

PUBLIC

Code Assessment

of the PSM Lite

Smart Contracts

July 04, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 12

4 Terminology 13

5 Findings 14

6 Resolved Findings 15

7 Informational 19

8 Notes 21

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of PSM Lite according to Scope
to support you in forming an opinion on their security risks.

MakerDAO implements a gas-efficient Peg Stability Module (PSM) where users can freely swap Dai for
stablecoins. Further, a phased migration from the old PSM to the new PSM is implemented.

The most critical subjects covered in our audit are functional correctness, assets solvency and the correct
adherence to the MakerDAO specifications. Security regarding all the aforementioned subjects is high.

The general subjects covered are access control, interaction with third party systems and the
documentation. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 5

• Code Corrected 3

• Specification Changed 1

• Risk Accepted 1

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the PSM Lite repository based on the
documentation files.

The scope consists of the two solidity smart contracts:

1. ./src/DssLitePsm.sol

2. ./src/DssPocket.sol

In version 4 the following files have been added:

1. script/DssLitePsmDeploy.s.sol

2. script/dependencies/DssLitePsmDeploy.sol

3. script/dependencies/DssLitePsmInit.sol

4. script/dependencies/DssLitePsmInstance.sol

In version 5, ./src/DssLitePsmMom.sol has been added.

In version 8, ./src/DssPocket.sol has been removed.

In version 10, the deployment process has been redesigned and divided into three phases. Files have
been moved and added; the following files are in scope:

1. deployment/phase-1/DssLitePsmMigrationPhase1.sol

2. deployment/phase-2/DssLitePsmMigrationPhase2.sol

3. deployment/phase-3/DssLitePsmMigrationPhase3.sol

4. deployment/DssLitePsmInstance.sol

5. deployment/DssLitePsmDeploy.sol

6. deployment/DssLitePsmMigration.sol

7. deployment/DssLitePsmInit.sol

In this review, it is assumed that the deployment and initialization scripts are explicitly used to deploy a
new LitePSM-USDC and migrate the existing PSM to the new one.

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 16 October 2023 5a1d92d53a3cd6958073faf534b57b8eb50e38
82

Initial Version

2 19 October 2023 3ec57f35fdd910ab765379c324a4dc2a7c08d54
a

Updated Design

3 20 October 2023 bc6f46d4a9b254f43f009c339f547e401208403
b

After Intermediate Report

4 13 November
2023

1ee98ee06ba27ee35166f5b62de19d7abe6179
16

Deployment Script

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 5

file:///app/h/tree/5a1d92d53a3cd6958073faf534b57b8eb50e3882
file:///app/h/tree/5a1d92d53a3cd6958073faf534b57b8eb50e3882
file:///app/h/tree/3ec57f35fdd910ab765379c324a4dc2a7c08d54a
file:///app/h/tree/3ec57f35fdd910ab765379c324a4dc2a7c08d54a
file:///app/h/tree/bc6f46d4a9b254f43f009c339f547e401208403b
file:///app/h/tree/bc6f46d4a9b254f43f009c339f547e401208403b
file:///app/h/tree/1ee98ee06ba27ee35166f5b62de19d7abe617916
file:///app/h/tree/1ee98ee06ba27ee35166f5b62de19d7abe617916
https://chainsecurity.com

5 22 November
2023

7d3af40cb539936bfe690e6d96c95996cf64866
0

PSM Mom

6 23 November
2023

aadc4b2909fb4feb1b9998d137aede5f57c7316
9

Fix Ilk Class

7 05 January 2024 05ddf065a6c0242e0ca497bf93defde899c2e2fc Refactor Halt Swaps

8 04 March 2024 b91c6fecabfda91cfa394132b3b58043f2e4ea3b Remove DssPocket

9 29 April 2024 374bb08b09a3f4798858fd841bab8e79719266
c8

Interface Compatability

1
0

24 June 2024 1f12ceda78ab85e926c4161164aa2f9531756c7
d

New Deployment Scripts

1
1

03 July 2024 2f11f4bc47d96f4ebf025a1e4a249987150f9baa Hardcoded dstWant

For the Solidity smart contracts, the compiler version 0.8.16 was chosen.

