PUBLIC

Code Assessment

of the Mellow Vaults

Smart Contracts

Aug 09, 2022

Produced for

&

@EHAINSEEURITY

by

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG

11
12
13
19
56

https://chainsecurity.com

1 Executive Summary

Dear Mellow team,

Thank you for trusting us to help Mellow Finance with this code assessment. Our executive summary
provides an overview of subjects covered in our code assessment of the latest reviewed contracts of
Mellow Vaults according to Scope to support you in forming an opinion on their security risks.

Mellow Finance implements an investment protocol that pools investors funds and manages these funds
according to an investment strategy smart contract.

We value the very good and professional communication with the Mellow team and the quick response
time. In the initial review and the following iterations, we uncovered an unusual number of issues with
many high severity issues. Many of these issues would have been caught by proper testing. The code
base appeared to be not ready for the review when the review started. After multiple iterations the code
base was improved significantly.

All raised issues were addressed and most were fixed by code changes. We conclude that the reviewed
contracts currently provide a satisfactory level of security. But our experience shows that a high amount
of discovered issues has an increased tail risk of more undiscovered issues. Additionally, not all code
was in scope of the review (see 2.1 Scope). Hence, we want to highlight that security reviews
complement but don't replace other vital measures to secure a project, like e.g., limited testing phases or
bug bounties. We did our best to help to eliminate all severe issues, but it is important to note that
security audits are time-boxed and cannot uncover all vulnerabilities.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings 2
Y Code Corrected 5
(C[0)-Severity Findings 14
¥ Code Corrected 14
(Medium)-Severity Findings 17
BCode Conected 14
N S o Chanis) 3
(Low)-Severity Findings 53
) Code Corrected 37
Y Specification Changed 4
o 2
¥ Acknowicdged 10
@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Mellow Vaults repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V | Date Commit Hash Note

1 | 25 Feb 2022 f79ea5fc82b8ae5e0fa488c5aae023e893edf7f0 Initial Version
2 | 18 Apr 2022 736b34243ced0ea0346dd874438354db6dafal35 Version 2

3 | 23 May 2022 b4250761505742c211428986ech4189ae2e402fc Version 3

4 | 08 Jun 2022 3c73391bb182e910b3d714dab1930d4e885dfccf Version 4

5 | 15 Jun 2022 5e09b7372f02d8f81f6d66d827d5883323b86a03 Version 5

6 | 20 Jun 2022 bb66a637c4a5834c4dace90205776159726b8299 Version 6

7 | 11 Jul 2022 1fae4225ccd6164ad613e0860619ecd10287dd39 Version 7

8 | 29 Jul 2022 ff8f3ba89c362663ef9f3a0ff31d7bbf95457629 Version 8

9 | 03 Aug 2022 ed3e07e5h873dbe6f4e5d632d0adclf5b47dec8e Version 9

For the solidity smart contracts, the compiler version 0. 8. 9 was chosen.

2.1.1 Excluded from scope

The following files were out of scope:
« contracts/ContractRegistry.sol
« contracts/libraries/SemverLibrary.sol
« contracts/oracles/UniV20racle.sol
« contracts/utils/BatchCall.sol
« contracts/utils/ContractMeta.sol
« contracts/utils/DefaultProxy.sol
« contracts/utils/DefaultProxyAdmin.sol

« contracts/libraries/external/*

Additionally, the Mel | owVaul t and the functions to compute the square root in ConmonlLi brary. sol ,
were put out of scope while performing the code assessment.

2.1.2 Excluded from this report

During the engagement shortcomings inside the smart contracts were discovered by the Mellow team.
These shortcomings are not listed in this report.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Mellow Finance offers an investment protocol that pools investors funds and manages these funds
according to an investment strategy smart contract.

The overall system has certain parameters managed by The Pr ot ocol Gover nance smart contract.
Different vaults are responsible to keep the funds and/or invest them in other DeFi protocols like AAVE,
YEARN or Uniswap. A root vault is the overarching connector for all vaults. The root vault is the entry
point for a user to invest funds. Strategy contracts balance the ratios of tokens held in the vaults and
between the vaults.

A user who wants to invest funds will send the funds to the root vault. The root vault will in return issue a
corresponding amount of liquidity provider tokens to track the user's investment to the user. The funds
will end up in a special vault which acts as a cash position. As soon as a strategy manager invokes the
vault rebalancing in the connected strategy, the strategy will distribute the funds from the cash vault to
the investment/integration vaults. These vaults will use the funds to invest into the third party DeFi
protocols like Aave. When a user decides to redeem/withdraw their liquidity provider tokens for the
corresponding share of tokens, the root vault will drain the cash vault and if needed take more money
from the investment/integration vaults.

The system has multiple roles that need to be trusted fully or partially. These are:

The Def aul t AccessControl smart contract uses OpenZeppelin's AccessCont rol Enuner abl e
scheme to set up the following roles:

« ADM N_ROLE
« ADM N_DELEGATE_ROLE
« OPERATOR

The contract is inherited by Uni t Pri cesGover nance and, consequently, Pr ot ocol Gover nance. The
Def aul t AccessControl is also used in the Chai nl i nkOracl e, Uni V3Oracl e and LSt r at egy.

Initially, the deployer of these contracts can set an address that is granted the:
* OPERATOR and
« ADM N_RCLE roles.

A slightly modified version of the Def aul t AccessCont r ol that features a late initialization to work with
proxies is used by the M5t r at egy.

Access for vaults is controlled by NFTs that are minted during registration of vaults in the
Vaul t Regi st ry. For example, when deploying the Year nVaul t by calling the cr eat eVaul t function
in Year nVaul t Gover nance, the contract is registered at the Vaul t Regi stry, where an NFT is
minted to an owner address that can be specified when creating the vault.

When creating a root vault, the NFTs of the sub-vault are transferred to the root vault to give the root
vault the required control over the sub-vaults. The root vault's NFT itself stays under the ownership of the
address given by the deployer who can approve another address, giving it St rat egy access level.
Strategies can therefore be managed by different entities than vaults.

The system deployment and setup are quite complicated. The following steps try to outline the setup
chronologically.

1. These steps can be performed in any order:

* Deploy the protocol Pr ot ocol Gover nance contract.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

 Deploy the oracle contracts.

2. These steps can be performed in any order:

« Deploy the validator contracts.
» Deploy the Cont r act Regi st ry contract.
 Deploy the Vaul t Regi st ry contract.

3. Deploy the vault governance contracts.
4. Call cr eat eVaul t on the integration/sub-vaults that are needed.

5.In case a Uni V3Vaul t is used:

1. Mint an initial Uniswap v3 liquidity position with a random EOA.
2. Approve the EOA for spending the NFT received from the Vaul t Regi stry.
3. Transfer the Uniswap v3 LP NFT to the newly created Uni V3Vaul t .

6. Deploy a strategy with the reference to the desired vaults (The Mst r at egy contract acts as a
factory whereas the LSt r at egy needs to be deployed normally).

7. Create the root vault with the desired integration/sub-vaults and the strategy.

The contracts have the following functionalities:

* Prot ocol Gover nance
Manages the following variables with a time delayed commit scheme:

 The protocol's Par ans struct that includes:

* ui nt 256 nmaxTokensPer Vaul t
e ui nt 256 gover nanceDel ay

e address protocol Treasury
* ui nt 256 forceAl | omvask
*ui Nt 256 Wit hdrawLi mt

» The permissions for certain addresses (e.g., creating a vault, registering a vault, being
a vault token or passing requirements set by the validators)

» The validator contracts that are called when an external call is done (e.g., swapping
tokens on an exchange)

Revoking/Removing permissions or validators can be done instantly with no time lock.

Roles: The adni n role of this contract should be fully trusted as it sets all the critical parameters
of the system. In general, the parameters are updated with the stage-delay-commit pattern, so
users should continuously monitor the staged parameters for malicious values and react before
they are committed. However, for revoking permissions or validators, there is no delay enforced.

«Uni t PricesGovernance is a contract inherited by the Pr ot ocol Gover nance. It allows the
admin role to set reference prices used to calculate the withdraw Ilimit in
Pr ot ocol Gover nance. wi t hdr awLi m t. The admin should carefully set the price values taking
into consideration the decimals of the respective token.

e Contract Regi stry allows the protocol governance admin or operator to register contracts. The
contract is not used in the system at all but seems to be called externally to verify if contracts belong
to the system.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

*Vaul t Regi st ry manages the vault's NFTs. Each time a vault is created, it will be registered in this
contract and receive a unique ID represented by an NFT. The NFT is also used for access control
purpose. The relevant roles are the owner and the approved spender of the NFT.

Roles: The admi n of the protocol governance has special privileges also in this contract.
Besides updating the state parameters, in the first versions of the code the admin could approve
any vaul t NFT to any arbitrary address via adm nAppr ove, however this functionality was

removed in (Version 5),

« Validator contracts are used to verify calls done by the ext er nal Cal | function in the Integration
vaults. ext ernal Cal | allows every vault nft owner or approved account to perform any low-level
call to other contracts as long as a validator contract for that contract has been set in the
Pr ot ocol Gover nance and the corresponding validator successfully verified the calldata.

« Oracles are used by the strategies to balance the portfolio between vaults and tokens. The root vault
uses oracles to convert the TVL of integration vaults to the same token in _get Tvl TokenO. The
Uni V3Vaul t uses the oracle price in _get M nMaxPr i ce to determine TVL.

Roles: The Chainlink and UniV3Oracle inherit the Def aul t AccessContr ol , and the adm n
has the privileges to set the oracle address (in case of Chainlink) or the Uniswap pool.

« Vault governance contracts are factory contracts that can create new vaults. They additionally store
some vault type specific information in the del ayedPr ot ocol Par ans object (e.g., AAVE lending
pool address).

Roles: These contracts inherit the roles of protocol governance.

» There are two types of integration vaults. The ERC20Vaul t , which is a cash position vault, stores
tokens to act as a buffer when tokens are withdrawn. It is worth mentioning that the Yearn vault has
a default maxLoss parameter set to 100%, basically omitting any protection for the user if the Yearn
strategy had made a loss. ERC20Vaul t is also the hub which receives all deposits from the
aggregation/root vault. The tokens remain in the ERC20Vaul t until a strategy starts balancing and,
hence, distributing the tokens to the connected other integration vaults. The other integration vaults
are adapters to other DeFi projects (AAVE, Yearn, Uniswap, Mellow). They invest all tokens they
receive and only store the respective project tokens.

» The ERC20Roo0t Vaul t is the main entry and exit point for users. The vault acts as an aggregator
and oversees all sub-vaults that are connected to it. By calling wi t hdr aw and deposi t users can
close or open a position. The user's position is represented by liquidity tokens minted to the
investing user.

Roles: The privileged roles in this contract are the adm n of the protocol governance, the
strategy linked to the vault and owner of the vault NFT. End users also can access the
functionalities to deposi t and wi t hdr aw funds.

2.3 Strategies

Strategy contracts manage the token distribution between and inside vaults. Operators can call certain
functions that rebalance tokens between vaults but cannot send tokens outside of the ecosystem.

2.3.1 Mostrategy

MSt rat egy is a factory contract to create new strategies. Anyone can deploy a clone of the
implementation by calling the function createStrategy and providing the following parameters:
t okens_, erc20Vault (cash position), noneyVaul t _ (investment position), fee_and admi n.
VSt r at egy supports only vaults with exactly two tokens, and both er c20Vaul t and noneyVaul t _
should have same tokens.

The main functionality of Mst r at egy is rebal ance which can be called only by the adni n of the
strategy. The first operation of the r ebal ance is to transfer tokens between the er c20Vaul t and the
nmoneyVaul t to maintain a healthy ratio as defined in the parameters rati oParanms. The ratio is

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

computed on terms of the total value locked (TVL) by both positions. This is achieved by calling the
internal function _r ebal ancePool s. The second part of r ebal ance is to maintain the ratio of tokens in
the cash and investment position in line with the ratio of these tokens in a Uniswap pool. If the cash
position has more from one token than desired, the function _r ebal anceTokens computes the amount
of tokens that need to be swapped in Uniswap, which is performed in _swapToTar get .

Roles: The adm n address is important as it is a privileged address that can set other roles for the
contract as described above. Furthermore, this address has access to the following functionalities:

e r ebal ance: moves the funds between the cash position and the investment according to the
desired ratio. The function should be called with carefully crafted inputs for slippage protection.

emmanual Pul | : can move any amount of funds at any time between the erc20Vault and
nmoneyVaul t .

eset Oracl eParans: updates the oracle parameters, such as the number of observations
considered for Uniswap oracles, maximum tick deviation supported, and slippage tolerance.

e set Rat i oPar ans: sets the ratio of funds in the cash position and the investment vault.

2.3.2 LStrategy

The second strategy of the project is LSt r at egy. This strategy is supposed to be deployed once, so it
does not provide any cloning functionalities. LSt r at egy operates on three vaults, the first is still the
cash position, while the other two are Uniswap positions that are setup in a such a way to cover the
current price tick and therefore optimize the earnings.

The Uniswap positions are referred as | ower Vaul t - cover the current tick and a predefined number of
lower ticks, and upper Vaul t - covers the current tick and a predefined number of upper ticks. Both
| ower Vaul t and upper Vaul t overlap with each other and ideally both should always cover the current
tick, where most of the activity happens. If the price goes up, i.e., current tick increases, the strategy
should move more liquidity to the upper Vaul t , otherwise moves liquidity to the | ower Vaul t . If one
position does not cover anymore the current tick, then all liquidity is moved to the other vault, and a new
position in Uniswap is minted. Note that, LSt r at egy should have enough tokens to open new Uniswap
positions in order to follow the price as intended. Given that LSt r at egy is not supposed to hold any
token, the strategy operator (or anyone) should continuously donate the required tokens to LSt r at egy.

