PUBLIC

Code Assessment

of the SparkLendConduit
Smart Contracts

October 30, 2023

Produced for

(] MAKER

@EHAINSEEURITY

by

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

o O A W N P

Resolved Findings

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG

10
11
13

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of SparkLendConduit according
to Scope to support you in forming an opinion on their security risks.

MakerDAO implements a conduit contract for funnelling sSNST into Spark, an Aave v3 fork.
The most critical subjects covered in our audit are functional correctness and frontrunning resistance.
Functional correctness is high.

While the conduit wi t hdr aw() function can be frontrun, the function is only called by members of the
SubDAO which are able to mitigate the risk, if necessary, by using more private channels for the
inclusion of such transactions into the blockchain.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

-)

¥ Risk Accepted

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the SparkLendConduit repository based
on the documentation files.

All files in the src folder of the spar kl end- condui t s repository are part of the scope of this review.
This includes:

1. src/DailnterestRateStrategy.sol (older versions)
2. src/SparkConduit.sol (SparkLendConduit.sol in newer versions)
3. various interfaces
Additionally, the following files of the er c20- hel per s repository are in scope:
1. src/SafeERC20.sol
The table below indicates the code versions relevant to this report and when they were received.

sparklend-conduits

V | Date Commit Hash Note

1 | 17 September 2023 1085a2363de06347ad77a6051198b2d998bfabcf Initial Version

2 | 9 October 2023 880d64b91c3f073739750d633246765dbe882dch Second Version
3 | 16 October 2023 2d559911963ca6e5fde88c46ff22ec7b2e515ead Third Version

4 | 20 October 2023 729ba8c69e29da75f140flabcaf649972eb47c7e Fourth Version

erc20-helpers

V | Date Commit Hash Note
1 | 27 October 2023 8fe5ef3e85ea9cabbcl19df7f6ae605bc848647¢cc Initial Version

For the solidity smart contracts, the compiler version 0. 8. 20 was chosen.

2.1.1 Excluded from scope

Any other file not explicity mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

MakerDAO offers Spark Conduit, a conduit that AllocatorDAOs can use to supply funds as borrowable
liquidity to the Spark lending platform.

Spark Conduit conforms to the standard Allocator Conduit interface, | Al |l ocat or Conduit of
dss-al | ocat or, allowing integration in the dss- al | ocat or system of SubDAOSs.

Spark Conduit provides a way for AllocatorDAOs to supply pre-approved tokens as liquidity to the Spark
lending protocol. The interest accrued by the supplied tokens is tracked by Spark Conduit, and funds plus
accrued interest can be withdrawn by the lending AllocatorDAOs provided that enough liquidity is
available in Spark. In case an AllocatorDAO which is supplying liquidity wants to withdraw, but no liquidity
is currently available in Spark (due to borrowing), a withdraw request can be initiated which causes an
increase in the interest rate for DAI/NST borrowers, in order to incentivize the repayment of outstanding
debt so that the requesting AllocatorDAO can withdraw its liquidity.

2.2.1 SparkConduit Contract

The SparkConduit contract is a conduit, meaning it implements the | Al | ocat or Condui t interface,
which receives deposits from AllocatorDAOs and invests those deposits as liquidity in the Spark lending
protocol, earning interest from the supplied liquidity.

Only AllocatorDAQOs can access its general functionality, exposed through the functions deposit (),
Wi t hdraw(), request Funds(), w t hdrawAndRequest Funds(), and cancel FundRequest ().
These functions are therefore guarded by the i | kAut h modifier which limits their use to addresses that
have been authorized by the AllocatorDAOs themselves, identified by their i | k code, to interact with
SparkConduit on their behalf.

The contract is deployed behind an upgradeable proxy.

2.2.1.1 deposit()

Deposits are made through the deposi t () function. An ilk, an asset to be deposited and an amount are
specified. The asset needs to be enabled and the ilk (belonging to its respective AllocatorDAO) is
required to not have any active withdrawal requests. The amount of assets is transferred from the ilk's
buffer (obtained through the dss-al | ocat or registry) to the SparkConduit contract, and supplied to
Spark through the suppl y() method of the pool. The accounting of the amount of outstanding deposits
for an ilk and asset is done through the emission of shares, which consist of the deposited amount
divided by the interest accrual index of the Spark pool at the time of the deposit.

