PUBLIC

Code Assessment

of the G-UNI LP Oracle
Smart Contracts

November 17, 2021

Produced for

(] MAKER

@EHAINSEEURITY

by

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG

© 00 N b~ W

10
12

https://chainsecurity.com

1 Executive Summary

Dear Maker team,

First and foremost we would like to thank MakerDAO for giving us the opportunity to assess the current
state of their G-UNI LP Oracle system. This document outlines the findings, limitations, and methodology
of our assessment.

More extensive documentation, especially a short description/motivation of the underlying concept of the
price feed and the related requirements on its dependencies (the oracles) would be helpful. Ideally such
documentation is done for all intended GUnipools the price feed is to be used for. For details please refer
to Missing Documentation. For this review we focused on the intended use as price feed for the
USDC-DAI GUnipool, a pool with two stablecoins.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EXED-Severity Findings 0
(C)-Severity Findings 0
(Medium)-Severity Findings 1
: 1
(Low)-Severity Findings 2
: 1
8 Acknovledged L

@ MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the G-UNI LP Oracle repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

Date Commit Hash Note
V

18 October 2021 | 0d25676e0956fc3a5359431c708106547c4fef2 | Initial Version
1 6

16 November f069d760976b6fb0c15c9a2453f0c0f1ff87ea2l | After Intermediate Report
2| 2021

For the solidity smart contracts, the compiler version 0.6.12 was chosen. This version, although being
deprecated, has been chosen explicitly to be consistent through all newly developed maker modules.

The file in scope for this review was: GUniLPOracle.sol. The main focus was on the internal seek
function including a brief review of the callpath to GUNI . get Under | yi ngBal ancesAt Price(). The
internal workings of the GUNI functions however are not part of this review.

2.1.1 Excluded from scope

The GUni implementation itself and UniswapV3 are not part of this review. This includes all reused code
from UniswapV3, GUNI and the function sqrt () from ABDKMat h64x64 library.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

GUniLPOracle is a specialized oracle in the Maker ecosystem that provides prices for the LP (liquidity
provider) shares of GUNI pools. It determines the price of a GUni token based on the underlying tokens
held in the UniswapV3 position at the current market rate of these tokens as returned by Maker oracle.
GUNI works on top of Uniswap and serves as a generic wrapper of Uniswap V3 positions into ERC20
tokens with the goal to provide more flexibility to end-users that deposit or withdraw liquidity into Uniswap
V3 pools.

On a high level, Uniswap V3 aims to utilize more efficiently the pool liquidity by allowing the LPs to
choose the price range (I ower Ti ck and upper Ti ck) where their liquidity is made available. The
rewards for an LP depend mostly on the trade volume on the price range that the liquidity has been
allocated. This makes Uniswap V3 positions non-fungible. On the other side, GUNI is a module managed
by Gelato Networks that tries to abstract the internals of the Uniswap V3 to end-users (LPs) and
maximize their profits by allocating the liquidity continuously into optimal price ranges and investing the
earned fees. In this setup, the LPs provide the liquidity into the GUNI pools, which deposit the liquidity
into the Uniswap V3 and then mints the respective wrapped ERC20 tokens for the LP. Note that, the

@ MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

minted tokens (shares) by GUNI represent a position in the Uniswap V3 pool, however, such tokens are
typical ERC20 tokens, hence fungible (while Uniswap V3 positions are non-fungible).

The goal of GUniLPOracle is to price the LP shares of GUNI pools according to the value of the position
they represent in the Uniswap V3 pool. To achieve this goal the GUniLPOracle interacts with other
oracles in the Maker ecosystem that provide price information for the related tokens and the respective
GUNI pool. For this to work, the GUNI should provide a function
get Under | yi ngBal ancesAt Pri ce(ui nt 160 sqrtPriceX96), which forwards the call to the
function Li qui di t yAnmount s. get Amount sFor Li qui di t y() . The core logic of the price calculation
in GUnIiLPOracle is implemented in the function seek(). Similarly to other oracles of Maker,
GUniLPOracle operates with two Feed variables cur and nxt which store the current price and the
gqueued price respectively. The prices propagate through the system with 1 hour delay, therefore allowing
war ds to take measures in case the queued price nxt is set to an incorrect value.

GUniLPOracle provides the following functionalities:
e st op() : can be called only by authorized wards to stop the oracle.
estart (): can be called only by authorized wards to remove the stop flag st opped = 0.
e st ep() : can be called only by authorized wards to update the hop value (default 1 hour).
i nk() : can be called only by authorized wards to update the oracle address for a token.
*zz7z(): can be called by anyone and returns the timestamp of the last price update.

e pass(): can be called by anyone and returns t r ue if enough time to compute the new price has
passed since the last update.

e poke() : can be called by anyone and computes the new price of an LP share given that pass()
returns t r ue. The core logic of the price calculation is implemented in the function seek() which
has i nt er nal visibility.

* peek() : can be called only by whitelisted addresses in the mapping bud and returns the current
price and its validity.

e peep() : can be called only by whitelisted addresses in the mapping bud and returns the queued
price (which will be set as current in the next call of poke()) and its validity.

eread(): can be called only by whitelisted addresses in the mapping bud and returns the current
price as byt es32.

* ki ss() : can be called only by authorized wards and sets a single (or an array of) address into the
whitelist mapping bud.