The main functionalities of the strategy are:

e r ebal anceERC20Uni V3Vaul t s: moves the funds between the cash position (er c20Vaul t) and
the two Uniswap positions (I ower Vaul t and upper Vaul t) according to the desired ratio.

*rebal anceUni V3Vaul t s: this function moves the funds between the | owerVault and
upperVault depending on the price change by calling the internal function
_rebal anceUni V3Li qui dity. If one of the Uniswap positions does not cover anymore the
current price tick, the function _swapVaul t s is called to close the outdated position and mint a new
one.

e post PreOrder and si gnOrder: LSt rat egy uses Cowswap for the token exchange and these
functions allow privileged accounts to save a pre-order as a state variable and sign the Cowswap
order.

e col | ect Uni Fees: this function calls col | ect Ear ni ngs in the Uniswap positions | ower Vaul t
and upper Vaul t .

e« manual Pul | : allows the admi n to transfer any amount of funds at any point from one vault to
another one.

» Updating params functions: allow the admi n to update the t r adi ngPar ans, rati oPar ans and
ot her Par ans of the strategy.

Roles: The adm n address is important as it is a privileged address that can set other roles for the
contract as described above. Furthermore, this address has access to the following functionalities:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

manual Pul | and the functionalities to set the strategy parameters, including the ones for the slippage
protection. The oper at or role can trigger the execution of functions r ebal anceERC20Uni V3Vaul t s,
r ebal anceUni V3Vaul t s, post PreOr der, and col | ect Uni Fees.

2.3.3 Tokens

We assume that only ERC20-compliant tokens with no callback features are whitelisted and used by the
system. The support of tokens with callback hooks, like ERC777 or ERC677, is out of scope.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings —

« Inconsistent Decimals of LP Token(__)

« Performance Fee in Specific Setups ()

* Possible Optimization in AggregateVault ()

» Possible Optimization on Deposits and Withdrawals (=)
« Redundant Calculation of LP Amounts (=)

« Broad Access Control for Functions ()

» Redundant Check for baseSupply (-)

« Redundant Check for deltaSupply (-)
 Redundant Checks on Push Function(_ =)

« State Updates After Reentrancy Possibility ()

» Missing Slippage Protection in _mintNewNft(_)
« UniV3Vault Pulls More Tokens Than Requested ()

5.1 Inconsistent Decimals of LP Token

(D (Low) (Version 5)()

The function ERC20Root Vaul t . deposi t performs the following checks when new LP tokens are
minted to a user:

require(l pAnount bal ancef [nsg. sender] par ans. t okenLi m t Per Addr ess, ExceptionsLibrary. LI M T_OVERFLOW ;
require(l pAnount t ot al Suppl y params. tokenLi nmit, ExceptionsLibrary. LI M T_OVERFLOW ;

The LP tokens distributed by root vaults do not have pre-defined number of decimals but depend on the
token amounts of the first deposit, hence making difficult to set the params t okenLi m t Per Addr ess
and t okenLi m t in advance.

Acknowledged:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Mellow Finance acknowledges the issue and will take care to set the proper limits after initial LP shares
are minted and the respective decimals are known:

W don't intend to stand limts in advance of the |aunch of the system we rather want
to stand themas MaxUint256 initially and then have a possibility to set meani ngful val ues
based on the supply of |p tokens during the work of the system

5.2 Performance Fee in Specific Setups
[Low] [Version 5][]

The performance fee is charged in ERC20Root Vaul t only if the price of LP tokens has increased in
value, which is calculated in the statement:

ui nt 256 | pPri ceD18 Ful | Mat h. mul Di v(t vl TokenO, CormmonLi brary. D18, baseSupply);

However, in specific setups where the t okenO is of high value but has low decimals, while the t okenl is
of low value but with many decimals, the variable baseSuppl y would inherit the decimals of t okenl.
Therefore, in such setups it is possible that the statement above returns | pPri ceD18 equal to zero.

Acknowledged:

Mellow Finance has decided to keep the code unchanged as they only will use only verified token
combinations that this issue does not occur. The response:

W decided that this situation would not be possible when cal cul ating the perfornmance fee,
since we agreed to use only verified tokens, for which the difference between decinals
woul d be I ess than 18.

5.3 Possible Optimization in AggregateVault
() (Low) (Version 5)()

The function Aggr egat eVaul t . _push performs the following actions:

1. Approves allowance with saf el ncr easeAl | owance for each token to dest Vaul t .
2. Calls dest Vaul t . t ransf er AndPush, which transfers t okenAnpunt s to the ERC20Vault.

3. Resets approval to dest Vaul t for all tokens to 0.

Given that the _push function moves tokens to the ERC20Vault and allowance in the end should be 0,
the function can be revised to be more efficient. For instance, saf el ncr easeAl | owance performs
additional operations and is useful when the existing allowance is not zero and should be considered.
Also, the function consumes in step 2 the allowance given earlier, hence the last f or - | oop might be
omitted.

Code partially correct:

The function AggregateVault. push is made more efficient by performing the external calls
saf el ncreaseAl | owance and saf eApprove only for tokens that non-zero amounts are being

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

transferred (t okenAnounts[i] > 0). However, for the other tokens two external calls are performed
for updating the allowance.

5.4 Possible Optimization on Deposits and
Withdrawals
[Low] [Version 5][]

The function ERC20Root Vaul t . deposi t can be optimized to be more gas efficient by transferring the
tokens directly from the user to the ERC20Vault. Currently, the tokens are first transferred from the user
to the root vault:

for (uint256 i 0; i t okens. | engt h; i) {

| ERC20(t okens[i]).saf eTransfer From nsg. sender, address(this), normalizedAnounts[i]);
}

and then, in Aggr egat eVaul t . _push tokens are transferred again:

for (uint256 i 0; i _vaul t Tokens. l ength; i++) {
| ERC20(_vaul t Tokens|[i]). saf el ncreaseAl | owance(address(destVault), tokenAmounts|i]);

}

Similarly, the function ERC20Root Vaul t. wi t hdraw can be made more efficient if the tokens are
transferred directly from the sub-vaults to the user instead of transferring to the root vault first and then to
the user.

Acknowledged:

Client acknowledges the optimization possibility but prefers to keep the code unchanged:

The main idea behind this behavior is for the root vault to be responsible for pushing
tokens onto different vaults. W consider the current design to be clearer with
pushing with the "~ AggregateVault. push °° nethod

5.5 Redundant Calculation of LP Amounts
[Low][Version 5)()

The function ERC20Root Vaul t . deposi t calculates the LP amount that is rewarded to the user two
times:

{
(preLpAnount, isSignificantTvl) _get LpAnount (mexTvl , tokenAnounts, supply);
for (uint256 i 0; i t okens. | engt h; i) {
nornmal i zedAmount s[i | _get Nornal i zedAmount (.. .);
}
}
act ual TokenAnmount s _push(normal i zedAnobunts, vaul t Qptions);
(uint256 | pAnount,) _get LpAnount (mexTvl , actual TokenAnmounts, supply);

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Initially, preLpAnount is calculated based on the t okenAnount s, then nor mal i zedAnount s are
computed. Considering that _push moves tokens to the ERC20Vault, the returned
act ual TokenAnmounts is equal to nornalizedAmounts. Hence, recomputing | pAmount is
redundant.

Acknowledged:

Client acknowledges the redundant calculation of LP amount but prefers to keep the code unchanged as
in the future the behavior of ERC20Vault might change, i.e., the returned act ual TokenAnount s might
not be equal to nor mal i zedAnount s.

5.6 Broad Access Control for Functions
[Low](Version 4][]

The functions addDepositorsToAllowist and renoveDepositorsFromAllow ist in
ERC20Root Vaul t restrict the access control with function _requi r eAt Least St rat egy. However,
neither MStrategy nor LStrategy call these functions. Similarly, multiple functions in Vaul t Gover nance
use the same access control, although they are not called by the strategies.

Acknowledged:

Mellow Finance is aware that these functions are not called by smart contracts implementing the
strategies, but they can be called by an EOA in case it manages the vault system. Client replied:

The vault system can be nanaged not by strategy, but by sonme account. In such a
case this account should have the possibility to edit "“depositorsAllowlist .
These 2 functions exist for this reason.

5.7 Redundant Check for baseSuppl y
(Low](Version 4][j

The function ERC20Root Vaul t. _char gePer f or manceFees performs a check of baseSupply is
equal to 0, and returns if this is the case:

i ((performanceFee 0) || (baseSupply 0)) {
return,

}

However, this check is redundant because _char geFees performs the same check and returns before
calling _char gePer f or ranceFees.

Acknowledged:

Client acknowledged the redundant check but has decided to keep it as it enhances the readability of the
code.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

5.8 Redundant Check for del t aSuppl y
[Low][Version 4][]

The function _get BasePar ansFor Fees performs the following check on withdrawals:

baseSuppl y 0;

i f (supply del taSupply) {
baseSuppl y suppl y del t aSuppl y;
}

The del t aSuppl y corresponds to the LP shares that a user is burning, which is less than or equal to the
balance of that user. Hence, it is always less or equal to the t ot al Suppl v.

Acknowledged:

Client acknowledged the redundant check but has decided to keep it as it enhances the readability of the
code.

5.9 Redundant Checks on Push Function
[Low] (Version 4] [j

The function | nt egr ati onVaul t . push performs the following checks that are always true when a
vault is linked to a root vault:

uint256 nft_ = nft;

require(nft_ 0, ExceptionsLibrary.INT);

| Vaul t Regi stry vaul t Regi stry = _vaul t Governance. i nternal Parans().registry;
| Vaul t owner Vaul t I Vaul t (vaul t Regi stry. ownerOf (nft_));

ui nt 256 owner Nf t vaul t Regi stry. nft ForVaul t (address(ownerVault));
requi re(owner Nf t 0, ExceptionsLi brary. NOT_FOUND) ;

Acknowledged:

Mellow Finance has decided to keep the checks to prevent from pushing and pulling on uninitialized
vaults.

5.10 State Updates After Reentrancy Possibility
() (Low) (Version 4)()

When creating a vault, _m nt is called to mint the NFT. This calls the receiver and gives an opportunity
to reenter the system.

_safeM nt (owner, nft);

_vaul tI ndex[nft] vaul t ;
_nftlndex[vaul t] nft;
_vaul ts. push(vault);
_topNft 1;

emt VaultRegistered(tx.origin, nsg.sender, nft, vault, owner);

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

State updates and events are emitted after the possible reentrancy in this function and the calling
functions. Coding guidelines suggest following the check-effects-interaction pattern to mitigate reentrancy
vulnerabilities.

Code partially corrected:

The minting statement _saf eM nt has been moved to the end of the function regi sterVaul t.
However, state is still updated afterwards in functions cr eat eVaul t of vault governance contracts.

5.11 Missing Slippage Protection in _m nt NewNf t
[Low](Version 1][]

The function _ni nt NewNft in LSt r at egy sets the parameters anount OM n and anount 1M n of the
M nt Par ans to zero, hence disabling any slippage protection. However, the risk exposure in this case is
limited as a new position in Uniswap should be open with small amounts m nTokenXFor Openi ng. The
exact amount depends on adrmi n who sets the ot her Par ans.

Acknowledged:

Sanity checks were introduced in to check if the variables m nTokenXFor Qpeni ng are smaller
than 10** 9. This adds another layer of protection to ensure that the number of tokens is relatively low.
Still, the number of tokens does not guarantee that the value is small.

5.12 Uni V3Vaul t Pulls More Tokens Than
Requested

D (Low) (Version 1))

Uni V3Vaul t. _pul | Uni V3Nft first calculates the amount of tokens to pull, then decreases the liquidity
inside the Uniswap position and then collects the tokens. When the earnings have not been collected
before, the last step additionally collects the earnings, returning more tokens than intended.

The function should take the tokens owed into consideration when calculating the amount to pull.

