

PUBLIC

Code Assessment

of the StarkNet-DAI-Bridge

Smart Contracts

March 29, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of StarkNet-DAI-Bridge
according to Scope to support you in forming an opinion on their security risks.

MakerDAO implements a layer 2 DAI contract for StarkNet, a ZK-Rollup for Ethereum, and DAI bridging
contracts from the layer 1 to layer 2. That also includes contracts for sending governance spells from
layer 1 to layer 2.

The most critical subjects covered in our audit are the functional correctness and security of the DAI
bridging mechanism, the functional correctness of the L2-DAI ERC-20 contract, the protection against
censorship, and the functional correctness of relaying governance spells.

The documentation of the project contains a risk section discussing potential threats which helps the
overall security of the project.

The security and the functional correctness of the reviewed version of the smart contracts is high, all
critical and high severity issues uncovered in previous iterations of the review have been fixed.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project. Furthermore, due to the
experimental nature of the L2 solution some risks remain.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 5

• Code Corrected 5

Low -Severity Findings 5

• Code Corrected 5

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the StarkNet-DAI-Bridge repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V
Date Commit Hash Note

1
22 November
2021

ba740acd782c18650ad0c70d623ba3b03087d4
9e

Initial Version

2
2 December
2021

14c52313b10e8006e66835690ed5eb6546be2
b5a

After Intermediate Report

3
6 December
2021

bdea59fd2d273bf7a91f3dc5f745ba2a6656080
5

Final Version

4
16 March 2022 b367d6adf659bcaa550b794b9f8de3ea8cd14f4

c
Updated Version

5
28 March 2022 9939066ed9e146a1bcf1ef859e07673bec83656

8
Final Version

Version 4

For the solidity smart contracts, the compiler version 0.7.6 was chosen. For the cairo smart contracts,
the compiler version 0.6.0 was chosen. The updated code of uses compiler version 0.8.0 for
the cairo smart contracts.

2.1.1 Excluded from scope
The contracts l1/mocks.sol, l2/account.cairo and l2/registry.cairo are not part of this
review. For the purpose of this audit, the StarkNet bridge and the corresponding contracts are assumed
to work correctly. They are not part of this review. For the cairo contracts, the focus was on the source
code files inside the repository. The imported functionality from starkware.starknet.common.*,
starkware.cairo.common.* as well as the built-ins have not been reviewed in depth, generally these
are assumed to work as described.

StarkNet Alpha has been released recently and has not been audited yet. StarkWare states that
changes, fixes and improvements are to be expected. The main part of this review took place at the end
of November 2021, an updated version was reviewed in March 2022. This review cannot account for
future changes and possible bugs in StarkNet. Amongst others, most notably at the time of main audit the
fee model was not yet specified.

2.2 System Overview
The set of Solidity and Cairo contracts implement a bridge for DAI from Ethereum on layer 1 to the
StarkNet layer 2 solution and vice versa. It follows the concept of other similar DAI bridges from L1 to
other L2 solutions.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Following contracts are deployed:

• On L1:

• L1DAIBridge

• L1Escrow

• L1GovernanceRelay

• On L2:

• dai

• l2_dai_bridge

• l2_governance_relay

Version 1This system overview describes the initially received version () of the contracts as defined in the
Assessment Overview.

2.2.1 L2 DAI
On the L2 side, a DAI contract with functionality similar to an ERC20 token is deployed. All default
ERC20 functionality such as transfer, transferFrom, approve, allowance, balanceOf and
totalSupply are implemented. Note as events do not exist on StarkNet, the token contract does not
emit any of the default ERC20 events. Additionally the DAI contract implements mint which is used by
the token bridge to mint tokens after a deposit from L1. The burn function which can be used by anyone
to burn his tokens is used by the bridge contract during withdrawal of DAI from L2 back to L1. In order to
mitigate the approval problem of the default ERC20 approve function, the contract implements
increase_allowance() and decrease_allowance(). Finally, a magic number used as amount
during approval works as truly unlimited approval, for callers with this magic number as approved amount
the approved amount is not reduced.

On StarkNet transactions sent into the network do not have a defined sender. External parties sending
transactions into the network cannot be identified by an address. Hence in order to hold tokens on
StarkNet, each user must deploy a contract which has a unique address. Such an address can then be
used in the token contract to hold a balance and/or a privileged role.

