move the desiredLiquidity from one
vault to the other depending on the price trend. If the price moves outside the range covered by a vault,
all liquidity should be moved to the other vault and a new position should be open. However, given that
lowerVault and upperVault operate on different price ranges, it means that they have different token
ratios. Hence, when moving tokens from one vault to the other, the function caps the liquidity being
transferred to the available balance in the cash position that can fill the token difference of two positions
(the relevant code is shown below). However, if the cash position has insufficient balance to cover the
difference for the whole liquidity being transferred, fromVault will have some remaining liquidity, hence
it cannot be closed. As a consequence, a new Uniswap position cannot be created to cover the price as
intended.

uint128 potentialLiquidity = uint128(
 FullMath.mulDiv(
 availableBalances[i],
 DENOMINATOR,
 shouldDepositTokenAmountsD[i] - shouldWithdrawTokenAmountsD[i]
)
);
liquidity = potentialLiquidity < liquidity ? potentialLiquidity : liquidity;

Code corrected:

Version 3The function LStrategy._rebalanceUniV3Liquidity has been modified in to withdraw
everything from a vault when desiredLiquidity is set to maximum value of uint128, which is the
case when a vault is to be closed. The relevant code is:

uint256[] memory withdrawTokenAmounts = fromVault.liquidityToTokenAmounts(
 desiredLiquidity == type(uint128).max ? desiredLiquidity : liquidity
);
pulledAmounts = fromVault.pull(
 address(erc20Vault),
 tokens,
 withdrawTokenAmounts,
 _makeUniswapVaultOptions(minWithdrawTokens, deadline)
);

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

The array withdrawTokenAmounts will have huge amounts when the desiredLiquidity is set to
max uint128, but the pull operation is capped to the existing balance of the fromVault.

6.34 Subvault Tokens Are Not Checked in
AggregateVault
Correctness Medium Version 1 Code Corrected

AggregateVault requires the _vaultTokens state array to be initialized with the same tokens and
the same ordering all the subvaults have been initialized with. However, this is not enforced upon
initialization.

Code corrected:

When initializing, the vault of the nft is queried in AggregateVault.initialize. The vault's tokens
are queried afterwards with the call IIntegrationVault(vault).vaultTokens(). A loop checks
for each token in the vault if it matches the tokens from the initialization arguments.

6.35 Transferring Tokens Only to lowerVault
Correctness Medium Version 1 Code Corrected

The following code should transfer tokens from erc20Vault to the two Uniswap vaults with the
respective amounts:

if (!isNegativeCapitalDelta) {
 totalPulledAmounts = erc20Vault.pull(
 address(lowerVault),
 tokens,
 lowerTokenAmounts,
 _makeUniswapVaultOptions(minLowerVaultTokens, deadline)
);
 pulledAmounts = erc20Vault.pull(
 address(lowerVault),
 tokens,
 upperTokenAmounts,
 _makeUniswapVaultOptions(minUpperVaultTokens, deadline)
);
 for (uint256 i = 0; i < 2; i++) {
 totalPulledAmounts[i] += pulledAmounts[i];
 }
}

Both transfers above are from the erc20Vault to the lowerVault, hence no tokens are transferred to
the upperVault.

Code corrected:

The bug has been fixed, the code now transfers the respective amounts to the lowerVault and
upperVault.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

6.36 Use of Libraries
Design Medium Version 1 Code Corrected

Mellow Finance often uses own custom code for which battle proof libraries exist. We highly recommend
using libraries instead of custom implementations. Especially, when dealing with complex DeFi projects
like Uniswap V3.

Code Corrected:

Version 3The code part were most issues were found was the Uniswap oracle. In Mellow Finance
switched to the libraries provided by uniswap to interact with the oracle.

6.37 Missing Sanity Checks for
intervalWidthInTicks
Design Low Version 5 Code Corrected

The function LStrategy.updateOtherParams does not perform any sanity check on the
intervalWidthInTicks. However, this parameter should be carefully updated as it affects directly the
tick ranges covered by the two Uniswap vaults. For example, if the new width in ticks is the half of the
existing one, the range of the new position would be fully covered by the existing vault (created with old
width).

Code corrected:

In the updated version of the codebase, the parameter intervalWidthInTicks is declared as an
immutable state variable, hence it set in the constructor and cannot be updated later.

6.38 Possible Attack by First Depositor
Security Low Version 5 Specification Changed

The decimals of the LP shares distributed by root vaults are implicitly determined by the token amounts
deposited by the first user. If the totalSupply ever goes to zero, or all TVLs are not significant, the
next user that performs a deposit would affect the decimals of LP shares. This setup allows the first
depositor to front-run and potentially exploit the next user depositing into the root vault. Consider the
following example.

1. First Depositors deposits 10 WBTC (8 decimals, so 10**9 wei) and 10**-9 DAI (18 decimals, so
10**9 wei)

• Receives 10**9 LP Tokens (= max(10**9, 10**9))

2. Second Depositor also sends a transaction to deposit 10 WBTC and 10**-9 DAI

• Expects to receive also 10**9 LP Tokens, hence sets minLpTokens = 10**9

3. First depositor front-runs the transaction and performs these actions:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

• withdraw() => withdraws everything, no fees charged

• deposit() => deposit 10**5 WBTC wei and 10**10 DAI wei => Receives 10**10 LP tokens

• withdraw() => withdraws ~ 9 * 10**9 LP => TVLs = [10**4 - 1 WBTC wei, 10**9 - 1 USDC
wei]

• First depositor still has ~ 10**9 LP

4. Transaction of second depositor is executed

• _getLpAmount -> isSignificantTvl == False

• Receives 10**9 LP tokens => slippage protection passes

• Deposits 10 WBTC and 10**-9 DAI

5. First depositor withdraws their ~ 10**9 LP and receives ~ 5 WBTC (after depositing only 0.0001
WBTC)

Specifications changed:

The updated code mitigates the attack presented above by enforcing the first deposit into a root vault to
mint LP shares to address(0). To prevent from accidentally depositing large amounts in the first
deposit (and effectively burning LP shares), the function checks that all amounts being deposited are
between 10 * _pullExistentials[i] and a full token. Nevertheless, one full token might still have
significant value for some tokens, e.g., WBTC or ETH.