2.2.1.2 Wi thdraw()

Withdrawals are attempted through a call to wi t hdraw(), specifying the ilk, asset and maximum
withdrawal amount denominated in that asset. The actual withdrawal is the minimum between the
amount specified as parameter, the accrued balance of the ilk, and the available liquidity in the Spark
reserve. The amount of assets is withdrawn from the Spark pool, and transferred to the ilk's buffer. The
amount to withdraw is also converted to amount of shares, and those are deducted from the ilk's balance
and the total amount for the asset. If the ilk has an outstanding share request amount, it is decreased by
the corresponding shares that have been removed.

2.2.1.3 request Funds()

If no liquidity is available, ilks can still signal their intention to withdraw by starting a fund request. This
process triggers an interest rate increase that incentivizes borrowers to repay their debt.

request Funds() accepts three arguments, the ilk, the asset, and the amount to request. It requires the
current available liquidity of the asset in Spark to be empty (otherwise, regular withdrawals can be made
instead). The amount requested is converted to shares. This is done to ensure that the ilk has enough
shares to cover the request, and the amount is stored in the r equest edShar es mapping. A side-effect
of requested shares is that get | nt er est Dat a(), which is called by DailnterestRateStrategy, returns
values that indicate an unfavorable debt ratio. In this case, interest rates are adapted.

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.1.4 w t hdrawAndRequest Funds()

This method merges the functionality of wi t hdr aw() and r equest Funds() . It accepts as arguments
the ilk, the asset, and the amount, and first withdraws whatever is available from Spark, up to the
requested amount or the balance of the ilk. If the whole amount cannot be withdrawn, the difference
between the requested amount and the withdrawn amount is requested through r equest Funds() .

2.2.1.5 getlnterestData()

This method returns data used by DailnterestRateStrategy to compute the borrow rate for DAI/NST in
Spark. It contains the subsi dyRate - MakerDAO's DAI savings rate - and a baseRat e which
additionally contains a subsi dyRat e that defines interest that is funneled to the MakerDAO. The
current Debt field is populated with the current amount of DAI/NST supplied to the SparkConduit,
including accrued interest, and the t ar get Debt field is the total amount of DAI/NST supplied to the
conduit, minus the amount requested for withdrawals.

2.2.1.6 Administrative functions

The SparkConduit contract can have multiple war ds who are able to perform privileged actions. These
actions consist of:

1.rel y() anewward or deny() an existing one.

. Upgrading the implementation contract.

. Updating the r ol es contract used for ilk authentication with set Rol es() .

. Updating the r egi st ry contract used to query an ilk's buffer with set Regi stry().
. Updating the interest rate subsi dy Spr ead with set Subsi dySpr ead() .

o O~ W N

. Enabling or disabling an asset with set Asset Enabl ed() . Disables assets cannot be deposited,
but they still can be withdrawn.

The main functionality of the contract is permissioned and guarded through the i | kAut h modifier.
i | kAut h queries the rol es contract of dss-al | ocat or, where the administrators of each ilk can
specify which addresses are allowed to call specific functions on specific contracts. Each SubDAO can
choose operators that can call some or all of the functions guarded by i | kAut h.

2.2.2 DailnterestRateStrategy

The new DailnterestRateStrategy is set to replace the currently deployed interest rate strategy for DAI
(as well as for the new NST pool). It queries the Spark conduit for data about base interest rate, current
DAI/NST supply from the AllocatorDAOs and target DAI/NST supply, and outputs the variable borrow
rate and the lending rate through the cal cul at el nt er est Rat es() function. The variable borrow rate
is selected such that it is simply the base rate plus a spread, when the target DAI/NST supply from the
AllocatorDAOSs is equal to the current supply, but it increases up to naxRat e as the ratio of current
supply over target supply becomes greater than 1 (i.e., shares have been requested). This increase in
interest rate incentivizes borrowers to repay their debt so that the supply can ultimately be reduced.

The data to compute rate updates is fetched in the permissionless r econput e() function which should
be called any time the DSR or r equest edShar es change.

The contract doesn't have privileged roles and administrative functions.

2.2.3 Changes in

DailnterestRateStrategy as well as the share request functionality of SparkConduit have been removed
completely. The NST SparkLend pool now runs with a regular interest rate strategy and the sNST token
(instead of the NST token) which tracks the Savings Rate directly.