2.2.2 Bridge
The L1DAIBridge contract implements all logic to deposit and withdraw DAI to and from L2. The
deposited DAI are held by the L1Escrow contract. This separation of the funds from the logic makes the
system upgradable: the L1DAIBridge logic contract can be replaced independently of the Escrow holding
the DAI.

Similarly, the l2_dai_bridge contract implements the logic for handling deposits and withdrawals. Note
that on L2 the bridge can mint and burn DAI and no escrow is needed on L2. Also, the bridge on L2 can
be upgraded through a governance spell through the l2_governance_relay contract that could remove
the bridge's minting and burning rights and assign them to a new bridge.

The bridge may be paused independently on L1 and L2. Once a bridge contract is paused, it cannot be
unpaused. Pausing the L1 bridge contract means deposits from L1 are no longer possible. Pausing the
L2 bridge contract prevents new withdrawals from being initiated. Finalizing withdrawals on L1 that have
been initiated before the L2Bridge contract was paused remains possible even when the L1 bridge
contract is paused. Similarly, even when the L2 bridge contract is paused, deposit requests from L1 can
still be finalized. The forced withdrawal functionality works when the L1 bridge is not paused and is
independent of the pause state of the L2 bridge.

Furthermore, the contract features a ceiling limiting the total amount of DAI that can be deposited using
this bridge. That is a protection to limit the impact of a potential bug on the core Maker system. The
ceiling may be changed while the system is live.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Depositing DAI from L1 works as follows:

1. First the user approves the L1DAIBridge contract to transfer the amount of DAI.

2. Next the user calls L1DAIBridge.deposit() passing the amount, the source of the funds and the
destination address for the DAI on L2.

3. After a period of blocks the StarkNet bridge automatically process the transaction on L2 and mints
the DAI for the specified address

Withdrawing DAI from L2 works as follows:

1. The user executes withdraw() on the l2_Dai_bridge contract. He specifies the amount and the
L1 address that will be able to claim the funds on L1.

2. After a period of time the StarkNet bridge has made the message available for consumption on L1.
Now the specified caller can call L1DAIBridge.finalizeWithdrawal() using the correct
parameters and the destination where the DAIs should be transferred to.

A user may have multiple unconsumed withdrawals pending at the same time.

2.2.3 Governance Relay
The governance relay contract on L2 is a ward, a privileged account, in all L2 contracts of the system.
The MakerDAO governance on L1 can decide to execute any action on L2 using this contract.
Technically this works as follows: A new contract is deployed on L2 featuring code to execute. On L1 the
governance decides to execute this action and the call is relayed via the L1GovernanceRelay contract.
On L2 this triggers the execution of the specified contract's code as delegatecall in the contract of the
l2_governance_relay contract.

2.2.4 ForceWithdrawal
Currently StarkNet is centralized. Transactions on L2 are executed by a so called sequencer, which may
censor transactions on L2 or could become unavailable for other reasons. This may block users from
transferring DAI on L2 or initiating withdrawal of the DAI to L1. The L1DAIBridge contract features a
forceWithdrawal function. This function documents the withdrawal attempt on L1 and attempts to
force withdraw the DAI from L2. The sequencer may or may not execute this operation on L2. It's
important to understand that the prover cannot prove a failed execution. This means reverting
transactions are indistinguishable from censored messages. Hence finalize_force_withdrawal
must prevent all possible reverts e.g. due to insufficient balance/allowance and ensure the transaction
terminates gracefully so it can be executed and proven. Either the withdrawal is executed or the failed
attempt is visible on L1 which would document such a behavior of the sequencer and allow the DAO
Governance to shut down the bridge and release the DAI of the users.

The process of the force withdrawal may be described as follows:

1. User initiates a force withdrawal on L1.

2. A message to L1 is sent. The proof of sending the message is set in the StarkNet L1 contract.

3. On proven consumption of the L1 message on L2, the message sent from L1 is marked as
consumed.

4. L2 sends a withdrawing message to L1.

5. User can withdraw his funds.

Note that failed consumption of a message can be monitored by the value set in 2. Disallowing any
reverts in the l1_handler in the L2 bridge contract allows for a distinguishment of censorship / system
failure and failed messages.

On L2, a registry contract exists which allows user on L2 to specify their address on L1 for the forced
withdrawal functionality. For the forced withdrawal to work successfully on L2 the user must have this
address set as this is used for access control.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Furthermore, should the MakerDAO governance assisted evacuation procedure be initiated as the Layer
2 solution starts censoring or becomes unavailable this registry is used to match L2 to L1 addresses
during reimbursement. Ideally, users register their L1 address before receiving DAI on L2.