6.39 Possible Optimization on
_chargePerformanceFees
Design Low Version 5 Code Corrected

The function _chargePerformanceFees in ERC20RootVault mints LP tokens to the treasury
address as follows:

uint256 toMint;
if (hwmsD18 > 0) {
 toMint = FullMath.mulDiv(baseSupply, lpPriceD18 - hwmsD18, hwmsD18);
 toMint = FullMath.mulDiv(toMint, performanceFee, CommonLibrary.DENOMINATOR);
}
lpPriceHighWaterMarkD18 = lpPriceD18;
_mint(treasury, toMint);

The function would be more gas efficient if the minting is executed only for non-zero values, hence only
minting when the if-condition is satisfied.

Code corrected:

In the updated code, the statement _mint(...) is moved inside the if-block, hence minting only
non-zero amounts.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

6.40 Possible Violation of the Minimum Token
Amounts After the First Deposit
Design Low Version 5 Code Corrected

The function ERC20RootVault.deposit checks on the first deposit that all token amounts are larger
than a minimum value 10 * _pullExistentials[i]. If the TVL for a token goes below the
threshold, users cannot make deposits for that token. However, the first depositor can circumvent the
restriction for the minimum token amounts by performing an withdrawal after the deposit.

Code corrected:

The issue presented above is not present anymore in the updated code base as the first deposit always
mints LP shares to address(0).

6.41 Misleading Function Name and Natspec
Correctness Low Version 4 Code Corrected

The function LStrategy.targetPrice returns the price in x96 format. Neither the function name, nor
the natspec description clarify the format of the return value. We have reported another issue in a calling
function which assumed the price to be returned in a different format.

Code corrected:

The codebase has been updated to make more explicit in the function name and natspec description of
getTargetPriceX96 that the returned price is in x96 format. Similarly, other functions that return the
price in x96 format are renamed accordingly.

6.42 Mismatch of Specifications for
StrategyParams
Correctness Low Version 4 Code Corrected

The natspec description for the struct StrategyParams states that the params are changed with a
delay:

/// @notice Params that could be changed by Strategy or Protocol Governance
 with Protocol Governance delay.

while the natspec description of the function setStrategyParams states that they are changed
immediately, which is in line with the implementation:

// @notice Set Strategy params, i.e. Params that could be changed by Strategy or Protocol Governance immediately.

Core corrected

The natspec was corrected and does not mention the governance delay.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

6.43 Missing Sanity Check for maxSlippageD in
MStrategy
Design Low Version 4 Code Corrected

The function MStrategy.setOracleParams does not check that maxSlippageD is greater than zero,
but if it is accidentally set to zero, the following code will revert always: .. code::solidity

require(absoluteDeviation < oracleParams.maxTickDeviation, ExceptionsLibrary.INVARIANT);

Code corrected:

The function setOracleParams is updated to include a check that the new maxSlippageD parameter
is not zero:

require((params.maxSlippageD > 0) && (params.maxSlippageD <= DENOMINATOR), ExceptionsLibrary.INVARIANT);

6.44 Missing Sanity Checks for oracleSafetyMask
Design Low Version 4 Code Corrected

The function LStrategy.updateTradingParams performs sanity checks on the maxSlippageD,
orderDeadline and oracle, but no checks are performed for oracleSafetyMask. This parameter
should be non-zero for functions that query the oracle to work properly. Additionally, the function could
check that at least one oracle with high safety index is included always.

Code corrected:

An additional check is added when new trading params are set by the admin. The check fort the new
oracle safety mask is: newTradingParams.oracleSafetyMask > 3.

6.45 Possible Struct Optimization in Strategies
Design Low Version 4 Code Corrected

Mellow Finance might want to consider to optimize some structs in the code base. E.g., in:

struct TradingParams {
 uint32 maxSlippageD;
 uint32 orderDeadline;
 uint256 oracleSafetyMask;
 IOracle oracle;
 ...

struct PreOrder {
 address tokenIn;
 address tokenOut;
 uint256 amountIn;

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 43

https://chainsecurity.com

 uint256 minAmountOut;
 uint256 deadline;
}

struct RatioParams {
 int24 tickMin;
 int24 tickMax;
 uint256 erc20MoneyRatioD;
 int24 minTickRebalanceThreshold;
 int24 tickNeighborhood;
 int24 tickIncrease;
 uint256 minErc20MoneyRatioDeviation0D;
 uint256 minErc20MoneyRatioDeviation1D;
}

Some of the variables will not take up a whole word and could be reordered to be packed tightly if
needed.

Code corrected:

The variables in the structs listed above are reordered to be more efficient when stored in storage in the
updated code.

