PUBLIC

Code Assessment

of the OP Token Bridge
Smart Contracts

October 09, 2024

Produced for

N MakeR

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Informational

N o o b~ WDN P

Notes

@ MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG

10
11
12
13

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of OP Token Bridge according
to Scope to support you in forming an opinion on their security risks.

MakerDAO implements a custom token bridge between Ethereum and L2s based on the OP stack.

The most critical subjects covered in our audit are functional correctness, access control and the
integration with the OP stack's messaging infrastructure. The general subjects covered are error
handling, trustworthiness and specification. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EED-Severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

I:$: MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the OP Token Bridge repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

Date Commit Hash Note
Vv
1| 02 Sep bae891c15067738eael8baa4866f7972289b | Initial Version
2024 7841
2 | 18 Sep a01b8725f20896390e63a6f65b109c25f8fb8 | Fileable Escrow
2024 23c
3 | 08 Oct 0f935505c0dc74ce3db2a9998320a5611932 | Upgradeable & L2 Withdrawal Limits
2024 1814

For the solidity smart contracts, the compiler version 0. 8. 21 was chosen.

The following contracts and deployment scripts were in the scope of this review:

./ src/ Escrow. sol

./ src/ L1CGover nanceRel ay. sol
./src/L1TokenBri dge. sol

./ src/ L2CGover nanceRel ay. sol
./src/ L2TokenBri dge. sol

./ depl oy/ L1TokenBri dgel nst ance. sol
./ depl oy/ L2TokenBri dgel nst ance. sol
./ depl oy/ L2TokenBri dgeSpel | . sol

./ depl oy/ TokenBri dgeDepl oy. sol

./ depl oy/ TokenBri dgel ni t. sol

2.1.1 Excluded from scope

All other files and the correctness of the external systems are out of scope. Specifically, the OP stack is
out of scope and assumed to work correctly as documented. The tokens that are bridged are expected to
be standard ERC-20 tokens (e.g. no rebasing, no fees, no call-on-transfer) that conform to the required
interfaces (e.g. support MakerDAQO's r el y / deny authentication).

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

I:$: MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG 5

https://github.com/makerdao/op-token-bridge/tree/bae891c15067738eae18baa4866f7972289b7841
https://github.com/makerdao/op-token-bridge/tree/bae891c15067738eae18baa4866f7972289b7841
https://github.com/makerdao/op-token-bridge/tree/a01b8725f20896390e63a6f65b109c25f8fb823c
https://github.com/makerdao/op-token-bridge/tree/a01b8725f20896390e63a6f65b109c25f8fb823c
https://github.com/makerdao/op-token-bridge/tree/0f935505c0dc74ce3db2a9998320a56119321814
https://github.com/makerdao/op-token-bridge/tree/0f935505c0dc74ce3db2a9998320a56119321814
https://chainsecurity.com

At the end of this report section we have added subsections for each of the changes accordingly to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

MakerDAO offers a set of OP Token Bridge contracts, which enable users to deposit supported tokens to
an OP Stack L2 and withdraw back to Ethereum (L1).

2.2.1 Escrow

When tokens are bridged from L1 to L2, the tokens will be locked in the escrow contract. When they are
bridged back, the bridge will pull funds from the escrow to send them to the respective users.

Thus, the escrow features the standard rel y() and deny() authorization functions to configure the
war ds which have the privilege to grant any token allowance to any spender with appr ove() .

2.2.2 Token Bridges

The L1TokenBri dge and the L2TokenBri dge contracts are the L1 and L2 entry points for bridging
supported tokens to L2 and L1 respectively. They are bound to each other as ot her Bri dge.

Both implement MakerDAQO's common access control mechanism with r el y and deny to (de-)authorize
addresses. Authorized addresses can

euserelyanddeny,

« close the bridge with cl ose (closing one bridge only deactivates sending messages with it; hence,
winding down the outflow of tokens from L1 to L2),

« and add support for tokens with r egi st er Token (registers an L1-to-L2-token-mapping).

To bridge tokens, a user can call bri dgeERC20, where the recipient will be the nsg. sender, or
bri dgeERC20To with a designated recipient. The process works as follows:

1. bri dgeERC20 or bri dgeERC20To is called.
2. Tokens are handled on the sending chain.

3. The bridge contract sends a message to the other bridge with sendMessage through the
respective Cr ossDomai nMessenger .

4. Eventually, the message arrives on the other layer.
5. Eventually, fi nal i zeBri dgeERC20 is called on the other bridge (on the destination chain).

6. Tokens on the other side are handled.

Note that on L1, tokens are moved to the escrow when being sent to L2 and moved from the escrow
when being received from L2. On L2, tokens are minted when being received from L1 and are burned
when being sent to L1.

2.2.3 Governance Relay

The L1Gover nanceRel ay allows for sending messages with rel ay to the L2Gover nanceRel ay.
Upon arrival of the message on L2, it will have its r el ay function called, which executes a governance
spell via a del egat ecal | . Note that the L1Gover nhanceRel ay features the standard r el y and deny
authorization functions and that only the wards can call r el ay on L1.