Acknowledged

Mellow Finance acknowledged the issue and replied that the strategy maintainer can call the
col | ect Ear ni ngs function to collect all the fees.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 2
y g

« Mismatch of Specification With Uniswap V3 Oracle

» Chainlink Oracle Returns Empty Prices

» Incorrect LP Token Calculation in ERC20RootVault

» Missing Access Control in UniV3Oracle

« UniV3Oracle Returns Reverse Prices for Token Pairs

CI)-Severity Findings 14
» Incorrect TVL Conversion
+ Adding up Total Value Locked on Different Tokens
» Calling _liquidityDelta Incorrectly
» Calling _liquidityDelta With Incorrect Inputs
» Incorrect Observation Index in _getAverageTick
» Incorrect Parameters on externalCall
« Insufficient Testing

» Opposite Vaults Are Swapped
« Possibility to Exit Positions of Any Address

» Possible DOS From First Depositor

» Setting Wrong State Variable

 Wrong Formula in _rebalanceUniV3Liquidity
 Wrong TVL Calculation in ERC20RootVault
« liquidity Gets Overwritten in the Loop

(Medium)-Severity Findings 17

» Wrong State Variable Updated

* Inconsistent Access Control for Rebalance in LStrategy @l EEIReIENTE
» Inconsistent Sanity Check on First Deposit's Amounts

+ Safety Level of Returned Prices Can Silently Downgrade ELlSEilell RS IEIIAE

« Unfair Distribution of LP Shares in ERC20RootVault

« Conflicting Specifications for MStrategy

« Implementation Differs From Specification on _targetTokenRatioD
» Incorrect Access of Addresses in EnumerableSet

« Missing Checks for Dust Amounts When Rebalancing Pools

» Missing Delay Restriction in BaseValidator

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

» Missing Sanity Checks in signOrder

* No Slippage Protection in Multiple Contracts

» Possible Underflow in Univ3Oracle.price

+ Rebalance in LStrategy Can Leave Tokens in the Vault to Be Closed
» Subvault Tokens Are Not Checked in AggregateVault

» Transferring Tokens Only to lowerVault

* Use of Libraries (@l egle Ll

(Low)-Severity Findings

41

« Missing Sanity Checks for intervalWidthinTicks

« Possible Attack by First Depositor

« Possible Optimization on _chargePerformanceFees

« Possible Violation of the Minimum Token Amounts After the First Deposit
« Misleading Function Name and Natspec

« Mismatch of Specifications for StrategyParams

« Missing Sanity Check for maxSlippageD in MStrategy
» Missing Sanity Checks for oracleSafetyMask

« Possible Struct Optimization in Strategies

« Redundant Comparisons

« Redundant Storage Read in ERC20Vault._pull

» Variables Can Be Declared as Constant

« Incorrect Specification for reclaimTokens

« Missing Natspec Description for minDeviation

» Casting of maxTickDeviation

» Check Requirements First

» Duplicate Code _permissionldsToMask

» Duplicate Storage Read in Deposit

« Inconsistent Specifications

« Inefficient Array Shrinking
« Inefficient State Variable Packing

« Misleading Naming of Variables in Univ3Oracle

« Missing Sanity Check in MStrategy.createStrategy
« Missing Sanity Checks for Params

» Misspelled Variable Names

» Possible Struct Optimization

* Rebalance in MStrategy Is Inconsistent

« Specification for minDeviation Not Enforced

» Storing Redundant Data in Storage

« Unnecessary Approval to Vault Registry

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG

20

https://chainsecurity.com

+ Unused Constant in ERC20Validator

» Unused Event DeployedVault

« Unused Function LStrategy._priceX96FromTick

» Unused Imports

» Wrong Check of Minimum Token Amounts in ERC20RootVault.withdraw
 Wrong Specification for YearnVault.tvl

« ContractRegistry DOS

« ERC20Vault._pull Forces Push of Wrong Amount of Tokens

« IntegrationVault._root Does Not Check the NFT of the Root Vault

* VaultGovernance.commitinternalParams Does Not Delete Staged Parameters
» registry.ownerOf Is Called Twice in IntegrationVault.pull

6.1 Mismatch of Specification With Uniswap V3
Oracle

Code Corrected

The specifications of the function pr i ce for oracles are in the interface | Or acl e as following:

function price(
addr ess tokenO,
addr ess tokeni,
ui nt 256 saf et yl ndi cesSet
) external viewreturns (uint256[] nmenory, uint256[] nenory);

According to the specification, priceA B = price(tokenA, tokenB) should be the inverse of
priceB A = price(tokenB, tokenA), meaning the following relation should hold:
priceAB =11/ priceB A

The function Uni V3QOr acl e. pri ce in returns the same price for a pair of tokens without
differentiating in which denomination token the price should be. Namely, the function returns the same
prices when calling price(tokenA, tokenB) or price(tokenB, tokenA). This behavior is
enforced in the first i f statement of the function:

i f (tokenO t okenl) {
(token0O, tokenl) (tokenl, tokenO);

}

Code corrected:

The Uniswap V3 Oracle has been revised, the Uniswap's OracleLibrary is now used and a flag
i sSwapped is added to track the correct denomination of the returned price.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

6.2 Chainlink Oracle Returns Empty Prices

Chai nl i nkOr acl e maintains the mapping or acl esl ndex which stores addresses of chainlink oracles
for each token. The mapping is populated by the admi n through the function _addChai nl i nkOr acl es:

function _addChainlinkOracl es(address[] nenory tokens, address[] nenory oracles) internal {

or acl esl ndex| t oken] oracl e;

}

The function pri ce(tokenO, t okenl, saf et yl ndi cesSet) checks if the mapping or acl esl ndex
has the addresses for the respective Chainlink oracles:

i f ((address(chainlinkOracle0) address(0)) || (address(chainlinkCraclel) address(0))) {
return (pricesX96, safetylndices);

}

The condition above is incorrect as it returns empty values if the Chainlink oracles exist in the mapping.
This makes the Chainlink oracle - assumed to be the safest by the specifications and the code -
unusable.

Code corrected:

The above check in function pri ce has been revised to return empty prices only if there is no entry for at
least one of the tokens in mapping or acl esl ndex:

i f ((address(chainlinkO acl e0) address(0)) || (address(chainlinkOraclel) address(0))) {
return (pricesX96, safetylndices);

}

6.3 Incorrect LP Token Calculation in
ERC20Root Vaul t

ERC20Root Vaul t . _get LpAnount incorrectly calculates the minimum of given token amounts. An
attacker can issue more LP tokens than he is entitled to and can then exchange them back for additional
tokens.

The following code incorrectly resets the MIN calculation for as many iterations as t okenLpAnount is
equal to O:

for (uint256 i 0; i tvl sLengt h; i) {
I f ((amountsl[i] 0) || (tvl_[i] 0)) {
conti nue;
}

ui nt 256 t okenLpAnmount Ful | Mat h. mul Di v(anmounts[i], supply, tvl _[i]);
I f ((tokenLpAnount | pAnount) || (| pAnount 0)) {
| pAnmount t okenLpAnount ;

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

}

If t okenLpAnmount == 0 in the first iteration, | pAmount will be set to 0. If t okenLpAnmount > 0 in the
next iteration, | pAnmount will be set to t okenLpAnount although it is larger than the already set value.

In a later step, ERC20Root Vaul t . _get Nor mal i zedAnpbunt normalizes the sent token amounts to the
calculated | pAmount . This function however does not increase the normalized amount to a value greater
than the sent one. An attacker can therefore exploit this by calling deposi t with all token amounts but
the last one being set to 0 and then calling wi t hdr aw with the LP tokens that have just been minted to
obtain his initial investment plus an amount of all other tokens in the Vaul t equal to the current ratio of
tokens.

Code corrected:

The function _get LpAnount has been refactored to set the | pAnmount to the minimum of
t okenLpAnount calculated on each iteration of the f or | oop. The flagi sLpAnmount Updat ed is set to
t r ue on the first iteration that a non-zero value is assigned to | pAnount .

6.4 Missing Access Control in Uni V3Or acl e

The function addUni V3Pool s populates the mapping pool sl ndex with the address of a Uniswap pool
for a pair of tokens. The function should be accessible only to trusted accounts, however, it does not
implement any access restriction. As the function is ext er nal anyone can set arbitrary addresses as
Uniswap pools, hence freely manipulate the oracle prices.

Code corrected:

The updated code resolves the issue by restricting the access to the function addUni V3Pool s only to
the admin, hence preventing malicious users from setting arbitrary addresses as Uniswap pools:

functi on addUni V3Pool s(I Uni swapV3Pool [] nmenory pool s) external {
_requireAdm n() ;
_addUni V3Pool s(pool s);

6.5 Uni V3Or acl e Returns Reverse Prices for
Token Pairs

Code Corrected

The Uni V3Or acl e computes the price for two tokens using the Uniswap V3 observations. As the tokens
in Uniswap are always sorted by their address (TokenO < Tokenl), the function pri ce uses a flag
r evTokens to distinguish if the price from Uniswap corresponds to the order of function parameters, or if
it should be reversed. The respective code is:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

function price(address tokenO, address tokenl, ui nt 256 safetyl ndi cesSet)
external view returns (uint256[] nenory pricesX96, uint256[] nmenory safetylndices) {

bool revTokens t okenl t okenO;

for (uint256 i 0; i len; i++) {
if (revTokens) {
pricesX96[i] Ful | Mat h. mul Di v(CommonLi brary. @6, CommonLi brary. @6, pricesX96[i]);
}
pricesXx96[i | Ful | Mat h. mul Di v(pricesX96[i], pricesX96[i], CommonLibrary. Q6);

}

The flag r evToken is set to t r ue if the tokens in the function parameters are ordered as in Uniswap,
hence incorrectly reverses the computed price.

Code corrected:

The contract Uni V3Or acl e has been refactored due to the bug presented above and other issues
reported for this contract. The code above that mistakenly reversed the prices is not present anymore in
(Version 2), however, another issue has been introduced on the fix.

6.6 Incorrect TVL Conversion

(Correctness JHEN\EZZI) Code Corrected)

The function _get Tvl TokenO incorrectly converts the TVL amount of a given token i into token 0. The
oracle returns a price in x96 format. This price is directly used as if it would be a correctly formatted price
to convert the amounts. As the TVL in most cases will be lower than the price in x96 format the
calculation will return 0.

tvliO tvls[O];
for (uint256 i 1; i tvis.length; i++) {
(uint256[] nmenory prices,) oracle.price(tokens[0], tokens[i], 0x28);
requi re(prices.length 0, ExceptionsLibrary. VALUE_ZERQO) ;
ui nt 256 price 0;
for (uint256 |j 0; j prices.length; j++) {

price prices[j];
}
price prices. | ength;
tvliO tvls[i] price;

Additionally, the calculation would be more precise if the price would be multiplied to convert the
amounts.

Code corrected:

The issue about the conversion of TVLs in function _get Tvl TokenO has been addressed. The last
statement of the f or - | oop has been changed:

tvliO Ful l Math. mul Div(tvls[i], CommonLi brary. 6, priceX96);

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

6.7 Adding up Total Value Locked on Different
Tokens

(Correctness | HENEZZTE] Code Corrected)

The function postPreOrder calls the function _liquidityDelta with tvIi[0] and
tvi[0] + tvl[1] (seethe issue reported in Calling _liquidityDelta incorrectly).

Additionally, the calculations are performed on t vl with different underlying tokens. Namely, t vl [O] is
in the denomination of t okenO, while t vl [1] in the denomination of t oken1.

Code corrected:

The issue is resolved in code base (Version 2), the first argument t vl [0] is converted into the domination
of t okenl before passed to _| i qui di t yDel t a, while the second parameter t vl [1] remains in the
denomination of t okenl.

6.8 Calling i quidityDelta Incorrectly
D (7DD (Version 1) GRS

The function post PreOr der inLstrategy calls _IiquidityDelta as follows:

(ui nt 256 tokenDelta, bool isNegative) _liquidityDelta(
tvl[O],
tvl[O] tvli[1],
rati oParans. erc20TokenRati oD,
rati oParans. m nEr c20TokenRat i oDevi ati onD

)i

As already pointed out in the issue Calling _liquidityDelta with incorrect inputs, the function
_l'iquidityDel t aalso performs the addition, hence computing incorrectly the result.

Code corrected:

The parameters passed to the function _| i qui di t yDel t a have been corrected, namely the addition of
tvi[0] + tvl[1] isremovedandonlytvl[1] is passed as the second argument of the function call.

6.9 Calling _I'i qui dityDel ta With Incorrect
Inputs

(Correctness | B \ETZZTBY] Code Corrected)

The function r ebal anceERC20Uni V3Vaul t s in LSt rat egy calls _| i qui di t yDel t a as follows:

(capital Delta, isNegativeCapital Delta) _liquidityDelta(
erc20Vaul t Capi t al ,
er c20Vaul t Capi t al | ower Vaul t Capi t al upper Vaul t Capi t al ,

rati oParans. er c20Uni V3Capi t al Rati oD,

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

rati oParans. m nErc20Uni V3Capi t al Rat i oDevi ati onD
);

Note that, the first parameter is included in the sum used as the second parameter. However, the
function _liquidityDelta also performs the addition on the code below, hence computing
t ar get Lower Li qui di ty incorrectly:

ui nt 256 targetLowerLiquidity Ful | Mat h. mul Di v(
target Li qui dityRati oD,
| ower Liquidity upperLiquidity,
DENOM NATOR

)i

Code corrected:
Inr ebal anceERC20Uni V3Vaul t s the calculation does not add er c20Vaul t Capi t al anymore.

6.10 Incorrect Observation Index in

_get Aver ageTi ck
D () (Version 1) GRS

Function _get Aver ageTi ck computes the aver ageTi ck and the ti ckDevi at i on based on the most
recent observation and a previous observation referred as obser vat i onl ndexLast . The latter index is
computed as follows:

ui nt 16 observati onl ndexLast observati onl ndex oracl eCbservationDel ta
? observationl ndex oracl e(oservati onDel ta
observat i onl ndex (type(uintl16). max oracl eCbservationDel ta 1);

If or acl eCbservati onDel t a is larger than obser vat i onl ndex (e.g., by 1), the code above returns
a value that is close (or equal) to t ype(ui nt 16) . max. It is very likely that the Uniswap pool has a
smaller cardinality of observations than the computed obser vati onl ndexLast, hence Os would be
returned for this observation.