6.46 Redundant Comparisons
Design Low Version 4 Code Corrected

The function Univ3Vault._getMinMaxPrice implements the following code:

minPriceX96 = prices[0];
maxPriceX96 = prices[0];
for (uint32 i = 0; i < prices.length; ++i) {
 if (prices[i] < minPriceX96) {
 ...

Note that minPriceX96 and maxPriceX96 are assigned to prices[0] before the for-loop, so the
first iteration of the loop is redundant.

Code corrected:

The for-loop has been updated to start from i = 1 which avoids the redundant checks.

6.47 Redundant Storage Read in
ERC20Vault._pull
Design Low Version 4 Code Corrected

_vaultTokens is a state variable that is read multiple times in the _pull function even though it is
stored in memory at the beginning of the function in tokens.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 44

https://chainsecurity.com

Code corrected:

The function has been revised to avoid storage reads for _vaultTokens, instead the value stored in
memory tokens is now used.

6.48 Variables Can Be Declared as Constant
Design Low Version 4 Code Corrected

The variable MAX_ESTIMATED_AAVE_APY in AaveVaultGovernance is declared as immutable and
assigned to a constant in constructor. Similarly, MAX_PROTOCOL_FEE, MAX_MANAGEMENT_FEE and
MAX_PERFORMANCE_FEE in ERC20RootVaultGovernance can be declared as constants.

Code corrected:

All immutable variables listed above are converted to constants.

6.49 Incorrect Specification for reclaimTokens
Correctness Low Version 3 Specification Changed

The following statement in IntegrationVault regarding the function reclaimTokens is incorrect:

/// `reclaimTokens` for mistakenly transfered tokens (not included into vaultTokens)
/// additionally can be withdrawn by the protocol admin

Specification changed:

The statement in IntegrationVault has been changed as:

/// `reclaimTokens` for claiming rewards given by an underlying protocol to erc20Vault
 in order to sell them there

6.50 Missing Natspec Description for
minDeviation
Correctness Low Version 2 Code Corrected

The parameter minDeviation in the function LStrategy._liquidityDelta has no natspec
description.

Code Corrected:

The description for minDeviation was added.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 45

https://chainsecurity.com

6.51 Casting of maxTickDeviation
Security Low Version 1 Code Corrected

maxTickDeviation is declared as uint24 in the struct OracleParams. In function
_getAverageTickChecked, the variable is casted as int24:

int24 maxDeviation = int24(oracleParams.maxTickDeviation);

For large values of maxTickDeviation, an overflow can happen when casting as int24.

Code corrected:

The deviation is now converted to an absolute value and directly compared to the maxDeviation
without casting it to an int24.

6.52 Check Requirements First
Design Low Version 1 Code Corrected

Multiple functions can be more efficient by checking all requirements first (fail early), before performing
expensive operations, such as external calls. We list below some examples (not an exhaustive list):

• UniV2Validator: in validate both branches of the if condition require the msg.sender to be
the address to. The function can be optimized by checking the requirement first, and then
performing the call to _verifyPath function.

• UniV2Validator: the function _verifyPath can be optimized by checking the following
requirement first, before making external calls in the loop:

require(vault.isVaultToken(path[path.length - 1]), ExceptionsLibrary.INVALID_TOKEN);

• UniV3Validator: the function _verifyMultiCall can be optimized by checking the following
requirement first, before iterating through path and making external calls:

require(recipient == address(vault), ExceptionsLibrary.INVALID_TARGET);

Code corrected:

Version 3The updated code performs the checks first before executing other operations that might be
expensive for the cases listed above.

6.53 Duplicate Code _permissionIdsToMask
Design Low Version 1 Code Corrected

The function revokePermissions in the ProtocolGovernance contract implements the following
loop:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 46

https://chainsecurity.com

uint256 diff;
for (uint256 i = 0; i < permissionIds.length; ++i) {
 diff |= 1 << permissionIds[i];
}

which is a duplicate of the _permissionIdsToMask function.

Code corrected:

The code part was replaced by a call to the _permissionIdsToMask function.

6.54 Duplicate Storage Read in Deposit
Design Low Version 1 Code Corrected

In ERC20RootVault.deposit the variable totalSupply is read for the check if it is 0 and later again
to be loaded into memory.

Code corrected:

The redundant storage read is eliminated in the updated code and the value stored in memory supply is
used instead.

6.55 Inconsistent Specifications
Correctness Low Version 1 Specification Changed

In the specifications of struct IProtocolGovernance.Params:

• permissionless is described but it's not a member of the struct.

• maxTokensPerVault has the description that it stores the maximum tokens managed by the
protocol, not a vault as the name suggests.

• protocolTreasury is not described.

In the specifications of unitPrices, the comment staged for commit is wrong.

Specifications changed:

Version 2The specifications have been updated in to address the issues reported above.

6.56 Inefficient Array Shrinking
Design Low Version 1 Code Corrected

ProtocolGovernance.addressesByPermission and
ProtocolGovernance.commitAllPermissionGrantsSurpassedDelay create arrays with
extended length and copy the values to a newly generated array with the correct size. This can be more
efficiently done with mstore assembly, which is also used in various other places in the code.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 47

https://chainsecurity.com

Code corrected:

The array is now cut to length via mstore as in other parts of the code.

6.57 Inefficient State Variable Packing
Design Low Version 1 Code Corrected

lastFeeCharge and totalWithdrawnAmountsTimestamp in ERC20RootVault are declared as
uint256. Both are timestamps; hence, it might be more efficient to pack them as uint64. This only
makes sense if they are used and loaded together, which would be possible in the current code base.
Similarly, other structs in other contracts can be more storage-efficient by packing variables together.