2.1.1 Excluded from scope
Any other files not explicitly mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

In addition, the following known risks are out of the scope of this review:

• Holding a significant amount of centralized tokens in the PSM, like USDC, carries inherent risks of
centralization.

• Similar to the existing PSM implementation, repeatedly swapping Gem for Dai might efficiently bloat
the global debt to Line and block borrowing with other collaterals.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section we have added subsections for each of the changes accordingly to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

MakerDAO offers Peg Stability Module (PSM) Lite, a gas-efficient facility through which users can freely
swap Dai for stablecoins with no slippage.

2.2.1 DssLitePsm
A PSM enables users to swap between Dai and a specific stablecoin at a fixed 1:1 conversion rate (with
a fee if it is turned on). PSM-Lite is more gas efficient compared to its predecessors due to the separation
of the swaps and VAT manipulations. Users can directly swap in a pool of pre-minted Dai and stablecoins
without interacting with the VAT. The pool can be refilled or deflated up to certain limits in a
permissionless way, which involves VAT interactions. The Dais are minted using a special ilk in the VAT,
the actual gem tokens are held by the pocket contract.

The contract is governed by wards with the privilege to the following functions:

• rely() - grants admin privilege to an address.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 6

file:///app/h/tree/7d3af40cb539936bfe690e6d96c95996cf648660
file:///app/h/tree/7d3af40cb539936bfe690e6d96c95996cf648660
file:///app/h/tree/aadc4b2909fb4feb1b9998d137aede5f57c73169
file:///app/h/tree/aadc4b2909fb4feb1b9998d137aede5f57c73169
file:///app/h/tree/05ddf065a6c0242e0ca497bf93defde899c2e2fc
file:///app/h/tree/b91c6fecabfda91cfa394132b3b58043f2e4ea3b
file:///app/h/tree/374bb08b09a3f4798858fd841bab8e79719266c8
file:///app/h/tree/374bb08b09a3f4798858fd841bab8e79719266c8
file:///app/h/tree/1f12ceda78ab85e926c4161164aa2f9531756c7d
file:///app/h/tree/1f12ceda78ab85e926c4161164aa2f9531756c7d
file:///app/h/tree/2f11f4bc47d96f4ebf025a1e4a249987150f9baa
https://chainsecurity.com

• deny() - revokes admin privilege from an address.

• kiss() - grants an address the permission to swap without fees.

• diss() - revokes the permission of swapping without fees from an address.

• file(bytes32 what, address data) - update the VOW address.

• file(bytes32 what, uint256 data) - update the fee-related parameters tin and tout and
buffer size buf.

The following public functions are provided:

• rush() - returns the missing Dai that can be filled into this contract. The target is to have buf
amount of DAI available. Minting DAI is limited by the ilk limit (line) and the global debt limit
(Line).

• gush() - returns the excess Dai that can be trimmed from this contract. The target is to leave buf
amount of DAI at the contract, surplus is to be trimmed. In case the ilk's debt limit (line) is currently
exceeded (as it was reduced), the function attempts to return all DAI necessary. In version 1 of the
code gush() additionally takes Line into account. The amount of DAI returned is capped by the
currently available DAI balance.

• cut() - returns the amount of accumulated swapping fees that can be harvested from this contract.

It implements the following permissionless entry points:

• sellGem() - a user can swap gem tokens to pre-minted Dai with a fee. The gem tokens will be sent
to the pocket contract.

• buyGem() - a user can swap Dai tokens to gem with a fee. The gem tokens will be transferred from
the pocket contract to the receiver.

• fill() - a user can mint more Dai to the pool by the amount of rush().

• trim() - a user can trim Dai from the pool by the amount of gush().

• chug() - a user can push the accumulated fees to the VOW. The Dai tokens are deposited into
DAIJoin with the VOW as beneficiary.

Besides, buyGemNoFee() and sellGemNoFee() are the permissioned counterparties for buyGem()
and sellGem(), designed for the authorized parties to swap without fees.

2.2.2 DssPocket
The gem received from the swaps will be placed in the pocket contract, which is fully governed by its
wards with the following permissioned entry points:

• rely() - grants admin privilege to an address.

• deny() - revokes admin privilege from an address.

• hope() - grants an address the permission to spend max(uint256) gem on behalf of this
contract.

• nope() - fully revokes an address's permission to spend gem on behalf of this contract.