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.4 Changesin

SparkConduit has been renamed to SparkLendConduit

2.2.5 Trust model and system assumptions

The wards of the contract are expected to act honestly towards depositors, as wards can potentially
misappropriate funds deposited into the contract through contract upgrades or by changing the r ol es
and r egi st ry settings.

Non-standard token implementations are assumed to be not supported. This includes tokens that:
1. Do not have a decimals field or have more than 18 decimals.

. Do not revert and instead rely on a return value.

. Implement fee on transfer.

. Include rebasing logic.

. Implement callbacks/hooks.

o O~ W N

. Revert on O-approval.

7. Transfer different amounts than intended.

SubDAO operators are expected not to inflate the interest rate in order to game the system and damage
the borrowers, by requesting funds and subsequently not withdrawing them.

It is assumed that only DAI and NST will be an enabled asset in the conduit contract.

It is further assumed that no accounts on SparkLend will receive the BRI DGE role so that ho unbacked
aTokens can be minted. Additionally, it is assumed that the respective pools will not have stable
borrowing enabled.

Note: Since (Version 3) it is assumed that only SNST will be used in the Conduit contract.

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors

o CIEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

(EED-Severity Findings 0
(C)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 2
» Facilitators Have Incentive to Withdraw Funds
« withdraw() and requestFunds() Can Be Prevented ([Risk Accepted)

5.1 Facilitators Have Incentive to Withdraw Funds

(D) (Cow) (Version 1) (R

The allocation system assigns facilitator roles to some accounts chosen by the respective SubDAO.
Facilitators can, amongst other things, call the Condui t Mover contract which gives them access to the
Spar kCondui t . wi t hdraw() function.

Withdrawing all available liquidity from Spark increases the utilization of the pool to 100%. Since
utilization is a factor of the supply rate of the DAI/NST pools, and because third party supplying is allowed
on these pools, facilitators that have an open supply position on the pool can increase their interest rate
by withdrawing funds.

CS-SPC-001

Risk accepted:
MakerDAO accepts the risk giving the following statement:

This will be mitigated through Maker disincentivizing this behaviour.

5.2 wthdraw) and request Funds() Can Be
Prevented

(D (Cow) (Version 1) {Risk Accepted)

External attackers can conduct Denial of Service attacks against the conduit by targeting wi t hdr aw()
and r equest Funds() requirements.

CS-SPC-005

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

An attacker can supply 1 wei of liquidity to an aToken whose reserve balance is otherwise empty, and
prevent r equest Funds() from being callable.

Similarly, an attacker with enough collateral balance can borrow all the available liquidity before
wi t hdraw() orwi t hdr awAndRequest Funds() operations from the SubDAOs, and repay it just after,
preventing the SubDAOs from withdrawing their funds, while incurring little interest accrual since the debt
is only held for the time of a few blocks.

An economic incentive for these attacks could be present if the attacker is also a third-party supplier. In
that case, it could be within their interest to keep the interest rates high by preventing SubDAOSs to
withdraw after a r equest Funds() has been triggered.

Code partially corrected:

The functions r equest Funds() and wi t hdr awAndRequest Funds() no longer exist.
Risk accepted:

Client states they will submit transactions that will not be frontrun in this way.

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
CI)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 1

« Withdrawer Can Steal 1 Wei

Informational Findings 6

» Gas Optimizations (XSl
* Floating Pragma (&R IEE L
» Missing Event (S e L)

* Inaccurate Naming and Comments (SRl Er
» Outdated Aave Version Used (LS8

* subsidySpread Overflow (SRSl

6.1 Withdrawer Can Steal 1 Wel
7D (Low) (Version 1) Y SIRTE)

When withdrawing, an amount of tokens is specified and the corresponding amount of shares is
deducted from the ilk's balance. Since _convert ToShar es() rounds down in its division, a too small
amount of shares will be deducted. Specifically, if the ilk withdraws 1 wei, 0 shares will be deducted
(since the index is greater than 1).

CS-SPC-004

Code corrected:

When wi t hdraw() is called, _convert ToShar esRoundUp() is now used, which rounds up the
amount of shares to deduct, removing the possiblity of 1 wei stealing.