Code corrected:

The formula to compute observati onl ndexLast when
oracl eCbservationbDelta > observationl ndex has been revised, type(ui nt 16). max has
been replaced with observati onCardi nality.

obsldx = 20 delta = 30 card = 50 --- 20 + 50 -30 = 40
obsldx = 30 delta = 30 card =50 --- 0

obsldx = 30 delta = 31 card = 50 --- 30 + 50 -31 = 49
obsldx = 30 delta = 49 card =50 --- 30 + 50 - 49 = 31

generalized: obsldx + card - delta % card

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

6.11 Incorrect Parameters on ext er nal Cal |

(Corectness JHENEZZTR] Code Corrected)

The function si gnOrder in LStr at egy performs few ext ernal Cal | s, and for one of them sets the
wrong parameters as input:

bytes nmenory setPresignatureData abi . encode(SET_PRESI GNATURE_SELECTOR, uui d, signed);
erc20Vaul t . ext ernal Cal | (cowswap, SET_PRESI GNATURE _SELECTOR, set PresignaturebData);

Note that the function selector is part of the abi . encode and then is set as the second parameter in
ext er nal Cal | , which also appends the selector when executing the call, hence causing the external
function to always fail:

(bool res, bytes nenory returndata) to.call {value: nsg.val ue}(abi.encodePacked(sel ector, data));

Code corrected:

The external call in LStrat egy. si gnOrder does not encode the SET PRESI GNATURE SELECTOR
twice anymore.

6.12 Insufficient Testing
(Security | High \ZZEXIBY Code Corrected)

We found an unusual high number of issues that would have been easily detected with proper tests. The
current unit and integration tests are insufficient.

Code corrected:

The tests have been extended significantly on the latest iterations of the review process to cover more
functions and call paths.

6.13 Opposite Vaults Are Swapped
(Correctness | HigHJWEZTIY Code Corrected)

The function _swapVaul t s in LSt r at egy should close the position with no liquidity and open a new
one given the price move in posi ti veTi ckG ow h. The decision on which vault to close is done in the
following i f condition:

if (!positiveTickGowh) {

(fronvault, toVault) (l owerVaul t, upperVault);
} else {

(fronvault, toVault) (upperVaul t, | owerVault);

}

The function closes the fronVaul t and creates the new vault according to the current position of
t oVaul t . However, the code above assigns fronVault wrongly to | owerVault if the tick is

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

decreasing, and vice-versa if the tick is increasing. Given this error and the following requirement, the
function would fail always (as f r omaul t has all liquidity):

require(fromliquidity 0, ExceptionsLibrary. | NVARI ANT) ;

Code corrected:

The vaults were switched like:

if (!positiveTickGowh) {
(fronmvault, toVault) (upperVaul t, |owerVault);
} else {
(fronvault, toVault) (1 owerVaul t, upperVault);

}

6.14 Possibility to Exit Positions of Any Address
(Seccurity [High [WZETTBY Code Corrected

In ERC20Root Vaul t . wi t hdr aw, LP tokens are burned in a call to _burn from the address that is
specified in the t o parameter. Neither _bur n nor any other statement in wi t hdr aw performs access
control checks to verify if the meg. sender is allowed to burn the tokens of the given address. Thus, any
user can burn LP tokens of a given address and transfer the underlying tokens to that address.

Finally, an incorrect event is emitted with nsg. sender .

Code corrected:

The issues have been resolved in the updated code (Version 2). The function wi t hdr aw now burns only
the LP tokens of the nsg. sender , while transfers the underlying tokens to the address t o specified by
the caller.

6.15 Possible DOS From First Depositor
(Seccurity [High [WZETTBY Code Corrected

The first user that calls deposi t in ERC20Root Vaul t can choose freely any amount (including zero) for
each vault token, while the LP shares are set to the largest amount by the following loop in
_get LpAnount :

for (uint256 i 0; i tvl _.length; i) {
i f (amounts[i] | pAmount) {
| pAnmount anmountsfi];
}

}

However, if the first user (on initialization or whenever t ot al Suppl y is zero) chooses to deposit only
one token (e.g., t oken[0]) it makes impossible for other users to deposit other tokens (e.g., t oken[1])
as the t ot al Suppl y is not zero anymore, and _get Nor nal i zedAnount considers the existing TVL:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

ui nt 256 res Ful | Math. mul Div(tvl _, | pAmount, supply);

The intended use of the function might be that the first deposit is done by a trusted account, but this is not
enforced.

Code corrected:

A new constant FI RST_DEPCSI T_LI M T is introduced and a require checks that each token amount is
above this limit with t okenArmount s[i] > FIRST _DEPCSIT LIMT.

6.16 Setting Wrong State Variable
(Correctness | High NI Code Corrected)

The function _set Qper at or Par ans in Vaul t Gover nance, as the name suggests, should update the
state variable _oper at or Par ans, instead it overwrites the variable _pr ot ocol Par ans:

function _set OperatorParans(bytes nenory parans) internal {
_requireAt Least Qperator () ;
_protocol Paramns par ans;

}

This mistake has severe consequences: operator gets admin privileges to set _pr ot ocol Par ans or can
set a vault state to incorrect parameters. Finally, the functionality to initialize or update the
_oper at or Par ans is missing.

Code corrected:

The issue is resolved and now the function _set Oper at or Par ans sets the operator params as
intended. The natspec description has been updated accordingly also.

6.17 Wrong Formulain
_rebal anceUni V3Liquidity

Correctness JHENNEZZTI] Code Corrected!

The function _rebal anceUni V3Li quidity in LStrategy updates the value of liquidity as
follows:

liquidity ui nt 128(
Ful I Mat h. mul Di v(
avai | abl eBal ances|i],
shoul dDeposi t TokenAnmount sD[i | shoul dW t hdr awTokenAnount sD[i |,
DENOM NATOR

)i

The formula above is wrong, it multiplies two amounts in t oken[i], then divides the result with
DENOM NATCR.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

Code corrected:
The formula now multiplies with DENOM NATOR and divides by the token amount.

6.18 Wrong TVL Calculation in ERC20Root Vaul t
(Correctness JHigh \ZZZZB)] Code Corrected)

ERC20Root Vaul t . _get Tvl TokenO calculates the TVL of the Vaul t denominated in the token at
position 0 of an array of tokens. It iterates over all the tokens in the array, but only ever compares token
with index O to token with index 1. It should, however, compare token with index O to the token with the
current iteration's index. The function is only used in _cal cul at ePer f or manceFees.

for (uint256 i 1; i tvls.length; i++) {
(ui nt256[] nenory prices,) oracl e. price(tokens[0], tokens[1], 0x28);

Code corrected:

The issue has been resolved as the correct index is now used when querying the price of tokens inside
the loop.

6.19 |iquidity Gets Overwritten in the Loop
(Correctness | HigWZIETI| Code Corrected)

The following loop in LSt r at egy. _r ebal anceUni V3Li qui di t y updates the liquidity for vault tokens
in a loop:

for (uint256 i 0; i 2; i++) {

liquidity ui nt 128(
Ful | Mat h. mul Di v(
avai | abl eBal ances|[i],
shoul dDeposi t TokenAnmount sD i | shoul dW t hdr awTokenAnount sD[i |,
DENOM NATOR

)i
}

The final value of | i qui di ty after the loop exists should be the minimum value calculated in each
iteration, however, the loop above overwrites the | i qui di ty on each iteration without performing any
check.

Code corrected:

In the pot enti al Li qui di ty is computed on each iteration of the loop and it is compared
with [i qui di ty, hencel i qui di ty can only decrease in the loop:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

liquidity potential Liquidity liquidity ? potentialLiquidity : liquidity;

6.20 Wrong State Variable Updated
CITD) (Miedium) (Version 8) (CITY SR

The function LSt r at egy. r ebal anceUni V3Vaul t s updates the wrong state variable when storing the
timestamp of the ongoing rebalance:

require(
bl ock. ti nest anp | ast Rebal anceUni V3Vaul t sTi nest anp ot her Par ans. secondsBet weenRebal ances,
ExceptionsLi brary. TI MESTAVP
DE
| ast Rebal anceERC20Uni V3Vaul t sTi mest anp bl ock. ti mest anp;

Due to this error the throttling mechanism does not work as expected for the function rebalancing the two
uniswap vaults. Furthermore, this also affects the throtting mechanism of the function
r ebal anceERC20Uni V3Vaul t s.

Code corrected:

The issue has been fixed and the correct state variable is updated in r ebal anceUni V3Vaul t s:

| ast Rebal anceUni V3Vaul t sTi mest anp bl ock. ti nest anp;

6.21 Inconsistent Access Control for Rebalance in
LStrategy

D (Medium) (Version) NN

The function LSt r at egy. r ebal anceERC20Uni V3Vaul t s restricts the access to only accounts with
operator or admin roles. However, functions deposit and wi t hdr aw in the ERC20Root Vaul t do not
have any access restriction (unless the vault is private). The root vault has the oper at or role in
LStrategy and for any deposit or withdraw operation, the vault triggers the rebalance function in
LStrategy, hence circumventing the access control of the rebalance function.

Specification changed:

Mellow Finance has decided to remove the callback feature that triggered the rebalance in LSt r at egy.
Now, the rebalance functions r ebal anceERC20Uni V3Vaul t s and r ebal anceUni V3Vaul t s can be
called only by whitelisted addresses with either admi n or oper at or role. Note that, the callback feature
is still present in ERC20Root Vaul t in case future strategies will support the callback feature.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

6.22 Inconsistent Sanity Check on First Deposit's
Amounts

(Design LT D NZE)] Code Correctedt

The function ERC20Root Vaul t. deposit runs the following loop for the first deposit (whenever
total Supply is 0) to check that all amounts are above a threshold FI RST_DEPCSI T LIMT
(hard-coded to 10000):

i f (total Supply 0) {
for (uint256 i 0; i t okens. | engt h; i) {
requi re(tokenAmounts[i] FI RST_DEPCSI T_LI M T, ExceptionsLibrary. LI M T_UNDERFLOW ;

}
}

The contract uses another set of thresholds per token _pul | Exi st enti al s which are initialized as:
10**(t oken. deci mal s() / 2).Hence for tokens with more than 8 decimals, there is a gap between
the two thresholds FI RST_DEPCSI T_LIM T and _pul | Exi st enti al s. If the first deposit includes an
amount for a token in this gap, the contract does not allow new deposits for the token from other users as
the respective TVL will be always below the threshold _pul | Exi st enti al s. This behavior is enforced
in _get LpAnount :

for (uint256 i 0; i tvl sLengt h; i) {
ifo(tvl _[i] pul | Exi stentials[i]) {
cont i nue;
}
}

and in the function _get Nor mal i zedArmount :

if (tvl_ < existential sAmount) {

return O;

Code corrected:

Mellow Finance now requires that the amount in the first deposit is 10 times the _pul | Exi st enti al s.

6.23 Safety Level of Returned Prices Can Silently
Downgrade

(Secuity O ITONZEEE)] Specification Changed)

The function Uni V3Oracl e. price returns more than one price depending on the value of
saf et yl ndi cesSet . UniV3Oracle supports 4 safety levels:

» Safety level 1: spot price.

» Safety level 2: average price based on observations from last 2. 5 minutes.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

» Safety level 3: average price based on observations from last 7. 5 minutes.

« Safety level 4: average price based on observations from last 30 minutes.

If a Uniswap pool does not have enough observations required for a safety level, the oracle skips the
prices for such safety levels and returns only prices with lower safety levels. The respective code:

for (uint256 i 2; i 5, i++) {
(int24 tickAverage, , bool withFail) Oracl eLibrary. consul t (address(pool), observationTineDelta);
if (withFail) {
br eak;

}

Specifications changed:

The natspec description of | Oracl e. pri cexX96 has been updated to be more explicit about this
behavior:

/1l @otice It is possible that not all indices will have their respective prices returned.

Also, more detailed description has been added in Uni V3Or acl e. pri ceX96:

/11 1f there is no initialized pool for the passed tokens, enpty arrays will be
r et ur ned.

/1l Depending on safetylndicesSet if the 1st bit in safetylndicesSet is non-zero, then
the response will contain the spot price.

/1] 1f there is a non-zero 2nd bit in the safetylndi cesSet and the corresponding
position in the pool was created no later than ||| _OBS DELTA seconds ago,

/1l then the average price for the last ||| _OBS DELTA seconds will be returned. The
same logic exists for the 3rd and M D OBS DELTA, and 4th index and | hl|_OBS DELTA.

6.24 Unfair Distribution of LP Shares In
ERC20RootVault
CITD) (Miedium) (Version 3) (CITYSIRETE)

The ERC20Root Vaul t charges the management, protocol and performance fees by minting new LP
shares, hence inflating the total supply. The function _char geFees is triggered on every deposit (and
withdraw) action, hence the total supply of LP shares after a deposit increases more than the amount of
LP shares awarded to the depositor. In this way, a second deposit of the same token amounts after the
fees have been charged, receives more LP shares than the first one.

For example, assume that the ERC20Root Vaul t has been initialized and a first user deposits 10
TokenAand 10 TokenB (assuming 0 decimals for simplicity) and receives 10 LP shares. As the fees will
be charged on deposit, let's suppose another 1 LP share will be minted, hence in total there are 11 LP
shares minted after the deposit. If a second user deposits the same amounts 10 TokenA and 10
TokenB, the function _get LpAmount will award 11 LP shares to the user although the same amounts
were deposited.

Code corrected:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

The issue has been addressed by modifying the functions deposit to charge fees first and then
compute the LP shares awarded to the user according to the new LP supply.

6.25 Conflicting Specifications for MStrategy
(Correctness (TSI NVIERRBY Specification Changed.

The specifications of MStrategy have conflicting instructions. The section "TickMin and TickMax update”
states:

tickMn and tickMax are initially set to sone ad-hoc parans.

As soon as the current price —tick is greater than tickMax - tickNei borhood
or less than tickMn + tickNei borhood the boundaries of the interval

i s expanded by ticklncrease anount.