2.2.3 Changes in Version 2

• Instead of creating/burning the special ilk to increase its gem balance every time in fill() and
trim(), the urn for DssLitePsm in the VAT is expected to have "unlimited" ink. DssLitePsm no
longer manipulates the ink of the urn.

• The excess Dai that can be trimmed from this contract (gush()) has been changed to disregard the
gap between the global debt (debt) and limit (Line).

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.4 Changes in Version 4
Version 4A deployment script has been added in , which deploys a DssLitePsm with a pocket and

migrates the existing PSM (SrcPsm) to the new DssLitePsm.

The following sanity checks are adopted in DssLitePsmInit:

• The key used for srcPsmKey, DssLitePsm, and pocket are different in chainlog.

• The newly deployed DssLitePsm and pocket are connected correctly.

• SrcPsm has the same gem as DssLitePsm

• The price of SrcPsm's ilk is 1.

• SrcPsm's ilk is only used by SrcPsm, and SrcPsm's ink equals SrcPsm's art.

Then, the following steps are executed for the initialization and migration:

1. The specific ilk for DssLitePsm is added to VAT, JUG and SPOT. The pip of SrcPsm is reused and
the price is set to 1.

2. The individual line of the specific ilk and Line are updated by art of SrcPsm (src.art) in VAT for
DssLitePsm.

3. max(uint256) / RAY amount of specific ilk is minted to DssLitePsm and locked into
DssLitePsm's urn.

4. The buf of DssLitePsm is set to src.art, fees are set to 0, and it is filled with pre-minted Dai
(DssLitePsm.fill()). This is done to allow gem migration.

5. Migrate the gem from SrcPsm:

1. Grab the collateral and debt from SrcPsm to the initializing contract.

2. Exit the gem tokens from GemJoin and transfer to the initializing contract.

3. Swap the gem tokens to Dai in DssLitePsm.

4. Erase the bad debt by the swapped Dai via vat.heal().

6. Set the auto-line configuration for DssLitePsm to enable adjusting the line of the specific ilk in a
permissionless way.

7. Set actual parameters of DssLitePsm (buf, tin, and tout).

8. Fill the DssLitePsm to make liquidity available immediately after initialization.

9. Add the specific ilk to the ilk registry.

10. Add DssLitePsm and pocket to chainlog.

2.2.5 Changes in Version 5
Version 5DssLitePsmMom has been added to the codebase in , it is designed to execute governance

actions on the PSM without delay. The governance can halt (halt()) either the inflow or the outflow of
the gems from the PSM by setting the swap fees to a special value (type(uint256).max).

DssLitePsm and the deployment scripts have been adapted to reflect the changes.

2.2.6 Changes in Version 7

Version 7

Functionality to halt the inflow or the outflow of the gems via sellGemNoFee() and buyGemNoFee()
has been added to the codebase in . Now both functions will behave the same as their
permissionless couterparties if the swap fee has been set to type(uint256).max (HALTED).

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.7 Changes in Version 8
Version 8DssPocket has been removed in . The deployment and initialization scripts have been adjusted:

the DssPocket is no longer deployed in the deployment script, and will be passed as a parameter in both
scripts. It is checked in the initialization script that the pocket grants type(uint256).max allowance to
the DssLitePsm.

2.2.8 Changes in Version 9
The DssLitePsm is intended to act as a drop-in replacement for the current PSM in the RWA conduits. To
ensure compatibility, the gemJoin() function returning address(this) has been implemented. In
addition, the DssLitePsm implements the view functions dec() and live() so that the contract
supports all the view functions defined in the join-5-auth interface (to prevent potential compatibility
issues in external systems).

• dec(): returning the decimals of the DssLitePsm gem.

• live(): returning whether the VAT is live. Note this only reflects if the VAT is caged. The
DssLitePsm is halted when the swap fees are set to a constant type(uint256).max.

2.2.9 Changes in Version 10
The deployment process has been redesigned and divided into three phases as outlined in the forum
post (archive):

• Phase 1 - Test period

• Phase 2 - Main migration

• Phase 3 - Final migration

Phase 1:

Based on the provided configuration argument, the LitePsm is initialized and an initial portion of funds is
migrated to the new Psm. The AutoLine configuration for both Psms is updated, the final buffer (buf) for
the new Psm is set, and the Psm is filled if necessary.