Code corrected:

Both variables lastFeeCharge and totalWithdrawnAmountsTimestamp have been declared as
uint64 in the updated code.

6.58 Misleading Naming of Variables in
UniV3Oracle
Design Low Version 1 Code Corrected

The function price uses variable names that are inconsistent with the variable names of Uniswap.
Namely, the variables tick0 and tick1 refer to tickCumulative variables of Uniswap and not
normal ticks.

Similarly, the array pricesX96 temporarily stores prices in square root format which are typically
referred to as sqrtPriceX96. These inconsistencies make the reading of the code harder.

Code Corrected:

The variables were renamed accordingly.

6.59 Missing Sanity Check in
MStrategy.createStrategy
Design Low Version 1 Code Corrected

In MStrategy.createStrategy any token array could be passed in, but the strategy can only handle
two tokens. There is no sanity check to limit the number of tokens. The fee parameter is also not checked
even though it could only take a limited range of values.

Code corrected:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 48

https://chainsecurity.com

The sanity check on the tokens array is added in the initialize function which is called when a new
strategy is created. The sanity check for the fee parameter is performed when the pool address is
queried:

pool = IUniswapV3Pool(factory.getPool(tokens[0], tokens[1], fee_));
require(address(pool) != address(0), ExceptionsLibrary.ADDRESS_ZERO);

6.60 Missing Sanity Checks for Params
Design Low Version 1 Code Corrected

LStrategy.updateRatioParams and LStrategy.updateOtherParams do not perform sanity
checks on all the params.

Code Corrected:

Both functions now perform basic sanity checks for the arguments.

6.61 Misspelled Variable Names
Design Low Version 1 Code Corrected

Function deposit in ERC20RootVault declares a variable with misspelled name:
delayedStaretgyParams.

Struct ratioParams in MStrategy declares a variable with misspelled name: tickNeiborhood.

Code corrected:

Both variable names have been corrected in the updated code.

6.62 Possible Struct Optimization
Design Low Version 1 Code Corrected

Mellow Finance might want to consider to optimize some structs in the code base. E.g., in:

struct TradingParams {
 uint256 maxSlippageD;
 uint256 minRebalanceWaitTime;

 ...

struct RatioParams {
 uint256 erc20UniV3CapitalRatioD;
 uint256 erc20TokenRatioD;
 uint256 minErc20UniV3CapitalRatioDeviationD;
 uint256 minErc20TokenRatioDeviationD;
 uint256 minUniV3LiquidityRatioDeviationD

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 49

https://chainsecurity.com

Some of the variables will not take up a whole word and could be packed if needed.

Code corrected:

The examples above and some other structs were changed. We assume that Mellow Finance evaluated
all structs if an optimization is suitable and shall be applied.

6.63 Rebalance in MStrategy Is Inconsistent
Correctness Low Version 1 Code Corrected

MStrategy provides only one function for rebalancing (rebalance) which calls _rebalancePools to
enforce the predetermined ratio for the pools (erc20Vault and moneyVault) and then calls
_rebalanceTokens to enforce the token ratio for the erc20Vault. The latter calls _swapToTarget
which, in specific cases, pulls tokens from the moneyVault to the erc20Vault:

if (amountIn > erc20Tvl[tokenInIndex]) {
 ...
 moneyVault_.pull(address(erc20Vault_), tokens_, tokenAmounts, "");
 ...
}

This transfer of tokens from moneyVault to the erc20Vault would break the balance set in the
function _rebalancePools called in the beginning of the rebalance process.

Code corrected:

The function rebalance has been updated to perform first the rebalance of tokens in the erc20Vault,
which includes any potential swap. Afterwards, the function calls _rebalancePools which enforces the
predetermined ratio of TVLs for the erc20Vault and moneyVault.

6.64 Specification for minDeviation Not
Enforced
Correctness Low Version 1 Code Corrected

The function rebalanceERC20UniV3Vaults in LStrategy calls the function _liquidityDelta and
provides the minimum required deviation for a rebalance to be performed. _liquidityDelta checks
the current deviation and if it is lower than the required minimum, it returns 0. However, the calling
function does not check the return value, hence continues the execution of the function although no
tokens will be moved.

Code corrected:

The check below for the return value of the function _liquidityDelta has been added. Now the
function returns immediately if capitalDelta is equal to 0 due to current deviation being smaller than
the minimum required deviation:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 50

https://chainsecurity.com

(capitalDelta, isNegativeCapitalDelta) = _liquidityDelta(...);
if (capitalDelta == 0) {
 return (pulledAmounts, false);
}

6.65 Storing Redundant Data in Storage
Design Low Version 1 Code Corrected

The function _addUniV3Pools stores two entities in the mapping for each pair of tokens:

poolsIndex[token0][token1] = pool;
poolsIndex[token1][token0] = pool;

Given that there is only one Uniswap pool for a pair of tokens and a fee, the tokens can be sorted and
stored only once in the mapping: tokenA -> tokenB -> pool, assuming tokenA < tokenB.

Code corrected:

The mapping poolsIndex now stores only one entry for a pair of tokens
token0 -> token1 -> pool.

6.66 Unnecessary Approval to Vault Registry
Design Low Version 1 Code Corrected

Function _initialize in Vault has the following line which gives approval to the vault registry, but it is
unnecessary as VaultRegistry is the implementation contract of the NFT token:

registry.setApprovalForAll(address(registry), true);

Code corrected:

Version 2The statement giving the approval has been removed from the function in .