In the rebalance steps, t i ckNei bor hood is used instead of t i ckl ncr ease:

- tick is greater than tickMax - tickNei borhood then new
boundaries are [tickMn, tickMax + tickNei borhood]

- tick is less than tickMn + tickNei borhood then new
boundaries are [tickMn - tickNeiborhood, tickMax]

Specification changed:
The specification was changed accordingly.

6.26 Implementation Differs From Specification
on _target TokenRati oD

[Medium] [Version 1] Code Corrected

The specifications use the following formula to compute the portions of tokens in a Uniswap v3 pool: |

Wy = tick — tickMax
X " tickMin — tickMax

However, the implementation uses the following code:

return (uint256(uint24(tick tickMn)) DENOM NATOR) ui nt 256(ui nt 24(ti ckiax tickMn));

which corresponds to the following formula: |

_ __tick —tickMin

Wx = GckMax — tickMin

Code corrected:

The implementation of Mstrategy. target TokenRati oD has been updated to comply to the
specification.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

6.27 Incorrect Access of Addresses in
Enuner abl eSet

[Medium] [Version 1] Code Corrected

Function conmi t Al | Val i dat or sSur passedDel ay in the protocol governance contract has a f or
loop that iterates through _st agedVal i dat or sAddr esses and commits the ones for which the delay
period has passed. The respective code is:

for (uint256 i; i length; i++) {
addr ess stagedAddress _stagedVal i dat or sAddr esses. at (0) ;
if (block.tinmestanp st agedVal i dat or sTi nest anps| st agedAddress]) {

}
}

The variable st agedAddr ess inside the loop points always to the hard-coded index 0, hence if there is
at least one address in staged validators for which the deadline has not passed, the loop will just run until
it reaches i ==| engt h.

Code corrected:

The 0 was replaced by the index variable i . The loop exit conditions were changed to:

ui nt 256 | ength _stagedVal i dat or sAddresses. | ength();

ui nt 256 addr essesConmi ttedLengt h;
for (uint256 i; i length;) {
address st agedAddress _stagedVal i dat or sAddresses. at (i) ;

addressesCommi tt ed[addr essesCommi tt edLengt h] st agedAddr ess;
addr essesComi t t edLengt h;
| engt h;
} else {
i

}

6.28 Missing Checks for Dust Amounts When
Rebalancing Pools

(Design |08 Code Corrected)

The function _rebal ancePool s in Mstrat egy rebalances the erc20Vaul t and noneyVaul t to
comply to the specified ratio er c20MoneyRati oD. The rebalancing is performed always when a
non-zero amount should be moved from one vault to the other, i.e., even for dust amounts. Considering
that pul | is relatively costly, the strategy would be more efficient if it performs the rebalancing of the two
pools only if a minimum threshold of tokens should be moved.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

Code corrected:
The updated code does not perform the token transfers if only dust amounts should be moved:

i f ((absol ut eTokenAnount s[0] m nDevi ati on) && (absol ut eTokenAmount s[1] m nDevi ation)) {
return tokenAmounts;

}

6.29 Missing Delay Restriction in BaseVal | dat or

[Medium] [Version 1] Code Corrected

Setting the new params in BaseVal i dat or follows the pattern stage-wait-commit. On staging the new
parameters, the respective timestamp is updated:

_stagedVal i dat or Par ansTi nmest anp bl ock. ti mest anp gover nance. gover nanceDel ay;

However, the adm n of the governance can commit the staged parameters at any time, e.g.,
immediately after staging them, by calling conmi t Val i dat or Par ans as the function does not check if
the delay period has passed.

Code corrected:

The function now checks the delay with a require validating
bl ock. tinestanp >= _stagedVal i dat or Par ansTi nest anp.

6.30 Missing Sanity Checks in si gnOr der
E) (Medium) (Version 1) (ZXTYSTRT)

The function si gnOr der in LSt r at egy performs some sanity checks if the submitted or der is in line
with the values of the posted pr eOr der . However, the check for or der . r ecei ver is missing, therefore
the caller can set any arbitrary address and receive the buyToken.

Code corrected:

The code doing the sanity checks for or der in si gnOrder has been moved to the separate function
LSt rat egyOrder Hel per. checkOrder which includes the check that the receiver is the
erc20Vaul t.

6.31 No Slippage Protection in Multiple Contracts
(Security (ZTITNZEIIBY] Code Corrected

push and pul | functions in Uni V3Vaul t take options arguments that contain the minimum amount of
tokens for slippage protection.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

push and pul | functions in Mel | owVaul t take an options argument that contains the minimum amount
of LP tokens for slippage protection.

In the following cases, these options are not used:

*« ERC20Ro0t Vaul t . deposi t calls Aggr egat eVaul t . _push without options, which could result in

a call to _push of one of the described
Vault s without slippage protection if the first ~“subVault of the
ERC20Root Vaul t is one of the described Vaul t s. With the current contract setup, this is not
possible though.

*« ERC20Roo0t Vaul t . wi t hdr aw calls Aggr egat eVaul t. _pul | without options, which could result
in a callto _pul | of one of the described ""Vault™"s without slippage protection.

* M5t rat egy. manual Pul | calls pul | of an arbitrary Vaul t without options, which could result in a
call to _pul | of one of the described ""Vault s without slippage protection.

* M5t rat egy. _rebal ancePool s calls pul | of an arbitrary Vaul t without options, which could
result in a call to _pul | of one of the described “"Vault™'s without slippage protection.

M5t rat egy. _swapToTar get calls pul | of an arbitrary Vaul t without options, which could result
in a callto _pul | of one of the described ""Vault™"s without slippage protection.

Code corrected:

A new parameter with option for slippage protection was introduced.

6.32 Possible Underflow in Uni V3Or acl e. price
D (Viediurm) (Version 1) (CXISIIRTD)

The Uni V3Or acl e computes the price of two tokens based on two observations obs1 and obsO from
the Uniswap. The respective code is:

ui nt 256 obs1 (ui nt 256(obser vati onl ndex) ui nt 256(observationCardinality) 1) %

(
ui nt 256(observati onCardinality)
ui nt 256 obsO0 (ui nt256(observati onl ndex) ui nt 256(observati onCardi nality) bf Avg) %
ui nt 256(observati onCardinality)
i nt 256 tickAverage
{
(uint32 tinmestanmp0, int56 tick0, ,) | Uni swapV3Pool (pool). observations(obsO);
(uint32 tinmestanmpl, int56 tickl, ,) | Uni swapV3Pool (pool). observations(obsl)
ui nt 256 ti nespan ti mestanpl ti nest anpO;
}

The obj 1 points to the previous observation (the one before the most recent observation), while the
obj 0 should point to bf Avg observations before obj 1. However, in case:

bf Avg observationCardinality

obj 0 would point to the most recent observation, which would have a more recent timestamp than obj 1,
hence the statement to compute t i nespan would cause an underflow which reverts.

Code corrected:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

The possibility of the underflow as described above has been mitigated in the updated code as the
bf Avg cannot be equal to ober svati onCardi nality:

i f (observationCardinality bf Avg) {
conti nue;

}

Note that, the oracle does not return a price if for some pool bf Avg is equal to the observations
cardinality.

6.33 Rebalance in LStrategy Can Leave Tokens in
the Vault to Be Closed
(Design (TSI VEETIBY] Code Corrected

The internal function _r ebal anceUni V3Li qui di t y should move the desi r edLi qui dity from one
vault to the other depending on the price trend. If the price moves outside the range covered by a vault,
all liquidity should be moved to the other vault and a new position should be open. However, given that
| ower Vaul t and upper Vaul t operate on different price ranges, it means that they have different token
ratios. Hence, when moving tokens from one vault to the other, the function caps the liquidity being
transferred to the available balance in the cash position that can fill the token difference of two positions
(the relevant code is shown below). However, if the cash position has insufficient balance to cover the
difference for the whole liquidity being transferred, f r omVaul t will have some remaining liquidity, hence
it cannot be closed. As a consequence, a new Uniswap position cannot be created to cover the price as
intended.

uint 128 potential Liquidity ui nt 128(
Ful | Mat h. mul Di v(
avai | abl eBal ances|i |,
DENOM NATCR
shoul dDeposi t TokenAnount sDJ i | shoul dW t hdr awTokenAmount sD[i |
)
)
liquidity potential Liquidity liquidity ? potentialLiquidity : liquidity;

Code corrected:

The function LSt r at egy. _rebal anceUni V3Li qui di ty has been modified in to withdraw
everything from a vault when desi r edLi qui di ty is set to maximum value of ui nt 128, which is the
case when a vault is to be closed. The relevant code is:

ui nt 256[] nenory w t hdrawTokenAnount s fromvaul t . |i quidityToTokenAnmount s(
desiredLiquidity type(uint128). max ? desiredLiquidity : liquidity
¥
pul | edAmount s fromvaul t. pul | (
address(erc20Vaul t),
t okens,
wi t hdr awTokenAnount s,
_makeUni swapVaul t Opti ons(m nW t hdr awTokens, deadl i ne)

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

The array wi t hdr awTokenAnmount s will have huge amounts when the desi r edLi qui di ty is set to
max ui nt 128, but the pul | operation is capped to the existing balance of the f r onVaul t .

6.34 Subvault Tokens Are Not Checked in

Aggr egat eVaul t
I (Miedium) (Version 1) (XIS

Aggr egat eVaul t requires the _vaul t Tokens state array to be initialized with the same tokens and
the same ordering all the subvaults have been initialized with. However, this is not enforced upon
initialization.

Code corrected:

When initializing, the vault of the nft is queried in AggregateVaul t.initialize. The vault's tokens
are queried afterwards with the call I I nt egrati onVaul t (vaul t). vaul t Tokens() . A loop checks
for each token in the vault if it matches the tokens from the initialization arguments.

6.35 Transferring Tokens Only to | ower Vaul t

[Medium] [Version 1] Code Corrected

The following code should transfer tokens from er c20Vaul t to the two Uniswap vaults with the
respective amounts:

if (!isNegativeCapital Delta) {
t ot al Pul | edAnmount s erc20Vaul t. pul I (
address(l owerVaul t),
t okens,
| ower TokenAmount s,
_makeUni swapVaul t Opti ons(m nLower Vaul t Tokens, deadli ne)
)
pul | edAmount s erc20Vaul t. pul | (
address(l owerVaul t),
t okens,
upper TokenAmount s,
_makeUni swapVaul t Opt i ons(m nUpper Vaul t Tokens, deadl i ne)
)
for (uint256 i 0; i 2; i++) {
tot al Pul | edAnount s[i | pul | edAmount s[i | ;
}
}

Both transfers above are from the er c20Vaul t to the | ower Vaul t , hence no tokens are transferred to
the upper Vaul t .

Code corrected:

The bug has been fixed, the code now transfers the respective amounts to the | ower Vaul t and
upper Vaul t .

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

6.36 Use of Libraries
(Design LT ICETTRY] Code Corrected)

Mellow Finance often uses own custom code for which battle proof libraries exist. We highly recommend
using libraries instead of custom implementations. Especially, when dealing with complex DeFi projects
like Uniswap V3.

Code Corrected:

The code part were most issues were found was the Uniswap oracle. In Mellow Finance
switched to the libraries provided by uniswap to interact with the oracle.

6.37 Missing Sanity Checks for
| nt erval W dt hl nTi cks
D) (Low) (Version 5) (XL

The function LStrategy. updateC her Parans does not perform any sanity check on the
i nt erval W dt hl nTi cks. However, this parameter should be carefully updated as it affects directly the
tick ranges covered by the two Uniswap vaults. For example, if the new width in ticks is the half of the
existing one, the range of the new position would be fully covered by the existing vault (created with old
width).

Code corrected:

In the updated version of the codebase, the parameter i nt er val W dt hl nTi cks is declared as an
i mrut abl e state variable, hence it set in the constructor and cannot be updated later.

6.38 Possible Attack by First Depositor
(Seccurity [(EIMJ(IERRI Specification Changed

The decimals of the LP shares distributed by root vaults are implicitly determined by the token amounts
deposited by the first user. If the t ot al Suppl y ever goes to zero, or all TVLs are not significant, the
next user that performs a deposit would affect the decimals of LP shares. This setup allows the first
depositor to front-run and potentially exploit the next user depositing into the root vault. Consider the
following example.

1. First Depositors deposits 10 WBTC (8 decimals, so 10**9 wei) and 10**-9 DAI (18 decimals, so
10**9 wei)

* Receives 10**9 LP Tokens (= max(10**9, 10**9))

2. Second Depositor also sends a transaction to deposit 10 WBTC and 10**-9 DAI

» Expects to receive also 10**9 LP Tokens, hence sets m nLpTokens = 10**9

3. First depositor front-runs the transaction and performs these actions:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

* withdraw() => withdraws everything, no fees charged
* deposit() => deposit 10**5 WBTC wei and 10**10 DAI wei => Receives 10**10 LP tokens

* withdraw() => withdraws ~ 9 * 10**9 LP => TVLs = [10**4 - 1 WBTC wei, 10**9 - 1 USDC
wei]

* First depositor still has ~ 10**9 LP

4. Transaction of second depositor is executed

e _getLpAmount -> isSignificantTvl == False
* Receives 10**9 LP tokens => slippage protection passes
» Deposits 10 WBTC and 10**-9 DAI

5. First depositor withdraws their ~ 10**9 LP and receives ~ 5 WBTC (after depositing only 0.0001
WBTC)

Specifications changed:

The updated code mitigates the attack presented above by enforcing the first deposit into a root vault to
mint LP shares to address(0). To prevent from accidentally depositing large amounts in the first
deposit (and effectively burning LP shares), the function checks that all amounts being deposited are
between 10 * _pul | Exi stential s[i] and a full token. Nevertheless, one full token might still have
significant value for some tokens, e.g., WBTC or ETH.