After this phase, both Psms are active, with fees (tin, tout) remaining unchanged.

Phase 2:

Based on the provided configuration argument, the migration library is used to transfer funds from the
source Psm to the new LitePsm (the destination Psm). It is ensured that the source Psm's ink is at least
srcKeep after the operation. The AutoLine configuration for both Psms is updated, the final buffer (buf)
for the new Psm is set, and the Psm is filled if necessary.

After this phase, both Psms are active. No fees (tin, tout) have been set on the new PSM, but
non-zero fees have been set on the source PSM to discourage interactions that could disrupt the
migration.

Phase 3:

Using the migration library, the remaining funds are transferred to the new Psm. The old Psm (srcPsm) is
then offboarded from the system:

• The corresponding ilk is removed from AutoLine.

• The line of this ilk is set to 0, and the global Line is reduced accordingly.

• The fees for this Psm are reset to 0.

The buffer of the new Psm is set.

With the migration completed, the old Psm has been offboarded and is now inactive, with all funds moved
to the new LitePsm.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 9

https://forum.makerdao.com/t/litepsm-lite-psm-usdc-a-introduction-and-overview/24512
https://forum.makerdao.com/t/litepsm-lite-psm-usdc-a-introduction-and-overview/24512
https://web.archive.org/web/20240628095530/https://forum.makerdao.com/t/litepsm-lite-psm-usdc-a-introduction-and-overview/24512
https://chainsecurity.com

Initialization and Migration

The initialization in Phase 1 (implemented in the adjusted DssLitePsmInit) is similar to the
initialization steps in the previous version (see Changes in Version 4). Namely, step 1., 3., 9. and 10. are
performed. Note that the mom is configured accordingly (see Changes in Version 5). Also note that the
VOW is set in the LitePsm and that the MCD_PAUSE_PROXY is given the bud role in the LitePsm, to swap
with no fees. Sanity checks are implemented similarly as in Changes in Version 4.

The spells for the different phases share the logic of the migration in DssLitePsmMigration which
implements the migration of the funds. Note that this is similar to the previous version (see Changes in
Version 4 point 5.). However, the main differences are

1. that the debt ceilings Line and line are temporarily raised to the maximum (and similar changes
to allow separation of migration logic)

2. and that the migrated amounts differ. Namely, the migration tries to reach srcKeep but is allowed
to migrate at most dstWant. Note that checks are implemented in phase 2 to ensure srcKeep is
respected.

Note that the sanity checks for the migration are similar to the migration-related one in Changes in
Version 4.

2.2.10 Roles and Trust Model
The DS-Pause-Proxy is expected to be the ultimate admin (ward role) of the DssLitePsm. The role
should be set after the deployment by the deployer. Any privileged action performed on the contracts, is
expected to be executed through well-considered and inspected governance spells. In case there are
any other wards of the contracts, they are assumed to be fully trusted and never act against the interest
of the system and users.

The state variables VOW, tin, tout, buf, bud of DssLitePsm are not initialized in the constructor. They
should be properly set upon deployment, otherwise the contract cannot function correctly. For example,
in case buf<ilk.dust or buf>ilk.line, no Dai can be pre-minted due to the checks in VAT.

The wards of DssPocket are trusted. It is assumed that only the DssLitePsm has max(uint256)
allowance from DssPocket, which can freely transfer gem on behalf of pocket. The bud of DssLitePsm,
who can swap without fees, are fully trusted. The users of DssLitePsm are not trusted.

The following assumptions are further made:

1. There are no other urns for the same ilk.

2. Stability fee is always zero for the ilk (ilk.rate==RAY).

3. The spot price for gem is always 1 (ilk.spot==RAY).

4. No liquidations on this specific ilk.

The gem tokens used are assumed to be within 18 decimals. Weird tokens such as rebasing tokens and
tokens with transfer fees are not expected to be used. The system is also subject to the potential risks of
upgradability, blacklisting, pausing, and frozen of the gem tokens.

Version 4For the deployment script in , it is assumed that the JUG.base will be 0, so there would be no
interest accrued for the new PSM. The deployers are supposed to deploy the contracts as specified by
the reviewed script. Deployers are, however, EOAs that could perform unlawful actions besides simple
deployment, such as changing the settings of the newly deployed or granting themselves special
privileges. This cannot be fully inspected through the initialization library, which is expected to be
executed via governance spells. It is important that after deployment, concerned parties thoroughly check
the state of the deployed contracts to ensure that no unexpected action has been taken on them during
deployment (deployment validation).