6.67 Unused Constant in ERC20Validator
Design Low Version 1 Code Corrected

ERC20Validator declares the following constant, but it is not used:

bytes4 public constant EXCHANGE_SELECTOR = 0x3df02124;

Code corrected:

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 51

https://chainsecurity.com

The constant was removed from the contract.

6.68 Unused Event DeployedVault
Design Low Version 1 Code Corrected

The contract VaultGovernance defines the event DeployedVault but it is not used in the current
code base.

Code corrected:

The updated code emits the event DeployedVault when a new vault is created.

6.69 Unused Function
LStrategy._priceX96FromTick
Design Low Version 1 Code Corrected

The internal function LStrategy._priceX96FromTick is not used in the LStrategy.

Code corrected:

The function was removed from the L Strategy.

6.70 Unused Imports
Design Low Version 1 Code Corrected

Throughout the code base we found many unused imports. Due to the number of unused imports, the
following list is non-exhaustive and list only examples:

-MellowOracle

import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"

import "../libraries/CommonLibrary.sol";

• UniV2Oracle

import "../libraries/ExceptionsLibrary.sol"

• UniV3Oracle

import "../libraries/ExceptionsLibrary.sol"

• LStrategy

import "../interfaces/IVaultRegistry.sol"

import "../interfaces/utils/IContractMeta.sol"

• MStrategy

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

• CowswapValidator

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 52

https://chainsecurity.com

import "../libraries/CommonLibrary.sol"

import "../libraries/PermissionIdsLibrary.sol"

• CurveValidator

import "../libraries/CommonLibrary.sol"

import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"

import "../interfaces/validators/IValidator.sol";

• ERC20Validator

import "../libraries/CommonLibrary.sol"

• UniV2Validator and UniV3Validator

import "../interfaces/validators/IValidator.sol";

import "../libraries/CommonLibrary.sol"

import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"

• AaveVault

import "../interfaces/vaults/IVault.sol"

• AggregateVault

import "../interfaces/vaults/IAggregateVault.sol";

import "../libraries/PermissionIdsLibrary.sol"

• ERC20RootVault

import "../interfaces/utils/IContractMeta.sol"

Code partially corrected:

The unused imports have been removed from the respective contracts for all examples listed above,
except for the SafeERC20 import in the MStrategy.

6.71 Wrong Check of Minimum Token Amounts in
ERC20RootVault.withdraw
Correctness Low Version 1 Code Corrected

ERC20RootVault.withdraw compares the token amounts a user wants to receive at minimum with
the calculated token amounts, but not the token amounts that are actually returned after pulling from
underlying Vault s. This could potentially result in the user receiving less tokens than anticipated.

Code corrected:

The actual token amounts pulled from vaults are now validated against the minimum amounts provided
by the user: `` require(actualTokenAmounts[i] >= minTokenAmounts[i],...);``

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 53

https://chainsecurity.com

6.72 Wrong Specification for YearnVault.tvl
Correctness Low Version 1 Specification Changed

The specification in YearnVault mentions that YearnVault.tvl returns a cached value when in fact
it does not.

Specification changed:

Version 3The specification has been updated in and the statement about the cached value has been
removed.

6.73 ContractRegistry DOS
Security Low Version 1 Code Corrected

ContractRegistry.registerContract checks that the version of a registered contract is always
increasing in:

require(newContractVersion > _latestVersion(newContractName), ExceptionsLibrary.INVARIANT);

If a contract is deployed with a version set to max uint, this would be the last contract possible to add to
the system. No contracts could be added afterwards.

Code corrected:

Mellow Finance introduced major and minor contract version. The 16 right most bytes are the minor
version and the remaining bytes to the right the major version. A require ensures that with each call to
registerContract the major version can only increase by 1 with
newContractVersionMajor - latestContractVersionMajor <= 1.

6.74 ERC20Vault._pull Forces Push of Wrong
Amount of Tokens
Correctness Low Version 1 Code Corrected

In ERC20Vault._pull, if tokens are not pulled to the ERC20RootVault, the receiving Vault is forced
to push the received tokens. The token amounts to be pushed are set in actualTokenAmounts, but
this variable is never used. Instead tokenAmounts is used.

Code corrected:

The code has been corrected to push into the integration vault the amounts as stored in
actualTokenAmounts.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 54

https://chainsecurity.com

6.75 IntegrationVault._root Does Not Check
the NFT of the Root Vault
Correctness Low Version 1 Code Corrected

IntegrationVault._root tries to verify the initialization of a given Vault and its corresponding
ERC20RootVault with the following code:

require(thisNft + thisOwnerNft != 0, ExceptionsLibrary.INIT);

If thisNft is set (greater than 0) and thisOwnerNft equals 0, no revert will happen. _root is called in
pull only. pull already checks that the argument thisNft given to _root is not equal to 0 which
renders the require useless.

Code corrected:

The statement was changed and checks each variable separately if it is zero in
(thisNft != 0) && (thisOwnerNft != 0).

6.76 VaultGovernance.commitInternalParams
 Does Not Delete Staged Parameters
Design Low Version 1 Code Corrected

VaultGovernance.commitInternalParams does not delete the _stagedInternalParams state
variable.

Code corrected:

The state variable _stagedInternalParams is now deleted after it is applied.

6.77 registry.ownerOf Is Called Twice in
IntegrationVault.pull
Design Low Version 1 Code Corrected

registry.ownerOf is called twice with the same value in IntegrationVault.pull, inducing
unnecessary additional gas costs.

