

PUBLIC

Code Assessment

of the G-UNI LP Oracle

Smart Contracts

November 17, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 10

7 Notes 12

MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Maker team,

First and foremost we would like to thank MakerDAO for giving us the opportunity to assess the current
state of their G-UNI LP Oracle system. This document outlines the findings, limitations, and methodology
of our assessment.

More extensive documentation, especially a short description/motivation of the underlying concept of the
price feed and the related requirements on its dependencies (the oracles) would be helpful. Ideally such
documentation is done for all intended GUnipools the price feed is to be used for. For details please refer
to Missing Documentation. For this review we focused on the intended use as price feed for the
USDC-DAI GUnipool, a pool with two stablecoins.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Specification Changed 1

Low -Severity Findings 2

• Code Corrected 1

• Acknowledged 1

MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the G-UNI LP Oracle repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V
Date Commit Hash Note

1
18 October 2021 0d25676e0956fc3a5359431c708106547c4fef2

6
Initial Version

2
16 November
2021

f069d760976b6fb0c15c9a2453f0c0f1ff87ea21 After Intermediate Report

For the solidity smart contracts, the compiler version 0.6.12 was chosen. This version, although being
deprecated, has been chosen explicitly to be consistent through all newly developed maker modules.

The file in scope for this review was: GUniLPOracle.sol. The main focus was on the internal seek
function including a brief review of the callpath to GUNI.getUnderlyingBalancesAtPrice(). The
internal workings of the GUNI functions however are not part of this review.

2.1.1 Excluded from scope
The GUni implementation itself and UniswapV3 are not part of this review. This includes all reused code
from UniswapV3, GUNI and the function sqrt() from ABDKMath64x64 library.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

GUniLPOracle is a specialized oracle in the Maker ecosystem that provides prices for the LP (liquidity
provider) shares of GUNI pools. It determines the price of a GUni token based on the underlying tokens
held in the UniswapV3 position at the current market rate of these tokens as returned by Maker oracle.
GUNI works on top of Uniswap and serves as a generic wrapper of Uniswap V3 positions into ERC20
tokens with the goal to provide more flexibility to end-users that deposit or withdraw liquidity into Uniswap
V3 pools.

On a high level, Uniswap V3 aims to utilize more efficiently the pool liquidity by allowing the LPs to
choose the price range (lowerTick and upperTick) where their liquidity is made available. The
rewards for an LP depend mostly on the trade volume on the price range that the liquidity has been
allocated. This makes Uniswap V3 positions non-fungible. On the other side, GUNI is a module managed
by Gelato Networks that tries to abstract the internals of the Uniswap V3 to end-users (LPs) and
maximize their profits by allocating the liquidity continuously into optimal price ranges and investing the
earned fees. In this setup, the LPs provide the liquidity into the GUNI pools, which deposit the liquidity
into the Uniswap V3 and then mints the respective wrapped ERC20 tokens for the LP. Note that, the

MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

minted tokens (shares) by GUNI represent a position in the Uniswap V3 pool, however, such tokens are
typical ERC20 tokens, hence fungible (while Uniswap V3 positions are non-fungible).

The goal of GUniLPOracle is to price the LP shares of GUNI pools according to the value of the position
they represent in the Uniswap V3 pool. To achieve this goal the GUniLPOracle interacts with other
oracles in the Maker ecosystem that provide price information for the related tokens and the respective
GUNI pool. For this to work, the GUNI should provide a function
getUnderlyingBalancesAtPrice(uint160 sqrtPriceX96), which forwards the call to the
function LiquidityAmounts.getAmountsForLiquidity(). The core logic of the price calculation
in GUniLPOracle is implemented in the function seek(). Similarly to other oracles of Maker,
GUniLPOracle operates with two Feed variables cur and nxt which store the current price and the
queued price respectively. The prices propagate through the system with 1 hour delay, therefore allowing
wards to take measures in case the queued price nxt is set to an incorrect value.

GUniLPOracle provides the following functionalities:

• stop(): can be called only by authorized wards to stop the oracle.

• start(): can be called only by authorized wards to remove the stop flag stopped = 0.

• step(): can be called only by authorized wards to update the hop value (default 1 hour).

• link(): can be called only by authorized wards to update the oracle address for a token.

• zzz(): can be called by anyone and returns the timestamp of the last price update.

• pass(): can be called by anyone and returns true if enough time to compute the new price has
passed since the last update.

• poke(): can be called by anyone and computes the new price of an LP share given that pass()
returns true. The core logic of the price calculation is implemented in the function seek() which
has internal visibility.

• peek(): can be called only by whitelisted addresses in the mapping bud and returns the current
price and its validity.

• peep(): can be called only by whitelisted addresses in the mapping bud and returns the queued
price (which will be set as current in the next call of poke()) and its validity.

• read(): can be called only by whitelisted addresses in the mapping bud and returns the current
price as bytes32.

• kiss(): can be called only by authorized wards and sets a single (or an array of) address into the
whitelist mapping bud.

