PUBLIC

Code Assessment

of the OP Farms
Smart Contracts

September 23, 2024

Produced for

by

N MakeR

(S: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

o 01 A W N P

Notes

@ MakerDAO - OP Farms - ChainSecurity - © Decentralized Security AG

© 0 N O W

10

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of OP Farms according to
Scope to support you in forming an opinion on their security risks.

MakerDAO implements a mechanism to distribute rewards originating from a source on Ethereum L1 to a
farm contract on OP Stack L2s.

The most critical subjects covered in our audit are functional correctness, asset solvency and cross-chain
messaging. Security regarding all the aforementioned subjects is high.

The general subjects covered are code complexity and specification.
In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ MakerDAO - OP Farms - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EED-Severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

@ MakerDAO - OP Farms - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the OP Farms repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note
1 | 10 Sep 2024 | 6ce7alee7dc11690cbd8309ch2e58106eb354b8f Initial Version
2 | 18 Sep 2024 | ba2f7c706e66¢c23cef7f1d31f40564f719d5aa59 Dependency Update

For the solidity smart contracts, the compiler version 0. 8. 21 was chosen.

The contracts below were in scope:

./ src/ L1Far nProxy. sol
./ src/ L2Far nPr oxy. sol

./ depl oy/ Far nPr oxyDepl oy. sol
./ depl oy/ Far nPr oxyl ni t. sol
./ depl oy/ L2Far nmPr oxySpel | . sol

2.1.1 Excluded from scope

Generally, all files not mentioned above are out of scope. The configuration is out of scope. The OP
token bridge and the OP stack's cross chain messaging mechanism is out of scope. The OP token bridge
is part of another review.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

MakerDAO implements a mechanism to distribute rewards originating from a source on Ethereum L1 to a
farm contract on OP Stack L2s.

2.2.1 Ll1FarmProxy

Proxy on L1 Ethereum to receive and forward the reward tokens. Anyone can permissionlessly trigger the
transfer of reward tokens to L2 using the public not i f yRewar dAmount function, provided the amount to
be transferred exceeds the minimum threshold. The token transfer to L2 makes use of the OP token
bridge.

@ MakerDAO - OP Farms - ChainSecurity - © Decentralized Security AG 5

https://github.com/makerdao/op-farms/tree/6ce7a1ee7dc11690cbd8309cb2e58106eb354b8f
https://github.com/makerdao/op-farms/tree/ba2f7c706e66c23cef7f1d31f40564f719d5aa59
https://chainsecurity.com

A source transfers the reward to be forwarded to this contract, which is assumed to be a
VestedRewardsDistribution that receives funds from a DSSVest instance that releases tokens over time.

The contract features r ecover to allow retrieving funds by privileged addresses (war ds) that can be set
with the standard rely / deny functionality. Further, the authorized addresses can set the
m nGasLi m t and rewar dThreshol d withfil e.

The r ewar dsToken, r enot eToken, | 2Pr oxy as well as the | 1Bri dge are set as immutables in the
constructor.

2.2.2 L2FarmProxy

Receiver of the bridged tokens on L2. Implements f or war dRewar d, allowing anyone to push the reward
tokens to the farm contract. The farm contract and its corresponding r ewar dsToken are stored as
immutables. This function can be executed permissionlessly if the token amount transferred exceeds a
set threshold. Additionally, the contract features ar ecover function that works similarly to the one of the
L1 farm proxy.

Further, fi | e allows for setting the r ewar dThr eshol d by authorized addresses that can be set with the
standard r el y / deny functionality.

2.2.3 Deployment Scripts

FarmProxyDeploy: A library that implements functions to deploy the contracts L1Proxy (on L1), L2Proxy
(on L2) and L2ProxySpell (on L2). For contracts with authorized roles (wards), specifically the proxies,
the ownership is transferred from the deployer to the specified owner address.

FarmProxylnit: Based on the parameters passed by governance, the i nit function performs sanity
checks and sets up a DSSVest instance. Note that this includes creating a vesting schedule and setting
up the VestedRewardsDistribution instance. Namely, that requires restricting claiming for the vested
tokens. Further, it configures and initializes the L1Proxy with m nGasLi mt and r ewar dsThr eshol d,
as well as the L2Proxy using a cross-chain message that triggers L2Far nProxySpel |l .init().
Finally, it updates the chainlog with the new L1 addresses.

L2FarmProxySpell: Performs sanity checks on the state and immutables of the L2Proxy based on the
arguments passed from the cross-chain message call from L1 by the FarmProxylnit spell. It sets the
rewar dsThr eshol d and activates the rewards distribution.

2.2.4 Trust Model & Roles

The OP token bridge is fully trusted.

Authorized addresses (war ds): Fully trusted. Can change parameters of the contracts and add/remove
authorized addresses. The configuration is assumed to be correct; incorrect parameters are known to
cause problems. For example on L2, the r ewar dThr eshol d must be large enough to avoid issues
when recalculating the reward rate. Operational issues may arise when m nGasLi mi t is set incorrectly.
All parameters are expected to be set appropriately at all times.

Users/Keepers: untrusted. Assumed to trigger the actions as necessary.

@ MakerDAO - OP Farms - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ MakerDAO - OP Farms - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ MakerDAO - OP Farms - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings

In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings

(1 1)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

@ MakerDAO - OP Farms - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

6 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

6.1 Deployment Verification

Since deployment of the contracts is not performed by the governance directly, special care has to be
taken that all contracts have been deployed correctly. While some variables can be checked upon
initialization through the PausePr oxy, some things have to be checked beforehand.

We therefore assume that the initcode, bytecode, traces and storage (e.g. mappings) are checked for
unintended entries, calls or similar. This is especially crucial for any value stored in a mapping array or
similar (e.g. could break access control).

@ MakerDAO - OP Farms - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 L1FarmProxy
	2.2.2 L2FarmProxy
	2.2.3 Deployment Scripts
	2.2.4 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Notes
	6.1 Deployment Verification