2.3 Trust Model & Roles
We assume the deployment and initialization (e.g. of the ward roles in order for the L1DAIBridge to be
able to transfer DAI from the Escrow during withdrawal, for the l2_dai_bridge to be able to mint DAI on L2
or the GovernanceRelay) to be done correctly before the bridge becomes operational.

• User: Users are fully untrusted.

• Wards: Accounts holding the ward role in a contract of the maker system have access to all
privileges functionality of this contract. As required the other contracts of the system and the Maker
governance have the ward role in the contracts. These parties are assumed to act honestly and
correctly at all times.

• StarkWare: Partially trusted. Operates the bridge from L1 to L2, executes the L2 transactions.
Generally trusted to work without censorship, however, the smart contract implements a fallback
should the party censor transactions on L2 or become unavailable

• Registry: Trusted external contract. Note that the force withdraw mechanism relies on the security
and correctness of this contract.

2.4 Changes in version 4
As the cutting edge Starknet environment is rapidly developing and new language features have been
added to cairo, the code of the Starknet DAI bridge had to be updated accordingly.

Based on new language features / changes in Starknet the following functionality has been added:

• Pending deposits can now be cancelled. This is based on the new L1->L2 message cancellation
mechanism Starknet introduced, and is only intended to be used to recover stuck messages. The
function L1DAIBridge.startDepositCancellation() is used to initiate the cancellation, after
a time delay L1DAIBridge.cancelDeposit() can be executed to finalize the cancellation of the
cross-chain message.

• Events are now emitted by the cairo contracts.

• Code clean up, error messages in the cairo contracts.

In addition, the following functional changes have been made:

• A maximum deposit amount can be set by the governance.

• Contract L1EscrowMom allows revoking token approval given by the escrow immediately without
governance delay.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedUnprotected Escrow Funds

High -Severity Findings 1

• Code CorrectedL2 DAI Allows Stealing

Medium -Severity Findings 5

• Code CorrectedFrontrun cancelDeposit()

• Code Corrected Specification ChangedForceWithdrawal Needs Prior Approval

• Code CorrectedL2 Address Sanity Checks

• Code CorrectedRelay Parameter Mismatch

• Code CorrectedUnlimited Approvals and the Range of Uint256

Low -Severity Findings 5

• Code CorrectedERC-20 Functions Have No Return Values

• Code CorrectedInconsistent Version Pragma

• Code CorrectedInefficiency in Reading Allowances

• Code CorrectedLack of L1-address Sanity Checks on L2

• Code CorrectedUnused Code

6.1 Unprotected Escrow Funds
Security Critical Version 1 Code Corrected

L1DAIBridge.deposit() transfers DAI from a user-specified address from to the L1Escrow contract
to lock DAI on layer one. However, a malicious user could specify from to be the L1Escrow contract
that holds all of the locked funds. The call to DAI.transferFrom() will succeed since the escrow must
have had approved the bridge contract. Ultimately, unbacked DAI could be minted on L2 and funds from
the escrow could be stolen.

Consider the following scenario:

1. User calls deposit() with from being the escrow contract.

2. The self-transfer from and to escrow succeeds as long as
amount <= allowance[escrow][bridge].

3. The ceiling check passes as long as balanceOf(escrow) <= ceiling since the balance does
not change.

4. Ultimately, a message to L2 is sent and unbacked DAI on L2 is minted.

5. Repeat the process.

6. Withdraw DAI from L2 to L1, such that the escrow is emptied.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

The README.md file in the repository states:

Initial configuration

 ... Unlimited allowance on `L1Escrow` should be given to `L1DAIBridge`.

Hence an attacker may drain all DAI out of the escrow.

Furthermore, e.g. by frontrunning a deposit transaction or exploiting an unlimited approval given by the
user to the bridge it is possible to steal L1 DAI from users. Consider the following scenario:

1. User A intends to deposit DAI to L2 and approves the bridge contract. He either gives an exact
approval for the amount he wants to deposit or may give an unlimited approval as he trusts the
bridge contract and intends to use it in the future. Next he crafts a transaction to deposit.

2. User B calls deposit() and specifies the from address to be user A. The call succeeds and B
receives funds on L2. Note that the DAI locked on L1 are from user A. This transaction frontruns the
deposit call coming from user A.

3. User A's deposit is executed but fails due to lack of allowance.

Note that although they are known to be potentially dangerous it is quiet common that users give infinite
approval to such systems they trust and intend to interact with frequently.