Code corrected:

The obvious redundant call to registry.ownerOf was removed. Still, there would be another call in
_isApprovedOrOwner.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 55

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Approximated TVL for Aave Vaults
Note Version 4

The function AaveVault.tvl() computes an approximate total value locked (TVL) based on the time
passed since the last time the function updateTvls was called and the parameter
estimatedAaveAPY:

uint256 apy = IAaveVaultGovernance(address(_vaultGovernance)).delayedProtocolParams().estimatedAaveAPY;
factor = CommonLibrary.DENOMINATOR + FullMath.mulDiv(apy, timeElapsed, CommonLibrary.YEAR);

Note that the parameter estimatedAaveAPY is set by the protocol admin for all tokens of the vault,
hence the function tvl might return incorrect values if updateTvls is not called frequently.

7.2 Balances Are Drained Faster in Vaults With
Lower Index
Note Version 1

AggregateVault._pull pulls funds out of the underlying Vault's by pulling the maximum amount out
of each Vault sequentially. This drains funds faster from Vault's depending on their index in the
_subvaultNfts state variable.

7.3 Deposits Can Be Blocked by Updating
StrategyParams
Note Version 1

The function ERC20RootVaultGovernance.setStrategyParams does not perform any sanity check
for the new parameters being set, hence if tokenLimitPerAddress or tokenLimit is set to zero, the
functionality to deposit is blocked. The sanity checks are not enforced intentionally as the admin might
use these parameters to block deposits into a root vault by updating these parameters.

7.4 Deprecated Function _setupRole
Note Version 1

DefaultAccessControl and DefaultAccessControlLateInit use the function _setupRole,
which according to its specification is deprecated:

/**
 * NOTE: This function is deprecated in favor of {_grantRole}.
 */

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 56

https://chainsecurity.com

7.5 Duplicate Declaration of DENOMINATOR
Note Version 1

Both MStrategy and LStrategy import CommonLibrary which declares the constant DENOMINATOR,
however, they also declare the constant as well.

7.6 Dust LP Shares Are Burned
Note Version 6

If a user decides to redeem its LP shares in a root vault by calling the function withdraw, and if at the
time of this action the amount of remaining LP shares represents less than the threshold existentials
in underlying tokens, the whole user's LP balance is burned. Put shortly, the function prevents users from
leaving dust amounts in LP shares when withdrawing.

7.7 External Functions in ContractMeta
Note Version 1

ContractMeta implements external pure functions, and currently they are called only by
registerContract in ContractRegistry. The calls are performed as three external calls, which
increase gas costs, as there is no function in ContractMeta returning all values in a single external call.

7.8 LP Tokens of the First Deposit Are Burned
Note Version 6

Version 6In of the code base, the LP tokens of the first user depositing into a root vault are always send
to address(0), practically burning them.

7.9 Locked Token or ETH
Note Version 1

ERC20 tokens could be accidentally/intentionally sent to any contract. In such cases the tokens will be
locked. Only externalCall for intergration vaults offers some functionality to recover funds.

7.10 No Checks for Address to on ERC20Token
Transfer
Note Version 1

The functions transfer and transferFrom in ERC20Token do not perform any sanity check for the
address to, hence making it possible to burn tokens by sending them to address 0x0.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 57

https://chainsecurity.com

7.11 Non Canonical Signatures
Note Version 4

The function IntegrationVault.isValidSignature uses the library function
CommonLibrary.recoverSigner to validate signatures if the strategy is an externally owned account.
Note that, the function recoverSigner does not perform any sanity check on values r, s and v to
ensure that only unique signatures validate successfully. Therefore, callers of this function should be
aware of possible attacks (https://swcregistry.io/docs/SWC-117).

7.12 Non-indexed Event Topics
Note Version 1

Some events have already hit the limit of three indexed topics. But the events in
UnitPricesGovernance have not and do not index the token address. Given that the unit price update
could be important to users, making the token address indexed, makes it easier to filter the events for
specific tokens.

There are some other events like DeployedVault in VaultGovernance, ReclaimTokens and Pull
in IntegrationVault and RebalancedUniV3 in LStrategy where one more index could be set.
Additionally, some events could emit the nft which might be worth indexing (it e.g., is done in
SetStrategyParams). This is just noted and up to Mellow Finance to decide.

7.13 OracleParams in MStrategy
Note Version 5

Te admin of MStrategy should carefully set the OracleParams. The admin should ensure that the
Uniswap used for the oracle has enough observations to cover oracleObservationDelta, otherwise
the function _getAverageTickChecked called in _rebalanceTokens will only use the spot price,
hence making the rebalance function vulnerable to sandwich attacks. Additionally, the parameter
maxTickDeviation should be carefully chosen to enforce proper slippage protection for the rebalance.

7.14 Performance Fee Capped
Note Version 5

ERC20RootVault._chargePerformanceFees only charges performance fees for the strategy if the
price of LP tokens has reached a new high score. When prices have fallen, the fees are still not charged
even when prices climb again until this all-time high has been reached again.

Additionally, if all liquidity providers withdraw their funds and the totalSupply is zero, or all token TVLs
are less than _pullExistentials, the previous high score lpPriceHighWaterMarkD18 is not
reset, hence performance fees might not be collected as expected.