6.39 Possible Optimization on
_chargePerformanceFees

D (Low) (Version 5) CXTIEEIEED)

The function _char gePer f or manceFees in ERC20Root Vaul t mints LP tokens to the treasury
address as follows:

ui nt 256 t oM nt;
i f (hwrsD18 0) {
t oM nt Ful | Mat h. mul Di v(baseSupply, | pPriceD18 hwrsD18, hwrsD18) ;
t oM nt Ful I Mat h. mul Di v(toM nt, performanceFee, ConmonLi brary. DENOM NATOR) ;
}
| pPri ceHi ghWat er Mar kD18 | pPri ceD18;
_mnt(treasury, toMnt);

The function would be more gas efficient if the minting is executed only for non-zero values, hence only
minting when the i f - condi ti on is satisfied.

Code corrected:

In the updated code, the statement _mi nt (...) is moved inside the i f - bl ock, hence minting only
non-zero amounts.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

6.40 Possible Violation of the Minimum Token
Amounts After the First Deposit

(Desig {(FOZI0)] Code Corrected

The function ERC20Root Vaul t . deposi t checks on the first deposit that all token amounts are larger
than a minimum value 10 * _pul | Exi stential s[i]. If the TVL for a token goes below the
threshold, users cannot make deposits for that token. However, the first depositor can circumvent the
restriction for the minimum token amounts by performing an withdrawal after the deposit.

Code corrected:

The issue presented above is not present anymore in the updated code base as the first deposit always
mints LP shares to addr ess(0) .

6.41 Misleading Function Name and Natspec

(Correctness JICTNEERTI Code Corrected|

The function LSt r at egy. t ar get Pri ce returns the price in x96 format. Neither the function name, nor
the natspec description clarify the format of the return value. We have reported another issue in a calling
function which assumed the price to be returned in a different format.

Code corrected:

The codebase has been updated to make more explicit in the function name and natspec description of
get Tar get Pri ceX96 that the returned price is in x96 format. Similarly, other functions that return the
price in x96 format are renamed accordingly.

6.42 Mismatch of Specifications for
StrategyParams

(Correctness J TR Code Corrected)

The natspec description for the struct Strat egyPar ans states that the params are changed with a
delay:

/1l @uotice Paranms that could be changed by Strategy or Protocol Governance
wi th Protocol Governance del ay.

while the natspec description of the function set St rat egyPar ans states that they are changed
immediately, which is in line with the implementation:

/| @otice Set Strategy parans, i.e. Params that could be changed by Strategy or Protocol Governance inmmediately.

Core corrected

The natspec was corrected and does not mention the governance delay.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

6.43 Missing Sanity Check for maxSlippageD in

MStrategy
(Design ED\EEIX0)] Code Corvected)

The function M5t r at egy. set Or acl ePar ans does not check that maxSl i ppageD is greater than zero,
but if it is accidentally set to zero, the following code will revert always: .. code::solidity

require(absoluteDeviation < oracleParams.maxTickDeviation, ExceptionsLibrary.INVARIANT);

Code corrected:

The function set O acl ePar ans is updated to include a check that the new max Sl i ppageD parameter
iS not zero:

require((parans. maxSli ppageD > 0) && (parans. maxSl i ppageD DENOM NATOR), ExceptionsLi brary. | NVARI ANT) ;

6.44 Missing Sanity Checks for oracleSafetyMask
D) (Low) (Version 4) (AL

The function LSt r at egy. updat eTr adi ngPar ans performs sanity checks on the maxSl i ppageD,
or der Deadl i ne and or acl e, but no checks are performed for or acl eSaf et yMask. This parameter
should be non-zero for functions that query the oracle to work properly. Additionally, the function could
check that at least one oracle with high safety index is included always.

Code corrected:

An additional check is added when new trading params are set by the admin. The check fort the new
oracle safety mask is: newTr adi ngPar ans. or acl eSaf et yMask > 3.

6.45 Possible Struct Optimization in Strategies
D) (Low) (Version 4) (XL

Mellow Finance might want to consider to optimize some structs in the code base. E.g., in:

struct Tradi ngParans {
ui nt 32 maxSl i ppageD;
ui nt 32 or der Deadl i ne;
ui nt 256 oracl eSaf et yMask;
| Oracle oracl e;

struct PreOrder {
addr ess tokenln;
address tokenQut;
ui nt 256 amount | n;

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 43

https://chainsecurity.com

ui nt 256 m nAnount Qut ;
ui nt 256 deadl i ne;

}

struct Rati oParans {
int24 tickM n;
int24 tickMvax;
ui nt 256 er c20MoneyRat i oD,
i nt 24 m nTi ckRebal anceThr eshol d;
i nt 24 ti ckNei ghbor hood;
int24 ticklncrease;
ui nt 256 m nEr c20MoneyRat i oDevi at i on0D;
ui nt 256 m nEr c20MoneyRat i oDevi ati on1D;

}

Some of the variables will not take up a whole word and could be reordered to be packed tightly if
needed.

Code corrected:

The variables in the structs listed above are reordered to be more efficient when stored in storage in the
updated code.

6.46 Redundant Comparisons

(Desig (DRI Code Corrected)

The function Uni v3Vaul t . _get M nMaxPr i ce implements the following code:

ni nPri cex96 prices[0];

maxPri ceX96 prices[0];

for (uint32 i 0; i prices. | ength; i) {
If (prices[i] m nPriceX96) {

Note that m nPri ceX96 and maxPri ceX96 are assigned to pri ces[0] before the f or -1 oop, so the
first iteration of the loop is redundant.

Code corrected:
The f or - | oop has been updated to start fromi = 1 which avoids the redundant checks.

6.47 Redundant Storage Read in
ERC20Vaul t. pul |
(Design [(ETYNELIIE)] Code Corrected

_vaul t Tokens is a state variable that is read multiple times in the _pul | function even though it is
stored in memory at the beginning of the function in t okens.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 44

https://chainsecurity.com

Code corrected:

The function has been revised to avoid storage reads for _vaul t Tokens, instead the value stored in
memory t okens is now used.

6.48 Variables Can Be Declared as Constant

(D (Cow) (Version 4) ST

The variable MAX_ESTI MATED_AAVE_APY in AaveVaul t Gover nance is declared as i rmut abl e and
assigned to a constant in constructor. Similarly, MAX_PROTOCOL_FEE, MAX_MANAGEMENT_FEE and
MAX_PERFORVMANCE_FEE in ERC20Root Vaul t Gover nance can be declared as constants.

Code corrected:

All'i nmrut abl e variables listed above are converted to constants.

6.49 Incorrect Specification for reclaimTokens

[Low] [Version 3] Specification Changed

The following statement in | nt egr at i onVaul t regarding the function r ecl ai mrokens is incorrect:

/11 "reclainrlokens® for mstakenly transfered tokens (not included into vaultTokens)
/1] additionally can be withdrawn by the protocol admn

Specification changed:

The statement in | nt egr ati onVaul t has been changed as:

/1l "reclainrlokens” for claimng rewards given by an underlying protocol to erc20Vault
in order to sell themthere

6.50 Missing Natspec Description for
m nDevi ati on

(Corvectness TR Code Corrected)

The parameter m nDevi ati on in the function LStrategy. _liquidityDelta has no natspec
description.

Code Corrected:
The description for mi nDevi at i on was added.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 45

https://chainsecurity.com

6.51 Casting of maxTi ckDevi ati on
Security (ETITITB] Code Corrected)

maxTi ckDevi ation is declared as uint24 in the struct O acl eParans. In function
_get Aver ageTi ckChecked, the variable is casted as i nt 24:

i nt 24 maxDevi ati on I nt 24(or acl ePar ars. maxTi ckDevi ati on) ;

For large values of maxTi ckDevi at i on, an overflow can happen when casting as i nt 24.

Code corrected:

The deviation is now converted to an absolute value and directly compared to the maxDevi ati on
without casting it to an i nt 24.

6.52 Check Requirements First
7D (Low) (Version 1) (XIS

Multiple functions can be more efficient by checking all requirements first (fail early), before performing
expensive operations, such as external calls. We list below some examples (not an exhaustive list):

« Uni V2Val i dat or: in val i dat e both branches of the i f condition require the nsg. sender to be
the address t 0. The function can be optimized by checking the requirement first, and then
performing the call to _veri f yPat h function.

«Uni V2Val i dat or: the function _verifyPath can be optimized by checking the following
requirement first, before making external calls in the loop:

requi re(vaul t.isVault Token(path[path.|ength 1]), ExceptionsLibrary.|NVALI D_TOKEN);

* Uni V3Val i dat or : the function _verifyMuil ti Cal | can be optimized by checking the following
requirement first, before iterating through pat h and making external calls:

require(recipient address(vault), ExceptionsLibrary. | NVALI D TARCET) ;

Code corrected:

The updated code performs the checks first before executing other operations that might be
expensive for the cases listed above.

6.53 Duplicate Code perm ssi onl dsToMask
(Design [(CIYVEETIBY] Code Corrected

The function r evokePer ni ssi ons in the Pr ot ocol Gover nance contract implements the following
loop:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 46

https://chainsecurity.com

ui nt 256 diff;

for (uint256 i 0; i per m ssi onl ds. | engt h; i) {
diff |=1 perm ssionlds[i];

}

which is a duplicate of the _per ni ssi onl dsToMask function.

Code corrected:

The code part was replaced by a call to the _per mi ssi onl dsToMask function.

6.54 Duplicate Storage Read in Deposit
CIETD) (Low) (Version 1) (CXIESIEED)

In ERC20Root Vaul t . deposi t the variable t ot al Suppl vy is read for the check if it is 0 and later again
to be loaded into memory.

Code corrected:

The redundant storage read is eliminated in the updated code and the value stored in memory suppl y is
used instead.

6.55 Inconsistent Specifications

[Low] [Version 1) Specification Changed

In the specifications of struct | Pr ot ocol Gover nance. Par ans:

e perm ssi onl ess is described but it's not a member of the struct.

e maxTokensPer Vaul t has the description that it stores the maximum tokens managed by the
protocol, not a vault as the name suggests.

e prot ocol Treasury is not described.

In the specifications of uni t Pri ces, the comment st aged for comm t is wrong.

Specifications changed:
The specifications have been updated in to address the issues reported above.

6.56 Inefficient Array Shrinking
7D (Low) (Version 1) (XTI

Pr ot ocol Gover nance. addr essesByPer i ssi on and
Pr ot ocol Gover nance. conmi t Al | Per mi ssi onG ant sSur passedDel ay create arrays with
extended length and copy the values to a newly generated array with the correct size. This can be more
efficiently done with st or e assembly, which is also used in various other places in the code.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 47

https://chainsecurity.com

Code corrected:
The array is now cut to length via st or e as in other parts of the code.

6.57 Inefficient State Variable Packing
D) (Low) (Version 1) (XL

| ast FeeChar ge and t ot al Wt hdr awnAnmount sTi nest anp in ERC20Root Vaul t are declared as
ui nt 256. Both are timestamps; hence, it might be more efficient to pack them as ui nt 64. This only
makes sense if they are used and loaded together, which would be possible in the current code base.
Similarly, other structs in other contracts can be more storage-efficient by packing variables together.

Code corrected:

Both variables | ast FeeChar ge and t ot al Wt hdr awnAnopunt sTi mest anp have been declared as
ui nt 64 in the updated code.

6.58 Misleading Naming of Variables in
Uni V3Or acl e
D) (Low) (Version 1) (XL

The function pri ce uses variable names that are inconsistent with the variable names of Uni swap.
Namely, the variables ti ckO and ti ckl refer to ti ckCunul ati ve variables of Uni swap and not
normal ticks.

Similarly, the array pri cesX96 temporarily stores prices in square root format which are typically
referred to as sqrt Pri ceX96. These inconsistencies make the reading of the code harder.

Code Corrected:

The variables were renamed accordingly.

6.59 Missing Sanity Check in

MSt r at egy. creat eStr at egy
(Design [ET[(LEZTBY] Code Corrected)

In MSt r at egy. creat eSt rat egy any token array could be passed in, but the strategy can only handle
two tokens. There is no sanity check to limit the number of tokens. The fee parameter is also not checked
even though it could only take a limited range of values.

Code corrected:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 48

https://chainsecurity.com

The sanity check on the tokens array is added in the i ni ti al i ze function which is called when a new
strategy is created. The sanity check for the fee parameter is performed when the pool address is
queried:

pool = 1 Uni swapV3Pool (factory. get Pool (tokens[0], tokens[1], fee_));
requi re(address(pool) != address(0), ExceptionsLibrary. ADDRESS ZERO) ;

6.60 Missing Sanity Checks for Params
(Design [(EIYVZETIBY] Code Corrected

LSt rat egy. updat eRati oParans and LStrategy. updat eQ her Parans do not perform sanity
checks on all the params.

Code Corrected:

Both functions now perform basic sanity checks for the arguments.

6.61 Misspelled Variable Names
(Design [(ETYNELIIBY Code Corrected

Function deposit in ERC20RootVault declares a variable with misspelled name:
del ayedSt ar et gyPar ans.

Struct r at i oPar ans in M5t r at egy declares a variable with misspelled name: t i ckNei bor hood.

Code corrected:

Both variable names have been corrected in the updated code.