Code corrected:

The from parameter has been removed from function deposit. The DAI amount is now transferred
from msg.sender to the escrow. Hence the issue described above no longer exists.

6.2 L2 DAI Allows Stealing
Security High Version 1 Code Corrected

The transfer function of the L2 DAI contract allows stealing tokens from other users. The attack works
as follows:

1. Within the amount field of the transfer function the user specifies an invalid Uint256. Note that
uint256_check is never called. To steal i token wei, the attacker specifies P-i to be
amount.low and 0 to be amount.high. The low amount could be interpreted as the negative
number -i.

2. The uint256_le(amount, sender_balance) check will be passed as it will ultimately
compute the following:

1 - is_nn(amount.low - (sender_balance.low+1))

If for example the sender's (attacker's balance) is 0, that check will pass.

3. The uint256_sub(sender_balance, amount) computation will result in an increased
sender_balance due to the specially crafted amount.

4. The uint256_add(recipient_balance, amount) computation will result in a decreased
recipient_balance due to the specially crafted amount.

Note that the decrease of the recipient_balance is also the increase of the sender_balance. In
other words, the sender gains as many tokens as the recipient loses. Or more concisely, the sender can
steal all of the tokens of the receiver. So, if i==1 then one token wei is stolen. If i==2 then two wei are
stolen.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The only precondition for the attack is that the uint256_le(amount, sender_balance) can be
passed for manipulated amount values. Note that the current hints prevent a proof generation for this
attack in uint256_add, but hints can freely be changed and the verifier will accept it.

Code corrected:

amount is now validated in the internal function _transfer. Thus, neither transfer() nor
transfer_from can perform computations with invalid integers. Ultimately, the Uint256 library
functions receive the expected inputs and, thus, perform the documented computations.

6.3 Frontrun cancelDeposit()
Security Medium Version 4 Code Corrected

After L1->L2 message cancellation has been initiated using
L1DAIBridge.startDepositCancellation() and the time delay has passed,
L1DAIBridge.cancelDeposit() can be used to complete the cancellation and retrieve the DAI.

The caller of the function must provide the details to retrieve the message (the amount, the l2Recipient
and the nonce) and as parameter l1Recipient any address to receive the funds on L1.

There is no access control, the first caller can retrieve the DAI to any address.

Code corrected:

msg.sender is now included in payload of deposit(), startDepositCancellation() and
cancelDeposit(). Hence, a successful cancellation requires that the same msg.sender in all three
calls of the process. Otherwise, the payload would be different.

payload[3] = uint256(uint160(msg.sender));
StarkNetLike(starkNet).cancelL1ToL2Message(l2DaiBridge, DEPOSIT, payload, nonce);

6.4 ForceWithdrawal Needs Prior Approval
Correctness Medium Version 1 Code Corrected Specification Changed

In the case that a user believes they are censored, the user can initiate the withdrawal using the
forceWithdraw function of the L1DAIBridge. When the L2 network works as expected, the withdrawal
request is handled.

This however has some prerequisites:

1. The user needs to have registered his L1 address in the L2 registry prior to initiating
forceWithdraw(). Note that this may no longer be possible when the L2 network is censoring
transactions hence this should be done by the users before receiving DAI on L2.

2. The execution of finalize_force_withdrawal on L2 in case the Layer2 network complies
requires that the user has previously given allowance to the l2_dai_bridge. Again, giving the
approval at this point in time may no longer be possible in case the L2 network censors
transactions.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

check allowance
let (contract_address) = get_contract_address()
let (allowance : Uint256) = IDAI.allowance(dai, source, contract_address)
let (allowance_check) = uint256_le(amount, allowance)
if allowance_check == 0:
 return ()
end

This requirement is not documented and may come as a surprise for the user. Note that for normal
withdrawals from L2 using withdraw no such allowance is needed. Furthermore without the check in
finalize_force_withdrawal the withdrawal / burning of the DAI would work as the
l2_dai_bridge is a ward in the DAI contract and has the privilege to burn the DAI of any address
without the need for an approval.

The case that the L2 network may only censors transactions other than forced withdrawals (in order to
avoid detection of the misbehavior) and its implication must be considered.

Overall the ForcedWithdrawal process and it's restrictions is not documented enough.