6.2 Floating Pragma
[Informational] [Version 1]

The contracts have a floating pragma of "~0.8.13 and there is no fixed compiler version in
foundry.tom . To make sure that the contracts are always compiled in a predictable manner, the
pragma should be fixed to a stable compiler version.

CS-SPC-006

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Code corrected:
Solidity version has been fixed to 0. 8. 20 in f oundry. t oml .

6.3 Gas Optimizations

[Informational] [Version 1]

wi t hdr awAndRequest Funds() is guarded by the i | kAut h modifier, and calls internally wi t hdr aw()
and r equest Funds() which are also guarded by i | kAut h. This causes i | kAut h to be evaluated at
most 3 times within a call of wi t hdr awAndRequest Funds(), which is inefficient in terms of gas, since
i I KAut h includes an external call and several SLOADs.

CS-SPC-002

Function cancel FundRequest () requires an unnecessary SLOAD when decreasing
r equest edShar es instead of setting it to O directly.

wi t hdr awAndRequest Funds() queries get Avai | abl eLi qui di ty() twice, once in its own function
body, and then again in wthdrawm). If withdraw() would return early when
get Avai | abl eLi quidity() == 0, or generally when the anount computed at line 133 equals 0, a
single querying of the liquidity would be sufficient.

Code corrected:

All mentioned functions have been removed.

6.4 Inaccurate Naming and Comments

[Informational] [Version 1]

In SparkConduit:

CS-SPC-003

1. The naming of the _t ot al Wt hdr awal s return parameter of get Asset Dat a() is
ambiguous

as it represents the total requested funds.

2. The naming of the _request edShar es return parameter of get Posi ti on() is
inaccurate

as it doesn't represent a share amount but a token amount.

In DailnterestRateStrategy:

1. The comment describing the contract references D3M, but the contract will be used in the
context of the allocator system which sunsets D3M.

Code corrected:
1. _total Wt hdrawal s has been renamed to _t ot al Request edFunds.

2. _request edShar es has been renamed to _r equest edFunds.

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

DailnterestRateStrategy still contains a comment about D3M.

6.5 Missing Event
[Informational] [Version 1]

Dai I nt er est Rat eSTr at egy. r econput e() changes the storage but does not emit an event.

CS-SPC-007

Code corrected:
The event Reconput e is now emitted in r econput e() .

6.6 Outdated Aave Version Used
[Informational] [Version 1]

The repository currently uses the Aave v3 version 1.17.2. The version still contains a bug that
automatically enables tokens with an LTV of O as collateral as soon as they are sent to an address. This
can be problematic in cases when the recipient holds a borrowing position as it prevents the withdrawal
of any tokens with an LTV greater than 0.

CS-SPC-008

While the Spar kCondui t contract currently does not hold a borrowing position, this might be changed in
the future. In this case, the Aave version should be updated to prevent DoS attacks by simply sending 1
wei of aTokens to the contract.

Code corrected:

The Aave submodule commit hash has been updated to the v1. 18. 0 version.

6.7 subsi dySpr ead Overflow
[Informational] [Version 1]

Spar kCondui t . set Subsi dySpr ead() does not contain a check to verify that subsi dySpr ead is
small enough to fit into a ui nt 128 variable when added up to the DSR rate. Therefore, it may be
possible that the following line in get | nt er est Rat e() overflows on unsigned downcast:

CS-SPC-009

baseRate: uint128(dsr subsi dySpr ead)

Code corrected:

subsi dySpr ead is no longer used.

@ MakerDAO - SparkLendConduit - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 SparkConduit Contract
	2.2.1.1 deposit()
	2.2.1.2 withdraw()
	2.2.1.3 requestFunds()
	2.2.1.4 withdrawAndRequestFunds()
	2.2.1.5 getInterestData()
	2.2.1.6 Administrative functions

	2.2.2 DaiInterestRateStrategy
	2.2.3 Changes in
	2.2.4 Changes in
	2.2.5 Trust model and system assumptions

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Facilitators Have Incentive to Withdraw Funds
	5.2 withdraw() and requestFunds() Can Be Prevented

	6 Resolved Findings
	6.1 Withdrawer Can Steal 1 Wei
	6.2 Floating Pragma
	6.3 Gas Optimizations
	6.4 Inaccurate Naming and Comments
	6.5 Missing Event
	6.6 Outdated Aave Version Used
	6.7 subsidySpread Overflow