7.15 Rebalance of Uniswap Vaults in LStrategy
Note Version 4

The function rebalanceUniV3Vaults maintains a ratio of tokens in the two Uniswap positions
depending on the move of the current price. If the price goes up, more tokens are transferred into the
upperVault from the lowerVault, and vice-versa. The function is designed in a way that it tries to add

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 58

https://swcregistry.io/docs/SWC-117
https://chainsecurity.com

the same liquidity amount into the destination vault that is removed from the other vault. However, since
the two vaults operate in different price ranges, the same liquidity amount translates into different token
amounts. The token in the cash position (erc20Vault) are used to cover for the difference.
Consequently the ratio between the cash position (erc20Vault) and the money vaults (lowerVault
and upperVault) is affected.

7.16 Rollback Individual Validators Not Possible
Note Version 1

ProtocolGovernance implements a function to rollback all staged validators, but there is no
functionality to rollback individual staged validators.

7.17 Special Behavior in ERC20Token
Note Version 1

The function transferFrom has a special behavior when allowance==type(uint256).max, as the
allowance is never reduced when these transfers occur. This special behavior should be properly
documented as users should be aware of it.

7.18 Trust Setup
Note Version 1

The system has multiple trusted roles and heavily relies on admin operations to work. E.g., setting
oracles and the admin needs to maintain enough funds to open new Uniswap positions.

7.19 Uneven Gas Distribution on deposit and
withdraw
Note Version 1

Fees are not calculated on every transaction. Therefore, some users are burdened with more gas costs
than others depending on the time they are performing their withdraw and deposit actions.

7.20 Unit Prices Amounts
Note Version 5

The admin in UnitPricesGovernance can set the amounts of a given token that match the value of 1
USD. The prices are set with a delay of 14 days, hence the prices are not supposed to reflect the market
price. Note that, for valuable tokens with few decimals, it might be impossible to store the correct token
amount that matches 1 USD.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 59

https://chainsecurity.com

7.21 Unnecessary Creation of Pair
Note Version 1

In UniV3Vault._push and UniV3Vault._pullUniV3Nft, a Pair is created and not used as a
Pair afterwards. Instead, the particular values are extracted from the Pair, rendering the creation of the
Pair useless.

7.22 ContractRegistry Functions Truncate
name
Note Version 1

Functions versions, versionAddress and latestVersion in ContractRegistry truncate the
input parameter name_ to 32 bytes:

bytes32 name = bytes32(bytes(name_));

If these functions are called with name_ longer than 32 bytes, the return value would be based on the
truncated input parameter name_, which is inconsistent behavior.

Furthermore, the function latestVersion parses the input parameter name_ differently from other
functions:

bytes32 name = bytes32(abi.encodePacked(name_));

7.23 LStrategy Needs Tokens to Create Uniswap
Positions
Note Version 1

The function _mintNewNft assumes that the strategy contract has enough balance to open new
Uniswap positions as needed, otherwise new Uniswap NFTs cannot be minted:

IERC20(tokens[0]).safeApprove(address(positionManager), minToken0ForOpening);
IERC20(tokens[1]).safeApprove(address(positionManager), minToken1ForOpening);
(newNft, , ,) = positionManager.mint(
 INonfungiblePositionManager.MintParams({
 token0: tokens[0],
 token1: tokens[1],
 fee: poolFee,
 tickLower: lowerTick,
 tickUpper: upperTick,
 amount0Desired: minToken0ForOpening, // required balance
 amount1Desired: minToken1ForOpening, // required balance
 amount0Min: 0,
 amount1Min: 0,
 recipient: address(this),
 deadline: deadline
 })
);

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 60

https://chainsecurity.com

Mellow Finance is aware of this requirement and states they will take care that enough funds are
available at any point in time. Additionally, a check was added to ensure that the amount of token needed
in the contract is very low (less than 10**9) to mitigate that money is lost because of the deactivated
slippage protection in the function above.

7.24 _pullExistentials Are Unevenly
Distributed in Terms of Value
Note Version 1

_pullExistentials in AggregateVault are set to 10**(token.decimals() / 2) for each
token. This is an uneven distribution considering that tokens may have different value. The existential for
USDT for example has a much lower value than the existential for WBTC.

7.25 addressesByPermission Does Not
Consider Forced Permissions
Note Version 1

The function addressesByPermission in the protocol governance contract returns only addresses
that explicitly have the permissionId in the mapping permissionMasks. However, if the
permissionId is enforced by forceAllowMask, then all addresses are assumed to have the
permission.

Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 61

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope
	2.1.2 Excluded from this report

	2.2 System Overview
	2.3 Strategies
	2.3.1 MStrategy
	2.3.2 LStrategy
	2.3.3 Tokens

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Inconsistent Decimals of LP Token
	5.2 Performance Fee in Specific Setups
	5.3 Possible Optimization in AggregateVault
	5.4 Possible Optimization on Deposits and Withdrawals
	5.5 Redundant Calculation of LP Amounts
	5.6 Broad Access Control for Functions
	5.7 Redundant Check for baseSupply
	5.8 Redundant Check for deltaSupply
	5.9 Redundant Checks on Push Function
	5.10 State Updates After Reentrancy Possibility
	5.11 Missing Slippage Protection in _mintNewNft
	5.12 UniV3Vault Pulls More Tokens Than Requested