Code corrected and specification changed:

Issue 1) was addressed by improving the documentation. The documentation now clearly states what
actions are required before a forced withdrawal can be executed. The enhanced documentation also
resolves 2), note that in the updated code a ward of the DAI contract no longer has the privilege to burn
DAI and hence the approval is needed. It's important to understand why
finalize_force_withdrawal must check whether the approval exists: Burning without the
allowance would result in the transaction to revert. The prover can't prove failed executions, reverts are
indistinguishable from censored messages. By checking the allowance and gracefully terminate the
transaction when no sufficient allowance exist, the transaction can be executed. Hence the message
from L1 can be processed which allows to clear the message in the StarkNet contract on Ethereum. This
proves that the transaction must have been executed on L2.

6.5 L2 Address Sanity Checks
Design Medium Version 1 Code Corrected

In StarkNet users do not have addresses. Transactions sent to the network have the 0 address as caller.
In order to identify accounts via addresses, each user deploys his account contract and interacts with
contracts such as the DAI token using his account-contract.

• The deposit() function of the L1DAIBridge contract allows users to deposit with the to address
set to 0. The execution of finalize_deposit initiated by the l1_handler on l2 however will fail as
minting DAI for the zero address will revert. As a result the deposited DAIs on L1 will be locked in
the escrow.

Furthermore, note that to will be received as a felt on L2. Hence, the true to address on L2 will be
to % R. Therefore, it could be possible to for example specify address R on L1 which will map to
zero-address (similarly R+1 will map to address 1). Users could be protected from errors by restricting the
allowed address range on L1.

• L2 DAI allows to give approvals specifying the 0 address as caller. All holders of L2 DAI must be
aware that this is very dangerous and means that anyone crafting an external transaction to the
network can transfer their DAI using this approval.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

• A user could specify the l2_dai contract as the recipient of the funds on deposit. Since the L1 call
would succeed while the L2 call to the l1_handler would fail, the cross-layer message would remain
unconsumed.

Code corrected:

The code does the following checks now on L1:

• to != 0 to ensure that the address is non-zero.

• to != l2Dai to prevent a failing mint.

• to < SN_PRIME to prevent a possible StarkNet overflow.

• All functions related to approvals in the l2 DAI contract now forbid approving the zero-address.

6.6 Relay Parameter Mismatch
Correctness Medium Version 1 Code Corrected

The L1GovernanceRelay is used to send messages to the L2 GovernanceRelay to execute spells.
However, the parameters sent by the L1 contract and the parameters the L2 contract receives do not
match. Ultimately, governance spells cannot be relayed to L2.

More specifically, the L1GovernanceRelay sends a message to L2 as follows:

uint256[] memory payload = new uint256[](2);
payload[0] = to;
payload[1] = selector;

StarkNetLike(starkNet).sendMessageToL2(l2GovernanceRelay, RELAY_SELECTOR, payload);

However, the L2 side of the governance relay consumes the message as follows:

@l1_handler
func relay{
 syscall_ptr : felt*,
 pedersen_ptr : HashBuiltin*,
 range_check_ptr
 }(
 from_address : felt,
 target : felt
):
 let (l1_governance_relay) = _l1_governance_relay.read()
 assert l1_governance_relay = from_address
 let (calldata : felt*) = alloc()
 delegate_call(target, EXECUTE_SELECTOR, 0, calldata)

 return ()
 end

The arguments of the L1 handler should consist of the from_address and payload. However, the
payload created on L1 has two elements. That ultimately lets the execution of a governance spell fail.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Code corrected:

The unused selector was removed from the payload, the payload now contains the spell only.

6.7 Unlimited Approvals and the Range of Uint256
Design Medium Version 1 Code Corrected

DAI on L1 supports unlimited approvals using uint256(-1) as magic value. When an approval for this
magic value is given, the spender can spend the funds of the token holder without the allowance being
reduced.

Similarly the DAI contract in cairo supports an unlimited approval using a different magic number. As
Uint256 work differently in cairo, it's possible to define a magic value outside the actual range of Uint256.
In cairo, a Uint256 is represented by a struct containing two felt members:

struct Uint256:
 # The low 128 bits of the value.
 member low : felt
 # The high 128 bits of the value.
 member high : felt
end

However note that a felt can store more than 128 bits, so a Uint256 represented by such a struct may
contain a value exceeding the max uint256 value.