6.62 Possible Struct Optimization
D) (Low) (Version 1) ISR

Mellow Finance might want to consider to optimize some structs in the code base. E.g., in:

struct Tradi ngParans {
ui nt 256 maxSl i ppageD;
ui nt 256 m nRebal anceWai t Ti ne;

struct RatioParans {
ui nt 256 erc20Uni V3Capi tal Rati oD;
ui nt 256 erc20TokenRat i oD;
ui nt 256 m nEr c20Uni V3Capi t al Rat i oDevi ati onD;
ui nt 256 m nEr c20TokenRat i oDevi ati onD;
ui nt 256 m nUni V3Li qui di t yRat i oDevi ati onD

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 49

https://chainsecurity.com

Some of the variables will not take up a whole word and could be packed if needed.

Code corrected:

The examples above and some other structs were changed. We assume that Mellow Finance evaluated
all structs if an optimization is suitable and shall be applied.

6.63 Rebalancein Mstr at egy Is Inconsistent

(Correctness Y KOINEETTRY Code Corrected)

VSt r at egy provides only one function for rebalancing (r ebal ance) which calls _r ebal ancePool s to
enforce the predetermined ratio for the pools (erc20Vault and noneyVault) and then calls
_rebal anceTokens to enforce the token ratio for the er c20Vaul t . The latter calls _swapToTar get
which, in specific cases, pulls tokens from the noneyVaul t to the er c20Vaul t :

i f (amountln erc20Tvl [t okenl nl ndex]) {

noneyVaul t _. pul | (address(erc20Vault_), tokens_, tokenAmounts, "");

}

This transfer of tokens from noneyVaul t to the erc20Vaul t would break the balance set in the
function _r ebal ancePool s called in the beginning of the rebalance process.

Code corrected:

The function r ebal ance has been updated to perform first the rebalance of tokens in the er c20Vaul t ,
which includes any potential swap. Afterwards, the function calls _r ebal ancePool s which enforces the
predetermined ratio of TVLs for the er c20Vaul t and noneyVaul t .

6.64 Specification for m nDevi ati on Not
Enforced

(Corvectness JICTWEETBY Code Corrected)

The function r ebal anceERC20Uni V3Vaul t s in LSt r at egy calls the function _|i qui di tyDel t a and
provides the minimum required deviation for a rebalance to be performed. | i qui di t yDel t a checks
the current deviation and if it is lower than the required minimum, it returns 0. However, the calling
function does not check the return value, hence continues the execution of the function although no
tokens will be moved.

Code corrected:

The check below for the return value of the function _I|i qui di t yDel t a has been added. Now the
function returns immediately if capi t al Del t a is equal to O due to current deviation being smaller than
the minimum required deviation:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 50

https://chainsecurity.com

(capital Delta, isNegativeCapital Delta) _liquidityDelta(...);
if (capital Delta 0) {

return (pull edAnounts, false);
}

6.65 Storing Redundant Data in Storage
(Design [(CTYCZZTIBY] Code Corrected

The function _addUni V3Pool s stores two entities in the mapping for each pair of tokens:

pool sl ndex[t okenO] [t oken1] pool ;
pool sl ndex[t okenl] [t okenO] pool ;

Given that there is only one Uniswap pool for a pair of tokens and a fee, the tokens can be sorted and
stored only once in the mapping: t okenA -> t okenB -> pool , assuming t okenA < t okenB.

Code corrected:

The mapping poolsindex now stores only one entry for a par of tokens
t oken0 -> tokenl -> pool.

6.66 Unnecessary Approval to Vault Registry
(Design [(CTY(ZZTIBY] Code Corrected

Function _initializeinVaul t has the following line which gives approval to the vault registry, but it is
unnecessary as Vaul t Regi st ry is the implementation contract of the NFT token:

regi stry. set Approval For Al | (address(registry), true);

Code corrected:
The statement giving the approval has been removed from the function in (Version 2),

6.67 Unused Constant in ERC20Val i dat or
(Design [(FTVEETTB] Code Corrected

ERC20Val i dat or declares the following constant, but it is not used:

byt es4 public constant EXCHANGE SELECTOR = 0x3df 02124;

Code corrected:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 51

https://chainsecurity.com

The constant was removed from the contract.

6.68 Unused Event Depl oyedVaul t
(Design | (ETY[CLTTIRY Code Corrected

The contract Vaul t Gover nance defines the event Depl oyedVaul t but it is not used in the current
code base.

Code corrected:
The updated code emits the event Depl oyedVaul t when a new vault is created.

6.69 Unused Function
LSt rat egy. priceX96Fronili ck

D (Low) (Version 1) ST

The internal function LSt r at egy. _pri ceX96Fr onTi ck is not used in the LStrategy.

Code corrected:

The function was removed from the L Strategy.

6.70 Unused Imports
T (Low) (Version 1) (YR

Throughout the code base we found many unused imports. Due to the number of unused imports, the
following list is non-exhaustive and list only examples:

-Mel | owOr acl e

i nport " @penzeppelin/contracts/utils/structs/Enumerabl eSet. sol"

inport "../libraries/ConmonLibrary. sol";
*Uni V2Or acl e

inmport "../libraries/ExceptionsLibrary.sol"
*Uni V3Oracl e

inmport "../libraries/ExceptionsLibrary.sol"
*LStrategy

inmport "../interfaces/|VaultRegistry.sol"

inmport "../interfaces/utils/IContractMeta. sol"
* M5t r at egy

i mport " @penzeppel i n/ contracts/token/ ERC20/ uti |l s/ Saf eERC20. sol ";

* CowswapVal i dat or

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 52

https://chainsecurity.com

import "../libraries/ConmonLibrary. sol"
import "../libraries/Perm ssionldsLibrary.sol"
* CurveVal i dat or
import "../libraries/ConmonLibrary. sol"
i nport " @penzeppelin/contracts/utils/structs/Enunerabl eSet. sol"
import "../interfaces/validators/IValidator.sol";
* ERC20Val i dat or
import "../libraries/ConmonLibrary. sol"
* Uni V2Val i dat or and Uni V3Val i dat or
import "../interfaces/validators/IValidator.sol";
import "../libraries/ConmonLibrary. sol"

i nport " @penzeppelin/contracts/utils/structs/Enunerabl eSet. sol
* AaveVaul t
import "../interfaces/vaults/IVault.sol"

* Aggr egat eVaul t

import "../interfaces/vaults/|AggregateVault.sol";
import "../libraries/Perm ssionldsLibrary.sol"

* ERC20Roo0t Vaul t
import "../interfaces/utils/|ContractMeta.sol"

Code partially corrected:

The unused imports have been removed from the respective contracts for all examples listed above,
except for the Saf eERC20 import in the M5t r at egy.

6.71 Wrong Check of Minimum Token Amounts in
ERC20Root Vaul t . wi t hdr aw
D (Low) (Version 1) (YRR

ERC20Root Vaul t . wi t hdr aw compares the token amounts a user wants to receive at minimum with
the calculated token amounts, but not the token amounts that are actually returned after pulling from
underlying Vaul t s. This could potentially result in the user receiving less tokens than anticipated.

Code corrected:

The actual token amounts pulled from vaults are now validated against the minimum amounts provided
by the user: " require(actualTokenAmounts[i] >= minTokenAmountsJi],...);"

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 53

https://chainsecurity.com

6.72 Wrong Specification for Year nVaul t . t vl
(Correctness J(ETYNZZEITB Specification Changed)

The specification in Year nVaul t mentions that Year nVaul t. t vl returns a cached value when in fact
it does not.

Specification changed:

The specification has been updated in and the statement about the cached value has been
removed.

6.73 Contract Regi stry DOS
ETIID (Low) (Version 1) (XA

Contract Regi stry. regi sterContract checks that the version of a registered contract is always
increasing in:

requi re(newContractVersi on > _| atest Versi on(newContract Nane), ExceptionsLi brary. | NVARI ANT) ;

If a contract is deployed with a version set to max uint, this would be the last contract possible to add to
the system. No contracts could be added afterwards.

Code corrected:

Mellow Finance introduced major and minor contract version. The 16 right most bytes are the minor
version and the remaining bytes to the right the major version. A require ensures that with each call to
regi sterContract the major version can only increase by 1 with
newCont r act Ver si onMaj or - | atestContractVersi onMaj or <= 1.

6.74 ERC20Vaul t. pul |l Forces Push of Wrong
Amount of Tokens

(Coreectness YR Cods Corrected)

In ERC20Vaul t . _pul |, if tokens are not pulled to the ERC20Root Vaul t , the receiving Vaul t is forced
to push the received tokens. The token amounts to be pushed are set in act ual TokenAmount s, but
this variable is never used. Instead t okenAnount s is used.

Code corrected:

The code has been corrected to push into the integration vault the amounts as stored in
act ual TokenAnount s.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 54

https://chainsecurity.com

6.75 IntegrationVault. root Does Not Check
the NFT of the Root Vault
(Correctness JETINZIEITB) Code Corrected

IntegrationVault._root tries to verify the initialization of a given Vaul t and its corresponding
ERC20Root Vaul t with the following code:

requi re(thi sNft t hi sOwner Nf t 0, ExceptionsLibrary.INT);

Ift hi sNft is set (greater than 0) and t hi sOaner Nf t equals 0, no revert will happen. _r oot is called in
pul | only. pul | already checks that the argument t hi sNft given to _r oot is not equal to 0 which
renders the r equi r e useless.

Code corrected:

The statement was changed and checks each variable separately if it is zero in
(thisNft '=0) & (thisOwmerNt !'= 0).

6.76 Vaul t Gover nance. comm t | nt er nal Par ans
Does Not Delete Staged Parameters

(D (Cow) (Version 1) G

Vaul t Gover nance. comm t | nt er nal Par ans does not delete the _st agedl nt er nal Par ans state
variable.

Code corrected:

The state variable _st agedl nt er nal Par ans is now deleted after it is applied.

6.77 registry.ownerO |s Called Twice in
| nt egrationVaul t. pul |

(Design J(ET VTR Code Corrected

regi stry. owmner & is called twice with the same value in I ntegrationVault. pull, inducing
unnecessary additional gas costs.

Code corrected:

The obvious redundant call to regi stry. owner & was removed. Still, there would be another call in
_i sApprovedO Onner .

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 55

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Approximated TVL for Aave Vaults

The function AaveVaul t . t vl () computes an approximate total value locked (TVL) based on the time
passed since the last time the function updateTvls was called and the parameter
esti mat edAaveAPY:

ui nt 256 apy | AaveVaul t Gover nance(addr ess(_vaul t Gover nance)) . del ayedPr ot ocol Parans(). esti mat edAaveAPY;
factor ConmonLi brary. DENOM NATOR + Ful | Mat h. nul Di v(apy, tinmeEl apsed, CommonlLi brary. YEAR);

Note that the parameter est i mat edAaveAPY is set by the protocol admin for all tokens of the vault,
hence the function t vl might return incorrect values if updat eTvl s is not called frequently.

7.2 Balances Are Drained Faster in Vaults With
Lower Index

Aggr egat evVaul t. _pul | pulls funds out of the underlying Vault's by pulling the maximum amount out
of each Vault sequentially. This drains funds faster from Vault's depending on their index in the
_subvaul t Nf t s state variable.

7.3 Deposits Can Be Blocked by Updating
StrategyParams

The function ERC20Roo0t Vaul t Gover nance. set St r at egyPar ans does not perform any sanity check
for the new parameters being set, hence if t okenLi m t Per Addr ess ort okenLi ni t is set to zero, the
functionality to deposit is blocked. The sanity checks are not enforced intentionally as the admin might
use these parameters to block deposits into a root vault by updating these parameters.

7.4 Deprecated Function _set upRol e

Def aul t AccessControl and Def aul t AccessControl Latel nit use the function _set upRol e,
which according to its specification is deprecated:

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 56

https://chainsecurity.com

7.5 Duplicate Declaration of DENOM NATCOR
(D) (Version 1

Both MSt r at egy and LSt r at egy import ConmonLi br ar y which declares the constant DENOM NATOR,
however, they also declare the constant as well.

7.6 Dust LP Shares Are Burned
(D) (Version 6

If a user decides to redeem its LP shares in a root vault by calling the function wi t hdr aw, and if at the
time of this action the amount of remaining LP shares represents less than the threshold exi st enti al s
in underlying tokens, the whole user's LP balance is burned. Put shortly, the function prevents users from
leaving dust amounts in LP shares when withdrawing.

7.7 External Functions in Contr act Met a

(D (Version 1)

Contract Met a implements external pure functions, and currently they are called only by
regi sterContract in Contract Regi stry. The calls are performed as three external calls, which
increase gas costs, as there is no function in Cont r act Met a returning all values in a single external call.

7.8 LP Tokens of the First Deposit Are Burned
(D) (Version 6

In of the code base, the LP tokens of the first user depositing into a root vault are always send
to addr ess(0) , practically burning them.

7.9 Locked Token or ETH
(D) (Version 1

ERC20 tokens could be accidentally/intentionally sent to any contract. In such cases the tokens will be
locked. Only ext er nal Cal | for intergration vaults offers some functionality to recover funds.

7.10 No Checks for Address t o on ERC20Token
Transfer

(D) (Version 1)

The functions t r ansf er and t r ansf er Fr omin ERC20Token do not perform any sanity check for the
address t 0, hence making it possible to burn tokens by sending them to address 0x0.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 57

https://chainsecurity.com

7.11 Non Canonical Signatures

(D) (Version 4

The function I ntegrationVaul t.isValidSignature uses the library function
ConmonlLi brary. recover Si gner to validate signatures if the strategy is an externally owned account.
Note that, the function r ecover Si gner does not perform any sanity check on values r, s and v to
ensure that only unique signatures validate successfully. Therefore, callers of this function should be
aware of possible attacks (https://swcregistry.io/docs/SWC-117).