«di ss() : can be called only by authorized wards and removes a single (or an array of) address from
the whitelist mapping bud.

» The standard authorization functions r el y() and deny() .

GUniLPOracleFactory allows any user to deploy an GUniLPOracle by calling the function bui | d()
which takes as parameters:

e address _owner:the oracle callsrel y() for this address.

e address _src:the address of GUNI pool whose LPs shares will be evaluated.
* byt es32 _wat : the label of the _sr ¢ token.

e address _or b0: the address of oracle for tokenO.

e address _orbl: the address of oracle for tokenl.

@ MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.1 Trust Model & Roles

Wards: Fully trusted to behave honestly and correctly at all times. They can set the parameters hop,
or b0, orbl, can stop the oracle by calling stop() or resume it with start (), and add/remove
whitelisted addresses to/from the mapping bud. We assume the war ds monitor the price feed
continuously and take measures in case nxt holds an incorrect price value before it propagates into the
system.

GUNI pool: Fully trusted. Note that the implementation of a GUni pool is upgradable. Furthermore GUni
pools have privileged roles nanager that can modify the parameters of the pool arbitrarily. Both factors
can impact the price feed significantly. We assume that the operators of GUni are fully trusted and they
behave correctly. For the purpose of this audit GUni is expected to work as intended, including that it
cannot be manipulated by flashloans. Finally, we assume the Uniswap V3 implements its functionalities
according to the specification correctly.

External users: Untrusted. Can call the functions of GUniLPOracleFactory or GUniLPOracle with arbitrary
parameters.

Oracles: Part of the Maker Ecosystem, fully trusted. Used to query the prices of the underlying tokens.
These oracles return the current live rate without any delay.

@ MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

@ MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings 0

ty g

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 1
ty g

« Possible Gas Optimization for Mappings (=)

5.1 Possible Gas Optimization for Mappings
[Low][Version 1][]

Although the value for the mapping i sOr acl e is of type bool which needs only 1 bit of storage, Solidity
uses a word (256 bits) for each stored value and performs some additional operations when operating
bool values (masking). Therefore, using ui nt instead of bool is slightly more efficient.

Acknowledged:

Maker acknowledged the issue.

@ MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E)-Severity Findings 0

(CL:0)-Severity Findings 0

(Medium)-Severity Findings 1
« Missing Documentation

(Low)-Severity Findings 1

* Unused Constant Variable (SR {=ITE]

6.1 Missing Documentation

(Design LT D [UZR] Specifcation Changed)

The requirements about the oracles for the underlying tokens are not documented. In the supplied test
file we see following oracles:

address constant USDC ORACLE
address constant DAl _ORACLE
address constant ETH ORACLE

0x77b68899b99h686F415d074278a9a16b336085A0;
0x47c3dC029825Da43BES95E21f f f DOb66Ff cB7F6e;
Ox81FE72B5A8d1A857d176C3E7d5Bd2679A9B85763;

The oracles for USDC and DAI return the unit value of one. The ETH oracle is updated roughly once an
hour hence the price returned is not live. For the proper working of the GUniLPOracle a live price feed is
required, frequently updated and without a time delay. When GUni LPOr acl e. seek() is executed, the
underlying price feeds must return live values.

Furthermore the underlying principle how the price is determined could be described more clearly in the
Readme:

This price feed works by determining how many of tokenO and tokenl the underlying liquidity position in
UniswapV3 held by the GUniPool has at the current price. This current price is solely determined by
Maker oracles and independent of the current state of the UniswapV3 pool. The assumption is that

1. The Maker oracles for the underlying tokens return the current market rate

2. In general, e.g. outside flashloan scenarios, the UniswapV3 pool will be balanced at the current
market rate. This means that the GUnipool tokens can be redeemed at this current market rate.

Hence such a GUnipool token collateral is priced based on its underlying tokens, independent of the
state of the GUni/Uniswap V3 pool. The documentation may be expanded to explain and motivate this.

Specification changed:

Maker responded:

It was a mstake that the test was referring to the ETHHUSD OSM It shoul d have
referenced the ETH USD Medi ani zer to get a live price feed.

@ MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Furthermore the readme has been updated and now contains:

Underlying price oracles “orb0" and “orbl" should refer to either a Medianizer,
DSVal ue or sone other “read()" conpliant oracle. OSMs should not be used to
t he doubl e del ay.

6.2 Unused Constant Variable

(Design (EOVEEERY] Code Corrected

The variable WAD is declared as constant and initialized to 10 ** 18, however it's never used in the
code.

Code corrected:

The unused constant has been removed.

@ MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Misleading Function Name | | nk

The function name |'i nk(ui nt 256 _id, address _orb) is misleading as it gives the impression
that the token _i d is linked to the respective oracle initially by this function. However, this function only
updates an existing link of the token with the respective oracle (initialized in the const r uct or).

7.2 New@Uni LPOr acl e Indexed Fields

The event NewGUni LPOr acl e has two indexed parameters corresponding to the token addresses. In
practice, it might be useful if the field addr ess owner is indexed also, as it would allow users to easily
filter oracles from a trusted owner.

@ MakerDAO - G-UNI LP Oracle - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Possible Gas Optimization for Mappings

	6 Resolved Findings
	6.1 Missing Documentation
	6.2 Unused Constant Variable

	7 Notes
	7.1 Misleading Function Name link
	7.2 NewGUniLPOracle Indexed Fields