The code of the DAI cairo contract, however, takes advantage of this special property of the Uint256 type
and defines the magic number for the unlimited approval as:

const MAX_SPLIT = 2**128
let MAX = Uint256(low=MAX_SPLIT, high=MAX_SPLIT)

Note that the common library for Uint256 offers a function uint256_check which checks if the given
Uint256 is actually valid. The code of the DAI cairo contract uses this function to check whether amounts
regarding balances are valid. In contrast, the code is generally not using uint256_check() when
handling or checking approvals. That results in following potentially intended and/or strange behaviour:

• Function approve can be used to give allowance for a valid amount, the magic number or an invalid
uint256 value.

• Function increase_allowance does not work on such allowances due to the carry over.
However, increasing with bad input values could decrease the allowance (in a similar fashion as
described in L2 DAI allows stealing).

• Function decrease_allowance works. However, note that decreasing to the magic number
results in unlimited approval so that allowance has been increased instead of decreased.

Concluding, the selection of the magic value outside the valid range for Uint256 could lead to unexpected
and undocumented behaviour due to an implied lack of Uint256 validity checks. Furthermore, the
deviation from L1-DAI's magic value may confuse users.

Code corrected:

MAX_SPLIT has been renamed to ALL_ONES and redefined to 2**128-1. Also, uint256_check() is
called now in the functions approve, increase_allowance and decrease_allowance. Since the
inputs are always validated and allowance cannot be out of the valid Uint256 range, the unintended
behaviour cannot occur anymore.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6.8 ERC-20 Functions Have No Return Values
Design Low Version 1 Code Corrected

EIP-20 specifies that for example transfer has a boolean return value. However, L2 DAI does not
return anything.

Code corrected:

Return values have been implemented for the ERC-20 functions.

6.9 Inconsistent Version Pragma
Design Low Version 1 Code Corrected

Different to the L1Escrow contract, the L1DAIBridge and the L1GovernanceRelay contract feature
following version pragma:

This allows the contracts to be compiled with any Solidity version >= 0.7.6 including more recent major
version which may feature changes in the syntax.

The Solidity documentation states:

Source files can (and should) be annotated with a version pragma to reject
compilation with future compiler versions that might introduce incompatible changes.

For more information, please refer to:
https://docs.soliditylang.org/en/develop/layout-of-source-files.html#version-pragma

Code corrected:

The pragmas have been changed to:

pragma solidity ^0.7.6;

6.10 Inefficiency in Reading Allowances
Design Low Version 1 Code Corrected

In function burn of the DAI cairo contract the allowance is always read. However, it is only used if
check_allowances == 1 is true. Thus, the efficiency of the functionality could be improved.
Similarly, that is the case for transferFrom().

Code corrected:

In the updated code wards no longer have special privileges in dai.burn(). Due to the changed code,
the issue described above no longer applies.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 18

https://eips.ethereum.org/EIPS/eip-20
https://docs.soliditylang.org/en/develop/layout-of-source-files.html#version-pragma
https://chainsecurity.com

6.11 Lack of L1-address Sanity Checks on L2
Design Low Version 1 Code Corrected

L1 addresses on L2 are of felt type. However, that could ultimately lead to bad user-input on L2 when
passing L1 addresses since L1 addresses have 160 bits which is less than the number of bits the felt
type is represented with.

For example, in function withdraw() of the L2 bridge contract a user passes an L1 address as felt
which could to a bad address being passed to L1.

Code corrected:

A check has been added to send_finalize_withdraw() with ensures that the destination is a valid
L1 address. This function is used by both, withdraw and finalize_force_withdrawal.

In the initial round of fixes the assert_l1_address function contained unnecessary declarations of
local syscall_ptr and local pedersen_ptr which now have been removed.

6.12 Unused Code
Design Low Version 1 Code Corrected

The L1DAIBridge contract defines the struct SplitUint256. However, it remains unused.

Code corrected:

The unused struct was removed.

MakerDAO - StarkNet-DAI-Bridge - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 L2 DAI
	2.2.2 Bridge
	2.2.3 Governance Relay
	2.2.4 ForceWithdrawal

	2.3 Trust Model & Roles
	2.4 Changes in version 4

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Unprotected Escrow Funds
	6.2 L2 DAI Allows Stealing
	6.3 Frontrun cancelDeposit()
	6.4 ForceWithdrawal Needs Prior Approval
	6.5 L2 Address Sanity Checks
	6.6 Relay Parameter Mismatch
	6.7 Unlimited Approvals and the Range of Uint256
	6.8 ERC-20 Functions Have No Return Values
	6.9 Inconsistent Version Pragma
	6.10 Inefficiency in Reading Allowances
	6.11 Lack of L1-address Sanity Checks on L2
	6.12 Unused Code