• diss(): can be called only by authorized wards and removes a single (or an array of) address from
the whitelist mapping bud.

• The standard authorization functions rely() and deny().

GUniLPOracleFactory allows any user to deploy an GUniLPOracle by calling the function build()
which takes as parameters:

• address _owner: the oracle calls rely() for this address.

• address _src: the address of GUNI pool whose LPs shares will be evaluated.

• bytes32 _wat: the label of the _src token.

• address _orb0: the address of oracle for token0.

• address _orb1: the address of oracle for token1.

MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.1 Trust Model & Roles
Wards: Fully trusted to behave honestly and correctly at all times. They can set the parameters hop,
orb0, orb1, can stop the oracle by calling stop() or resume it with start(), and add/remove
whitelisted addresses to/from the mapping bud. We assume the wards monitor the price feed
continuously and take measures in case nxt holds an incorrect price value before it propagates into the
system.

GUNI pool: Fully trusted. Note that the implementation of a GUni pool is upgradable. Furthermore GUni
pools have privileged roles manager that can modify the parameters of the pool arbitrarily. Both factors
can impact the price feed significantly. We assume that the operators of GUni are fully trusted and they
behave correctly. For the purpose of this audit GUni is expected to work as intended, including that it
cannot be manipulated by flashloans. Finally, we assume the Uniswap V3 implements its functionalities
according to the specification correctly.

External users: Untrusted. Can call the functions of GUniLPOracleFactory or GUniLPOracle with arbitrary
parameters.

Oracles: Part of the Maker Ecosystem, fully trusted. Used to query the prices of the underlying tokens.
These oracles return the current live rate without any delay.

MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• AcknowledgedPossible Gas Optimization for Mappings

5.1 Possible Gas Optimization for Mappings
Design Low Version 1 Acknowledged

Although the value for the mapping isOracle is of type bool which needs only 1 bit of storage, Solidity
uses a word (256 bits) for each stored value and performs some additional operations when operating
bool values (masking). Therefore, using uint instead of bool is slightly more efficient.

Acknowledged:

Maker acknowledged the issue.

MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Specification ChangedMissing Documentation

Low -Severity Findings 1

• Code CorrectedUnused Constant Variable

6.1 Missing Documentation
Design Medium Version 1 Specification Changed

The requirements about the oracles for the underlying tokens are not documented. In the supplied test
file we see following oracles:

address constant USDC_ORACLE = 0x77b68899b99b686F415d074278a9a16b336085A0;
address constant DAI_ORACLE = 0x47c3dC029825Da43BE595E21fffD0b66FfcB7F6e;
address constant ETH_ORACLE = 0x81FE72B5A8d1A857d176C3E7d5Bd2679A9B85763;

The oracles for USDC and DAI return the unit value of one. The ETH oracle is updated roughly once an
hour hence the price returned is not live. For the proper working of the GUniLPOracle a live price feed is
required, frequently updated and without a time delay. When GUniLPOracle.seek() is executed, the
underlying price feeds must return live values.

Furthermore the underlying principle how the price is determined could be described more clearly in the
Readme:

This price feed works by determining how many of token0 and token1 the underlying liquidity position in
UniswapV3 held by the GUniPool has at the current price. This current price is solely determined by
Maker oracles and independent of the current state of the UniswapV3 pool. The assumption is that

1. The Maker oracles for the underlying tokens return the current market rate

2. In general, e.g. outside flashloan scenarios, the UniswapV3 pool will be balanced at the current
market rate. This means that the GUnipool tokens can be redeemed at this current market rate.

Hence such a GUnipool token collateral is priced based on its underlying tokens, independent of the
state of the GUni/Uniswap V3 pool. The documentation may be expanded to explain and motivate this.

Specification changed:

Maker responded:

It was a mistake that the test was referring to the ETH/USD OSM. It should have
referenced the ETH/USD Medianizer to get a live price feed.

MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Furthermore the readme has been updated and now contains:

Underlying price oracles `orb0` and `orb1` should refer to either a Medianizer,
DSValue or some other `read()` compliant oracle. OSMs should not be used to
the double delay.

6.2 Unused Constant Variable
Design Low Version 1 Code Corrected

The variable WAD is declared as constant and initialized to 10 ** 18, however it's never used in the
code.

Code corrected:

The unused constant has been removed.

MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Misleading Function Name link
Note Version 1

The function name link(uint256 _id, address _orb) is misleading as it gives the impression
that the token _id is linked to the respective oracle initially by this function. However, this function only
updates an existing link of the token with the respective oracle (initialized in the constructor).

7.2 NewGUniLPOracle Indexed Fields
Note Version 1

The event NewGUniLPOracle has two indexed parameters corresponding to the token addresses. In
practice, it might be useful if the field address owner is indexed also, as it would allow users to easily
filter oracles from a trusted owner.

MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Possible Gas Optimization for Mappings

	6 Resolved Findings
	6.1 Missing Documentation
	6.2 Unused Constant Variable

	7 Notes
	7.1 Misleading Function Name link
	7.2 NewGUniLPOracle Indexed Fields

