

PUBLIC

Code Assessment

of the RWA Toolkit

Smart Contracts

July 06, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 10

MakerDAO - RWA Toolkit - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed RwaMultiSwapOutputConduit contract
according to Scope to support you in forming an opinion on their security risks.

RwaMultiSwapOutputConduit allows priviledged users to convert DAI held by the smart contract into
other stablecoins and transfer them to off-chain funds, using one of the Peg Stability Modules (PSM).
Configurations need resetting after each use for security.

The most critical subjects covered in our audit are access control, functional correctness and the
intergrations into the existing DSS system. After the intermediate report all uncovered issues have been
resolved.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - RWA Toolkit - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 1

• Code Corrected 1

MakerDAO - RWA Toolkit - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code file inside the RWA Toolkit repository based on the
documentation files.

1. src/conduits/RwaMultiSwapOutputConduit.sol

This review focused on this file only, all other smart contract of the repository have not been reviewed.

The table below indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1 3 July 2023 1e84bfce78573ec4e3772100b4b0c774d2c65454 Initial Version

2 5 July 2023 3ba40e14c660caac8f2dd966d29b4e1457a46ebc After Intermediate Report

For the solidity smart contracts, the compiler version 0.6.12 was chosen.

2.1.1 Excluded from scope
Any other file not explicitly mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Contract RwaMultiSwapOutputConduit implements an output conduit for the real world assets (RWA)
functionality alllowing to deposit funds to addresses belonging to trusted counterparties operating
off-chain fund allocation. DAI is deposited in the contract, is then converted to an output stablecoin
through one of MakerDAO Peg Stability Modules (PSM), and is then transferred to the recieving address.
A set of user roles and whitelists govern who can set the recieving address and PSM, configure the
whitelists, assign user roles, and operate the main functionality.

2.2.1 Main functionality: Push
A user with the may role enabled, or any user when address 0 has the may role, can operate the main
functionality of the contract through the push method. The method, overloaded as push() and
push(uint256 wad), swaps an amount of DAI for the target stablecoin through the configured PSM,
and transfers it to the configured recipient. The version of push() without arguments swaps the whole
DAI contract balance, while the version with the wad argument allows the caller to specify the amount to
swap.

MakerDAO - RWA Toolkit - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

The contract holds balance in DAI, and the PSM allows swapping it to another stablecoin through its
buyGem(address usr, uint256 gemAmt) method, by specifying the output amount gemAmt. The
PSM Stablecoin and DAI are assumed to have the same value, but fees can apply on swaps. When DAI
is swapped for stablecoin, the PSM tout (toll out) fee applies. Because of the fee, the input amount
might not be the same as the output amount. The push method computes the ouptut amount for a given
wad of input DAI through the expectedGemAmt(uint256 wad) public method. Since in the PSM the
input amount for a given output amount is input = (1 + fee) * output, the expectedGemAmt
method computes the required output that needs to be specified from a given input as the inverse
formula output = input/(1 + fee).

buyGem is then called with the calculated output amount, and with the content of storage variable to as
the recipient of the stablecoin.

Finally the to variable, containing the configured recipient, and the psm variable, with the address of the
PSM in use, are cleared, so that reconfiguration of the contract is required before reuse of the push
method.

A user with the may role can also chose to call the quit(wad) function, transferring wad DAI (or the
whole balance if wad is left unspecified) to address in the quitTo storage variable.

2.2.2 Roles, Whitelists and Trust Model
The contract enumerates several roles, each with specific capabilities.

1. ward, granted with rely() and revoked with deny,
is the admin of the contract. The deployer is first assigned the ward role. It can access
methods guarded by the auth modifier. Therefore, it grants and revokes all the roles, it can set
the quitTo address through the file method, and it can yank(), that is transfer away, any
balance of any token present in the contract. It can add and remove potential recipients to the
bud recipient whitelist, respecitvely with methods kiss and diss, and add or remove PSMs to
the pal whitelist, with methods clap and slap. This role is fully trusted to act correctly and
honestly at all times.

2. can, granted with hope(), revoked with nope(),
allows the user who is granted this role to pick() and hook(). pick() allows the can user
to pick a recipient, to be set as the to address in storage, who will receive the output stablecoin
on the next call of push(). hook() lets the can user to select a PSM that is set as the PSM in
use by the contract. The to address chosen with pick() must be in the bud whitelist, and the
psm chosen with hook() mus be in the pal whitelist.

3. may, granted with mate and revoked with hate,
allows access to functions guarded by the onlyMate modifier. These are the push() and
push(wad) functions, and the quit() and quit(wad) functions. If address 0 is granted the
may role, onlyMate functions are unpermissioned.

4. The bud whitelist
includes addresses that can be set as the swap recipient with pick() by can users, setting
the to storage variable. The ward includes addresses to the whitelist with kiss(), or it can
remove them from the whitelist with diss(). If they are the current recipient when dissed, the
recipient is reset to the zero address.

5. The pal whitelist
comprehends the addresses that can be selected as valid PSMs by the can users with
hook(). A ward can add addresses to the list with clap() and remove them with slap(). If
the current PSM is slapped, the psm storage variable is reset to the zero address. When a PSM
is added to the whitelist with clap(), it is given infinite approval for DAI from the
RwaMultiSwapOutputConduit contract. When a PSM is removed from the whitelist with
slap(), the approval is set to zero.

MakerDAO - RWA Toolkit - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MakerDAO - RWA Toolkit - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - RWA Toolkit - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MakerDAO - RWA Toolkit - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code CorrectedUnpermissioned Access to onlyMate Methods

Low -Severity Findings 1

• Code CorrectedUse of Unsafe Math Subject to Overflows

6.1 Unpermissioned Access to onlyMate Methods
Security Medium Version 1 Code Corrected

CS-MRT-001

If the may role is assigned to address zero, methods guarded by the onlyMate modifier become
unpermissioned. The purpose of this is unclear, as conflicting functionality can be accessed through
onlyMate methods. A user could call push() to transfer the whole balance to the configured recipient,
or push(1) to transfer a very low amount to the recipient and disable further push() access, since the
to and psm variables are reset to zero after push() is called. Likewise, a user could call quit(), which
transfers the DAI balance to the configured quitTo address.

Since mutually exclusive functionality is accessible through the onlyMate modifier, leaving it
unpermissioned opens the door to race conditions and unpredictable behavior. Only trusted parties
should be granted access to onlyMate guarded methods.

Similarly, but to a lesser extent, pick() and hook() are unpermissioned when address zero is granted
the can role.

Code corrected:

MakerDAO realized output conduits should never be permissionless. The abilitiy to make the may and
can roles unpermissioned has been removed.

6.2 Use of Unsafe Math Subject to Overflows
Design Low Version 1 Code Corrected

CS-MRT-002

Since the contract uses version 0.6.12 of solidity, unchecked arithmetics are used by default. Methods
expectedGemAmt() and requiredDaiWad() are subject to possible artihmetic overflows. if their wad
or amt parameters are set large enough.

Since no accounting state is held by the contract, but operations are performed on the current DAI
balance, the overflows cannot be exploited, even by a malicious may user. However, external contracts

MakerDAO - RWA Toolkit - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

and off-chain users relying on the correctness of expectedGemAmt() and requiredDaiWad() might
be negatively affected.

Code corrected:

SafeMath like methods were introduced to ensure the calculations in expectedGemAmt() and
requiredDaiWad() cannot overflow.

MakerDAO - RWA Toolkit - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Main functionality: Push
	2.2.2 Roles, Whitelists and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Unpermissioned Access to onlyMate Methods
	6.2 Use of Unsafe Math Subject to Overflows