Version 5In , it is further assumed the PSM Mom has the ward role on DssLitePsm. The owner of PSM
Mom is assumed to be the DS-Pause-Proxy, and its authority is assumed to be the MCD_ADM.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Version 8In , the DssPocket has been removed, its actual implementation and access control will be
unknown. This implies:

• The implementation and access control of DssPocket will be unknown.

• The DssPocket may not be controlled by the DS-Pause-Proxy anymore.

• It's assumed that it issues an approval on gem for the LitePsm instance with type(uint256).max as
the amount.

Hence the DssPocket should be fully trusted, otherwise the DssLitePsm is exposed to the potential loss
of gem tokens.

Version 9In , three view functions have been added to comply with the view functions defined in
join-5-auth for RWA conduits integration. Note that some external functions (e.g. cage(), join(),
exit()) have not been added, hence any potential calls to them will revert. It is assumed that the
external systems fully understand the different semantics between DssLitePsm and the current PSM with
a GemJoin, and will use the view functions with caution.

In Version 10, the migration has been changed. While the previous assumptions on trust remain, we
further expect that the migrated amounts will be high enough so that the fees to be paid in case of
manipulations will be non-negligible. Further, we expect that the amounts are high enough so that a swap
on DEXs is not realistically possible (fees and slippage are too high). We expect the phases to be
executed in order. Further, we expect, as outlined in the forum post specifying the migration, that the
GSM delay will be reduced and that the ESM threshold will be increased in other scripts. Last, note that
phase 1 for example has no guarantees about the execution (given that no checks are done as in phase
2). Also, note that if bad parameters are chosen for phase 2, the migration could result in a non-optimal
state.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk AcceptedUnchecked Return Value of transferFrom

5.1 Unchecked Return Value of transferFrom
Security Low Version 1 Risk Accepted

CS-MKPSML-001

In DssLitePsm, the return value of transferFrom() is not checked. It relies on the token to revert if the
transfer fails which is given for the intended gem token (USDC). Generally however, according to the
ERC20 specification upon a failed transfer the token may revert or simply returns false. In case the
gem token's implementation returns false on a failed transferFrom() instead of reverting, DssLitePsm
will still treat it as a success and proceed.

Risk accepted:

MakerDAO states:

We do not plan to support ERC-20 tokens that do not revert on a failed transfer.
We might want to support tokens that do not return true on succeeded transfers.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 4

• Code CorrectedPhase 2 Might Not Migrate Gem

• Code CorrectedIncorrect Ilk Class

• Code CorrectedUninitialized Vow in DssLitePsmInit

• Specification ChangedInaccurate Specification

Informational Findings 3

• Specification ChangedFill More Than buf Possible

• Code CorrectedUnpermissioned Repay of Art, Remaining Collateral Balance

• Code CorrectedThe Optimizer Is Disabled

6.1 Phase 2 Might Not Migrate Gem
Design Low Version 10 Code Corrected

CS-MKPSML-010

The goal of phase 2 of the migration is to migrate a bigger portion of the funds to the PSMLite. Checks
and fees mainly disincentivize or prevent manipulations. However, there remains the possibility to "undo"
a migration for free (ultimately, no gem is migrated).

Consider the following order of operations:

1. The ink of the srcPSM is defined as srcKeep + x

2. srcPSM.sellGem dstWant so that the new ink is srcKeep + x + dstWant.

3. Cast spell for phase 2. Consequently, dstWant is migrated to the dstPSM. The ink of srcPsm is
again srcKeep + x.

4. dstPSM.buyGem to get dstWant out and repay a hypotethetical flashloan.

5. As a consequence, the srcPSM again has ``

Note that similarly the order of casting a spell and buyGem might be reordered (however, would limit the
manipulation more).

Ultimately, while the migration might seem successful, the spell might not effectively migrate funds from
the old PSM to the new PSM.

Code corrected:

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

MakerDAO intended to use the maximum unsigned integer for dstWant. The value is now hardcoded to
ensure correct execution.