I:$: MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.4 Contracts Deployment & Initialization

depl oyL1() will deploy L1Gover hanceRel ay, Escrow, and L1TokenBri dge wired to the correct
L1Cr ossDomai nMessenger, L2TokenBri dge, and L2Gover nanceRel ay. Then, the deployer sets a
designated owner (expected to be MCD_PAUSE PROXY) as the only authorized address for all three
contracts.

depl oyL2() will deploy L2Gover nanceRel ay, L2TokenBri dge, and L2TokenBri dgeSpel | wired
to the correct L2Cr ossDomai nMessenger, L1TokenBri dge, and L1Gover nanceRel ay. Then, the
deployer will r el y() the L2Gover nanceRel ay on L2TokenBri dge and deny() itself.

Note that some addresses need to be pre-computed by the deployer.

TokenBri dgel nit will do some sanity checks on L1TokenBri dge and L1Gover nanceRel ay to
ensure the correct deployment. Then, it will register L1 and L2 token pairs on the L1TokenBri dge.
Eventually, it triggers a call to i nit on the L2TokenBri dgeSpel | (via the governance relay) which
performs some sanity checks and registers tokens.

L2TokenBri dgeSpel | is a reusable L2 spell which provides the following functionalities:
erely() and deny() to grant or revoke war ds roles on the L2 bridge.
e cl ose() : winds down the L2 token bridge.

eregi ster Tokens() : registers L1 and L2 token pairs and grants the war ds role of the L2 tokens to
the L2 Bridge for authorized minting.

i ni t: ensures the correct L2 contract state with some sanity checks and then registers L1 and L2
token pairs.

2.2.5 Changes in Version 2

The escrow of L1TokenBri dge is now modifiable with fil e. Hence, the escr ow can be changed.
Note that changing the escrow needs to be done carefully (e.g. governance moving funds from old
escrow to the new one) as otherwise bridging back to L1 may revert.

2.2.6 Changes in Version 3

The L2 bridge has a maximum withdrawal amount per token that limits the amount bridgeable from L2 to
L1 per call to bri dgeERC20() or bri dgeERC20To for a given token. The limit can be set by authorized
addresses with set MaxW t hdr aw() .

While the bridging mechanism has been upgradeable in previous versions, the bridge contracts are now
additionally made upgradeable by leveraging the UUPSUpgradeable library (EIP-1822 pattern with
EIP-1967 proxy storage slots). Note that upgrades must consider messages sent with the previous
version. As a consequence, an initializer function i ni ti al i ze() is provided along with a getter for the
implementation get | npl enent ati on() and a versi on (currently "1" but should be changed with
upgrades). Note that only authorized addresses can upgrade the contracts.

The deployment and initialization scripts have been adjusted accordingly to deploy the proxies with the
respective implementation, to include additional sanity checks, to publish the L1 bridge implementation
on Chainlog and to set the L2-to-L1 withdrawal limits. Additionally, the L2 spell now offers
set MaxW t hdraws() (function batching calls to the bridge's setMaxWthdraw()) and
upgr adeToAndCal | () (upgrading the bridge).

2.2.7 Trust Model & Roles

The system defines the following key roles:

1. Users: Untrusted.

I:$: MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2. Governance (wards): Fully trusted and notably controls the escrow holding and the rights to
upgrade. The Escrow, L1TokenBridge, and L1GovernanceRelay are expected to have
MCD _PAUSE PROXY as the only wards. The L2TokenBridge is expected to have the
L2GovernanceRelay as the only war d.

3. OP Stack: Fully trusted. For example, if the OP stack misbehaves, the contracts could be DoSed or
funds could be stolen.

(S: MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings

In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings ¢
(1 1)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings g
I:$: MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

6.1 Redundant Parameter
(Informational] [Version 1] []

CS-OPBRIDGE-001

The L2TokenBri dgeSpel | . i nit function takes | 2GovRel ay__ as a parameter. However, given that
the spell is executed by the L2Gover nanceRel ay with a del egat ecal | , the parameter should equal
to addr ess(t hi s) . Ultimately, the parameter is redundant and gas could be saved on initialization.

Acknowledged:

MakerDAO prefers passing it as a parameter to mirror L1 spells that explicitly specify the pause proxy.

I:$: MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Deployment Verification

Since deployment of the contracts is not performed by the governance directly, special care has to be
taken that all contracts have been deployed correctly. While some variables can be checked upon
initialization through the PausePr oxy, some things have to be checked beforehand.

We therefore assume that the initcode, bytecode, traces and storage (e.g. mappings) are checked for
unintended entries, calls or similar. This is especially crucial for any value stored in a mapping array or
similar (e.g. could break access control, could lead to stealing of funds).

7.2 Legacy Functionality Not Implemented

Note that the token bridge does not implement OP legacy functionality. Hence, front-ends and integrators
should not rely on that functionality. Further, logic for gasPayi ngToken is not implemented as it is not
needed.

7.3 Optimism Deployment

Governance should be aware that the deployment script does not consider the old escrow or governance
relays (OPTI M SM_ESCROWas well as OPTI M SM_GOV_RELAY and its L2 counterpart).

Thus, in case governance wants to reuse these contracts for a potential deployment on Optimism, the
scripts need to be adapted.

I:$: MakerDAO - OP Token Bridge - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Escrow
	2.2.2 Token Bridges
	2.2.3 Governance Relay
	2.2.4 Contracts Deployment & Initialization
	2.2.5 Changes in Version 2
	2.2.6 Changes in Version 3
	2.2.7 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Informational
	6.1 Redundant Parameter

	7 Notes
	7.1 Deployment Verification
	7.2 Legacy Functionality Not Implemented
	7.3 Optimism Deployment