	6 Resolved Findings
	6.1 Mismatch of Specification With Uniswap V3 Oracle
	6.2 Chainlink Oracle Returns Empty Prices
	6.3 Incorrect LP Token Calculation in ERC20RootVault
	6.4 Missing Access Control in UniV3Oracle
	6.5 UniV3Oracle Returns Reverse Prices for Token Pairs
	6.6 Incorrect TVL Conversion
	6.7 Adding up Total Value Locked on Different Tokens
	6.8 Calling _liquidityDelta Incorrectly
	6.9 Calling _liquidityDelta With Incorrect Inputs
	6.10 Incorrect Observation Index in _getAverageTick
	6.11 Incorrect Parameters on externalCall
	6.12 Insufficient Testing
	6.13 Opposite Vaults Are Swapped
	6.14 Possibility to Exit Positions of Any Address
	6.15 Possible DOS From First Depositor
	6.16 Setting Wrong State Variable
	6.17 Wrong Formula in _rebalanceUniV3Liquidity
	6.18 Wrong TVL Calculation in ERC20RootVault
	6.19 liquidity Gets Overwritten in the Loop
	6.20 Wrong State Variable Updated
	6.21 Inconsistent Access Control for Rebalance in LStrategy
	6.22 Inconsistent Sanity Check on First Deposit's Amounts
	6.23 Safety Level of Returned Prices Can Silently Downgrade
	6.24 Unfair Distribution of LP Shares in ERC20RootVault
	6.25 Conflicting Specifications for MStrategy
	6.26 Implementation Differs From Specification on _targetTokenRatioD
	6.27 Incorrect Access of Addresses in EnumerableSet
	6.28 Missing Checks for Dust Amounts When Rebalancing Pools
	6.29 Missing Delay Restriction in BaseValidator
	6.30 Missing Sanity Checks in signOrder
	6.31 No Slippage Protection in Multiple Contracts
	6.32 Possible Underflow in UniV3Oracle.price
	6.33 Rebalance in LStrategy Can Leave Tokens in the Vault to Be Closed
	6.34 Subvault Tokens Are Not Checked in AggregateVault
	6.35 Transferring Tokens Only to lowerVault
	6.36 Use of Libraries
	6.37 Missing Sanity Checks for intervalWidthInTicks
	6.38 Possible Attack by First Depositor
	6.39 Possible Optimization on _chargePerformanceFees
	6.40 Possible Violation of the Minimum Token Amounts After the First Deposit
	6.41 Misleading Function Name and Natspec
	6.42 Mismatch of Specifications for StrategyParams
	6.43 Missing Sanity Check for maxSlippageD in MStrategy
	6.44 Missing Sanity Checks for oracleSafetyMask
	6.45 Possible Struct Optimization in Strategies
	6.46 Redundant Comparisons
	6.47 Redundant Storage Read in ERC20Vault._pull
	6.48 Variables Can Be Declared as Constant
	6.49 Incorrect Specification for reclaimTokens
	6.50 Missing Natspec Description for minDeviation
	6.51 Casting of maxTickDeviation
	6.52 Check Requirements First
	6.53 Duplicate Code _permissionIdsToMask
	6.54 Duplicate Storage Read in Deposit
	6.55 Inconsistent Specifications
	6.56 Inefficient Array Shrinking
	6.57 Inefficient State Variable Packing
	6.58 Misleading Naming of Variables in UniV3Oracle
	6.59 Missing Sanity Check in MStrategy.createStrategy
	6.60 Missing Sanity Checks for Params
	6.61 Misspelled Variable Names
	6.62 Possible Struct Optimization
	6.63 Rebalance in MStrategy Is Inconsistent
	6.64 Specification for minDeviation Not Enforced
	6.65 Storing Redundant Data in Storage
	6.66 Unnecessary Approval to Vault Registry
	6.67 Unused Constant in ERC20Validator
	6.68 Unused Event DeployedVault
	6.69 Unused Function LStrategy._priceX96FromTick
	6.70 Unused Imports
	6.71 Wrong Check of Minimum Token Amounts in ERC20RootVault.withdraw
	6.72 Wrong Specification for YearnVault.tvl
	6.73 ContractRegistry DOS
	6.74 ERC20Vault._pull Forces Push of Wrong Amount of Tokens
	6.75 IntegrationVault._root Does Not Check the NFT of the Root Vault
	6.76 VaultGovernance.commitInternalParams Does Not Delete Staged Parameters
	6.77 registry.ownerOf Is Called Twice in IntegrationVault.pull

	7 Notes
	7.1 Approximated TVL for Aave Vaults
	7.2 Balances Are Drained Faster in Vaults With Lower Index
	7.3 Deposits Can Be Blocked by Updating StrategyParams
	7.4 Deprecated Function _setupRole
	7.5 Duplicate Declaration of DENOMINATOR
	7.6 Dust LP Shares Are Burned
	7.7 External Functions in ContractMeta
	7.8 LP Tokens of the First Deposit Are Burned
	7.9 Locked Token or ETH
	7.10 No Checks for Address to on ERC20Token Transfer
	7.11 Non Canonical Signatures
	7.12 Non-indexed Event Topics
	7.13 OracleParams in MStrategy
	7.14 Performance Fee Capped
	7.15 Rebalance of Uniswap Vaults in LStrategy
	7.16 Rollback Individual Validators Not Possible
	7.17 Special Behavior in ERC20Token
	7.18 Trust Setup
	7.19 Uneven Gas Distribution on deposit and withdraw
	7.20 Unit Prices Amounts
	7.21 Unnecessary Creation of Pair
	7.22 ContractRegistry Functions Truncate name
	7.23 LStrategy Needs Tokens to Create Uniswap Positions
	7.24 _pullExistentials Are Unevenly Distributed in Terms of Value
	7.25 addressesByPermission Does Not Consider Forced Permissions