6.2 Incorrect Ilk Class
Correctness Low Version 4 Code Corrected

CS-MKPSML-006

Regarding ilk.class, the Ilk Registry states:

Classification code (1 - clip, 2 - flip, 3+ - other)

In PSM initialization script (DssLitePsmInit.sol), the class of the existing PSM (src.class) is
reused to register the specific ilk for DssLitePsm (For PSM-USDC, src.class==1). Nevertheless, in
contrast to the existing PSM, DssLitePsm does not have auction modules and cannot be liquidated.
Hence directly reusing src.class does not comply to the specifications.

Code corrected:

The ilk.class for the newly deployed DssLitePsm has been changed to a constant 6 (a new
IlkRegistry class), representing a specific ilk type without an associated GemJoin.

6.3 Uninitialized Vow in DssLitePsmInit
Correctness Low Version 4 Code Corrected

CS-MKPSML-009

Library DssLitePsmInit does not initialize the vow of the newly deployed DssLitePsm. Consequently
the outstanding accumulated fees cannot be harvested into the surplus buffer (chug()), and it would
require another governance spell to set the vow.

Code corrected:

Version 5MakerDAO has corrected the code in . The vow is now initialized in the
DssLitePsmInit.init function:

DssLitePsmLike(inst.litePsm).file("vow", dss.chainlog.getAddress("MCD_VOW"));

6.4 Inaccurate Specification
Correctness Low Version 1 Specification Changed

CS-MKPSML-007

The specification of DssPocket states "Can grant or revoke infinite gem approvals". Not all gem tokens
treat max(uint256) as truly unlimited allowance, though it is unlikely to exhaust max(uint256)
allowance in practice .

Specification changed:

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

The specification has been updated to read up to max(uint256) instead of infinite.

6.5 Fill More Than buf Possible
Informational Version 1 Specification Changed

CS-MKPSML-008

The specification of fill() states "Mints Dai into this contract up to buf value". This is not entirely
accurate since the amount of DAI to be minted depends on the current art of the urn and the amount of
gem at the pocket. Both of which can be manipulated by anyone if one is ready to spend money to:

• Inflate tArt by donating gem tokens to DssPocket.

• Deflate Art by repaying on behalf of DssLitePsm in VAT.

Consequently the amount to be refilled (computed in rush()), depending on the actual circumstances
may result in:

• More than buf amount of DAI at the DssLitePsm after fill().

• More than buf amount of DAI minted during fill().

Specification changed:

The specification has been updated to reflect how the extraneous influences might affect the amount
minted by fill().

6.6 The Optimizer Is Disabled
Informational Version 1 Code Corrected

CS-MKPSML-012

The optimizer is disabled in foundry.toml. Enabling the optimizer can help to further improve the gas
efficiency.

Code corrected:

The optimizer has been enabled in foundry.toml.

6.7 Unpermissioned Repay of Art, Remaining
Collateral Balance
Informational Version 1 Code Corrected

CS-MKPSML-011

In the VAT it's possible to repay debt for any urn by using VAT.frob() without requiring permissions. If
this is done for the special urn of DssLitePsm, this has the following consequences:

• DssLitePSM's urn art will reduce while ink remains unchanged.

• Once the fees are collected through chug() the corresponding surplus will be paid out as part of the
fees. The collateral accounting in the VAT is not updated, the ink balance remains, despite the
funds now having left the system.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Code corrected:

Version 2In the design has been changed, the ink of the urn is expected to be unlimited and is no longer
modified by this contract.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Lack of Sanity Checks
Informational Version 4

CS-MKPSML-002

While the DssLitePsmInit script implements many sanity checks,
DssLitePsm.to18ConversionFactor() is not validated to be the expected value.

7.2 No Dai May Be Available if Limit Is Reached
Informational Version 1 Acknowledged

CS-MKPSML-003

DssLitePsm may not achieve its full functionalities in case the individual debt limit (ilk.line) or the
global debt limit (VAT.Line) is reached. In this case, the pool cannot be refilled. As long as no or
insufficient DAI balance is available, users can only swap DAI for gem tokens (which in turn makes some
DAI available).

Acknowledged:

MakerDAO has acknowledged the behavior of the pool if the debt limit is reached.