7.12 Non-indexed Event Topics
(D) (Version 1

Some events have already hit the limit of three indexed topics. But the events in
Uni t Pri cesGover nance have not and do not index the token address. Given that the unit price update
could be important to users, making the token address i ndexed, makes it easier to filter the events for
specific tokens.

There are some other events like Depl oyedVaul t in Vaul t Gover nance, Recl ai nifokens and Pul |
in I ntegrationVaul t and Rebal ancedUni V3 in LSt r at egy where one more index could be set.
Additionally, some events could emit the nft which might be worth indexing (it e.g., is done in
Set St r at egyPar ans). This is just noted and up to Mellow Finance to decide.

7.13 OracleParams in MStrategy
(D) (Version 5

Te admin of Mst r at egy should carefully set the Or acl ePar ans. The admin should ensure that the
Uniswap used for the oracle has enough observations to cover or acl eQobser vat i onDel t a, otherwise
the function _get Aver ageTi ckChecked called in _r ebal anceTokens will only use the spot price,
hence making the rebalance function vulnerable to sandwich attacks. Additionally, the parameter
maxTi ckDevi at i on should be carefully chosen to enforce proper slippage protection for the rebalance.

7.14 Performance Fee Capped
(D) (Version 5

ERC20Root Vaul t . _char gePer f or manceFees only charges performance fees for the strategy if the
price of LP tokens has reached a new high score. When prices have fallen, the fees are still not charged
even when prices climb again until this all-time high has been reached again.

Additionally, if all liquidity providers withdraw their funds and the t ot al Suppl y is zero, or all token TVLs
are less than _pul | Exi stenti al s, the previous high score | pPri ceH ghWat er Mar kD18 is not
reset, hence performance fees might not be collected as expected.

7.15 Rebalance of Uniswap Vaults in LStrategy
(D) (Version 4

The function r ebal anceUni V3Vaul t s maintains a ratio of tokens in the two Uniswap positions
depending on the move of the current price. If the price goes up, more tokens are transferred into the
upper Vaul t from the | ower Vaul t, and vice-versa. The function is designed in a way that it tries to add

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 58

https://swcregistry.io/docs/SWC-117
https://chainsecurity.com

the same liquidity amount into the destination vault that is removed from the other vault. However, since
the two vaults operate in different price ranges, the same liquidity amount translates into different token
amounts. The token in the cash position (erc20Vaul t) are used to cover for the difference.
Consequently the ratio between the cash position (er c20Vaul t) and the money vaults (I ower Vaul t
and upper Vaul t) is affected.

7.16 Rollback Individual Validators Not Possible
(D) (Version 1

Pr ot ocol Gover nance implements a function to rollback all staged validators, but there is no
functionality to rollback individual staged validators.

7.17 Special Behavior in ERC20Token
(D) (Version 1

The function t r ansf er Fr omhas a special behavior when al | owance==t ype(ui nt 256) . max, as the
allowance is never reduced when these transfers occur. This special behavior should be properly
documented as users should be aware of it.

/.18 Trust Setup
(D) (Version 1)

The system has multiple trusted roles and heavily relies on admin operations to work. E.g., setting
oracles and the admin needs to maintain enough funds to open new Uniswap positions.

7.19 Uneven Gas Distribution on deposit and
W t hdr aw

(D) (Version 1)

Fees are not calculated on every transaction. Therefore, some users are burdened with more gas costs
than others depending on the time they are performing their wi t hdr awand deposi t actions.

7.20 Unit Prices Amounts

(D) (Version 5

The admin in Uni t Pri cesGover nance can set the amounts of a given token that match the value of 1
USD. The prices are set with a delay of 14 days, hence the prices are not supposed to reflect the market
price. Note that, for valuable tokens with few decimals, it might be impossible to store the correct token
amount that matches 1 USD.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 59

https://chainsecurity.com

7.21 Unnecessary Creation of Pai r

(D) (Version 1)

In Uni V3Vaul t. _push and Uni V3Vaul t. _pul | Uni V3Nft, a Pair is created and not used as a
Pai r afterwards. Instead, the particular values are extracted from the Pai r , rendering the creation of the
Pai r useless.

7.22 Contract Regi stry Functions Truncate
name

(D) (Version 1)

Functions ver si ons, ver si onAddress and | at est Ver si on in Cont ract Regi stry truncate the
input parameter nanme_ to 32 bytes:

byt es32 nane byt es32(byt es(nane_));

If these functions are called with nanme_ longer than 32 bytes, the return value would be based on the
truncated input parameter nane_, which is inconsistent behavior.

Furthermore, the function | at est Ver si on parses the input parameter name_ differently from other
functions:

byt es32 nane byt es32(abi . encodePacked(nanme_)) ;

7.23 LStrategy Needs Tokens to Create Uniswap
Positions

The function _ni nt NewNf t assumes that the strategy contract has enough balance to open new
Uniswap positions as needed, otherwise new Uniswap NFTs cannot be minted:

| ERC20(t okens|[0]) . saf eAppr ove(address(posi ti onManager), ni nTokenOFor Qpeni ng) ;
| ERC20(t okens[1]) . saf eApprove(address(positionManager), m nTokenlFor Qpeni ng);
(newNft, , ,) posi ti onManager. m nt (
I Nonf ungi bl ePosi ti onManager . M nt Par ans({

t okenO: tokens[O0],

tokenl: tokens[1],

fee: pool Fee,

ti ckLower: | owerTi ck,

ti ckUpper: upperTick,

amount ODesi red: m nTokenOFor Openi ng,

anmount 1Desi red: m nTokenlFor Openi ng,

amount OM n: 0,

amount 1M n: 0,

reci pient: address(this),

deadl i ne: deadline

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 60

https://chainsecurity.com

Mellow Finance is aware of this requirement and states they will take care that enough funds are
available at any point in time. Additionally, a check was added to ensure that the amount of token needed
in the contract is very low (less than 10**9) to mitigate that money is lost because of the deactivated
slippage protection in the function above.

7.24 _pul | Exi stenti al s Are Unevenly
Distributed in Terms of Value

(D) (Version 1)

_pul I Exi stential s in Aggregat eVault are set to 10**(t oken. decimals() / 2) for each
token. This is an uneven distribution considering that tokens may have different value. The existential for
USDT for example has a much lower value than the existential for WBTC.

7.25 addressesByPer m ssi on Does Not
Consider Forced Permissions

(D) (Version 1)

The function addr essesByPer m ssi on in the protocol governance contract returns only addresses
that explicity have the perm ssionld in the mapping perm ssi onMasks. However, if the
perm ssionld is enforced by forceAl | omvask, then all addresses are assumed to have the
permission.

@ Mellow Finance - Mellow Vaults - ChainSecurity - © Decentralized Security AG 61

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope
	2.1.2 Excluded from this report

	2.2 System Overview
	2.3 Strategies
	2.3.1 MStrategy
	2.3.2 LStrategy
	2.3.3 Tokens

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Inconsistent Decimals of LP Token
	5.2 Performance Fee in Specific Setups
	5.3 Possible Optimization in AggregateVault
	5.4 Possible Optimization on Deposits and Withdrawals
	5.5 Redundant Calculation of LP Amounts
	5.6 Broad Access Control for Functions
	5.7 Redundant Check for baseSupply
	5.8 Redundant Check for deltaSupply
	5.9 Redundant Checks on Push Function
	5.10 State Updates After Reentrancy Possibility
	5.11 Missing Slippage Protection in _mintNewNft
	5.12 UniV3Vault Pulls More Tokens Than Requested

	6 Resolved Findings
	6.1 Mismatch of Specification With Uniswap V3 Oracle
	6.2 Chainlink Oracle Returns Empty Prices
	6.3 Incorrect LP Token Calculation in ERC20RootVault
	6.4 Missing Access Control in UniV3Oracle
	6.5 UniV3Oracle Returns Reverse Prices for Token Pairs
	6.6 Incorrect TVL Conversion
	6.7 Adding up Total Value Locked on Different Tokens
	6.8 Calling _liquidityDelta Incorrectly
	6.9 Calling _liquidityDelta With Incorrect Inputs
	6.10 Incorrect Observation Index in _getAverageTick
	6.11 Incorrect Parameters on externalCall
	6.12 Insufficient Testing
	6.13 Opposite Vaults Are Swapped
	6.14 Possibility to Exit Positions of Any Address
	6.15 Possible DOS From First Depositor
	6.16 Setting Wrong State Variable
	6.17 Wrong Formula in _rebalanceUniV3Liquidity
	6.18 Wrong TVL Calculation in ERC20RootVault
	6.19 liquidity Gets Overwritten in the Loop
	6.20 Wrong State Variable Updated
	6.21 Inconsistent Access Control for Rebalance in LStrategy
	6.22 Inconsistent Sanity Check on First Deposit's Amounts
	6.23 Safety Level of Returned Prices Can Silently Downgrade
	6.24 Unfair Distribution of LP Shares in ERC20RootVault
	6.25 Conflicting Specifications for MStrategy
	6.26 Implementation Differs From Specification on _targetTokenRatioD
	6.27 Incorrect Access of Addresses in EnumerableSet
	6.28 Missing Checks for Dust Amounts When Rebalancing Pools
	6.29 Missing Delay Restriction in BaseValidator
	6.30 Missing Sanity Checks in signOrder
	6.31 No Slippage Protection in Multiple Contracts
	6.32 Possible Underflow in UniV3Oracle.price
	6.33 Rebalance in LStrategy Can Leave Tokens in the Vault to Be Closed
	6.34 Subvault Tokens Are Not Checked in AggregateVault
	6.35 Transferring Tokens Only to lowerVault
	6.36 Use of Libraries
	6.37 Missing Sanity Checks for intervalWidthInTicks
	6.38 Possible Attack by First Depositor
	6.39 Possible Optimization on _chargePerformanceFees
	6.40 Possible Violation of the Minimum Token Amounts After the First Deposit
	6.41 Misleading Function Name and Natspec
	6.42 Mismatch of Specifications for StrategyParams
	6.43 Missing Sanity Check for maxSlippageD in MStrategy
	6.44 Missing Sanity Checks for oracleSafetyMask
	6.45 Possible Struct Optimization in Strategies
	6.46 Redundant Comparisons
	6.47 Redundant Storage Read in ERC20Vault._pull
	6.48 Variables Can Be Declared as Constant
	6.49 Incorrect Specification for reclaimTokens
	6.50 Missing Natspec Description for minDeviation
	6.51 Casting of maxTickDeviation
	6.52 Check Requirements First
	6.53 Duplicate Code _permissionIdsToMask
	6.54 Duplicate Storage Read in Deposit
	6.55 Inconsistent Specifications
	6.56 Inefficient Array Shrinking
	6.57 Inefficient State Variable Packing
	6.58 Misleading Naming of Variables in UniV3Oracle
	6.59 Missing Sanity Check in MStrategy.createStrategy
	6.60 Missing Sanity Checks for Params
	6.61 Misspelled Variable Names
	6.62 Possible Struct Optimization
	6.63 Rebalance in MStrategy Is Inconsistent
	6.64 Specification for minDeviation Not Enforced
	6.65 Storing Redundant Data in Storage
	6.66 Unnecessary Approval to Vault Registry
	6.67 Unused Constant in ERC20Validator
	6.68 Unused Event DeployedVault
	6.69 Unused Function LStrategy._priceX96FromTick
	6.70 Unused Imports
	6.71 Wrong Check of Minimum Token Amounts in ERC20RootVault.withdraw
	6.72 Wrong Specification for YearnVault.tvl
	6.73 ContractRegistry DOS
	6.74 ERC20Vault._pull Forces Push of Wrong Amount of Tokens
	6.75 IntegrationVault._root Does Not Check the NFT of the Root Vault
	6.76 VaultGovernance.commitInternalParams Does Not Delete Staged Parameters
	6.77 registry.ownerOf Is Called Twice in IntegrationVault.pull

	7 Notes
	7.1 Approximated TVL for Aave Vaults
	7.2 Balances Are Drained Faster in Vaults With Lower Index
	7.3 Deposits Can Be Blocked by Updating StrategyParams
	7.4 Deprecated Function _setupRole
	7.5 Duplicate Declaration of DENOMINATOR
	7.6 Dust LP Shares Are Burned
	7.7 External Functions in ContractMeta
	7.8 LP Tokens of the First Deposit Are Burned
	7.9 Locked Token or ETH
	7.10 No Checks for Address to on ERC20Token Transfer
	7.11 Non Canonical Signatures
	7.12 Non-indexed Event Topics
	7.13 OracleParams in MStrategy
	7.14 Performance Fee Capped
	7.15 Rebalance of Uniswap Vaults in LStrategy
	7.16 Rollback Individual Validators Not Possible
	7.17 Special Behavior in ERC20Token
	7.18 Trust Setup
	7.19 Uneven Gas Distribution on deposit and withdraw
	7.20 Unit Prices Amounts
	7.21 Unnecessary Creation of Pair
	7.22 ContractRegistry Functions Truncate name
	7.23 LStrategy Needs Tokens to Create Uniswap Positions
	7.24 _pullExistentials Are Unevenly Distributed in Terms of Value
	7.25 addressesByPermission Does Not Consider Forced Permissions