7.3 No Fees on Small Swap Amounts
Informational Version 1 Acknowledged

CS-MKPSML-004

Following the design of the existing PSMs, the fees of the swaps are computed and rounded down as:

fee = daiOutWad * tin_ / WAD

fee = daiInWad * tout_ / WAD;

As a result, amounts of daiOutWad or daiInWad may avoid the swap fees due to the rounding errors.
Compared to the gas costs, this is negligible.

Acknowledged:

This behavior is now documented in the code.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

7.4 Trim May Fail if Art Is Below Dust
Informational Version 1 Acknowledged

CS-MKPSML-005

Trim() will burn Dai and decrease the debt urn.art. If the resulting art of the urn is non-zero but
below ilk.dust this fails. For this special collateral, ilk.dust should be set to 0.

Acknowledged:

MakerDAO has acknowledged the edge case if ilk.dust is not set properly.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Changes Compared to the Existing PSMs
Note Version 1

There are currently three active PSMs for USDC, Gemini-USD and Pax-USD at the time of this review
(October 2023). The PSM Lite has the following changes:

1. In the existing PSMs the gem tokens are deposited into a Gemjoin adapter before art is generated
and DAIs are minted. PSM Lite use a special ilk for Dai minting ahead of time. Once these DAIs are
exchanged for gem tokens, these tokens are held within DssPocket.

2. The volume for a single swap is only limited by the ilk.line, debt, and Line in the existing
implementation. PSM Lite introduces a pool of pre-minted Dai limited by buf size, which may not
satisfy a single swap with an exceeding volume. In this case the single swap should be broken
down into several smaller swaps, in between of which the pool can be refilled (fill()) by the
user.

8.2 Considerations for Initialization
Note Version 1

While the initialization script for the PSM performs many sanity checks to prevent malicious deployments,
it cannot check everything. The governance should, before approving any spell, carefully evaluate the
deployment process. Namely, the following should be considered:

1. The init code of the contracts should match the init code generated by the compiler with the correct
immutables attached. As a consequence, it can be ensured that the bytecode is correct and that
the constructor has not been altered to perform malicious actions (e.g. give approvals to arbitrary
addresses).

2. The only successful calls made to the contracts after their creation should be the following (in the
same order for both contracts):

1. rely() to give the governance a privileged role.

2. deny() to remove the privileged role from the deployer.

8.3 DssLitePsm Does Not Support Global
Settlement
Note Version 1

At the time of this review, Emergency Shutdown Module (ESM) is still functioning and could be triggered
by users burning sufficient MKR. However, DssLitePsm does not support the coordinated Shutdown /
Global Settlement anymore. It is expected that the ESM is disabled by setting its threshold large enough
prior to the deployment of DssLitePsm, so Emergency Shutdown can never be called.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

8.4 Swaps Are Subject to Front-Running
Note Version 1

A user's swap can be front-run by another swap of the same direction, which will leave insufficient Dai or
gem tokens and revert the user's swap. In the former case, users can bundle a fill() before the swap
to refill the pool with newly minted Dai. This is well documented in the README of PSM Lite.

MakerDAO - PSM Lite - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 DssLitePsm
	2.2.2 DssPocket
	2.2.3 Changes in Version 2
	2.2.4 Changes in Version 4
	2.2.5 Changes in Version 5
	2.2.6 Changes in Version 7
	2.2.7 Changes in Version 8
	2.2.8 Changes in Version 9
	2.2.9 Changes in Version 10
	2.2.10 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Unchecked Return Value of transferFrom

	6 Resolved Findings
	6.1 Phase 2 Might Not Migrate Gem
	6.2 Incorrect Ilk Class
	6.3 Uninitialized Vow in DssLitePsmInit
	6.4 Inaccurate Specification
	6.5 Fill More Than buf Possible
	6.6 The Optimizer Is Disabled
	6.7 Unpermissioned Repay of Art, Remaining Collateral Balance

	7 Informational
	7.1 Lack of Sanity Checks
	7.2 No Dai May Be Available if Limit Is Reached
	7.3 No Fees on Small Swap Amounts
	7.4 Trim May Fail if Art Is Below Dust

	8 Notes
	8.1 Changes Compared to the Existing PSMs
	8.2 Considerations for Initialization
	8.3 DssLitePsm Does Not Support Global Settlement
	8.4 Swaps Are Subject to Front-Running

