PUBLIC

Code Assessment

of the FlapperUniV2
Smart Contracts

June 06, 2023

Produced for

(] MAKER

@EHAINSEEURITY

by

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG

10
11
12
13
14

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of FlapperUniV2 according to
Scope to support you in forming an opinion on their security risks.

Client implemented a new flapper contract. Rather than auctioning off the surplus DAI, it is now
exchanged and added to an UniswapV2 pool.

The most critical subjects covered in our audit are functional correctness of the changed code and the
impact of the change on the existing system.

It's worth noting that, by design, this new flapper spends up to x2.2 times the amount of DAI the Vow
expects it to spend. For more details please refer to the informatinoal issue.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the FlapperUniV2 repository based on
the documentation files. The scope consists of the three solidity smart contracts:

1. ./src/FlapperMom.sol
2. ./src/FlapperUniv2.sol

3. ./src/OracleWrapper.sol

In deployment scripts have been added:
1. ./deploy/FlapperDeploy.sol
2. ./deploy/Flapperlnit.sol

3. ./deploy/Flapperinstance.sol

The table below indicates the code versions relevant to this report and when they were received.

Date Commit Hash Note

Vv

1 | 3 May 2023 | a462de94dbcle30186af9ee49813c813aad4al9l | Initial Version

2 | 18 May b222ed94b447f14e4305ba34118f851dbl6daebe | After Intermediate Report
2023

3 | 28 May f45¢76691195ffb51c7d2bdab45db5a6316f459¢e Deployment Scripts
2023

For the solidity smart contracts, the compiler version 0. 8. 16 was chosen.

2.1.1 Excluded from scope

Any other file not explicity mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

UniswapV2 is not in scope of this review.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

MakerDAO implemented a new flapper contract. Leveraging Uniswap v2, surplus DAI of the Vow is
exchanged for Gem tokens. The acquired Gem tokens, along with a proportional amount of additional
DAI drawn from the Vow are deposited back into the liquidity pool. The liquidity pool shares are minted to
a predefined r ecei ver.

FlapperUniv2

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Upon deployment of the contract, immutables including the Gem token, pair (UniswapV2 pool) and the
receiver are initialized.

The flapper contract features the following state variables that can be updated by priviledged roles:
* pi p the reference price oracle used for the sanity check on the exchange rate of the swap.
* hop minimum amount of seconds between kicks.

e want relative multiplier (in unit of WAD) of the reference price to insist on during the price check.

Furthermore, there is a variable | i ve which is set to 1 upon deployment and to O when the contract is
caged during global shutdown.

Whenever the Vow of the DSS has sufficient surplus, anyone may execute Fl apper . ki ck() through
Vow. f | ap() . Before calling Fl apper . ki ck(bunp, 0), the Vow ensures the debt is zero and that
there is sufficient surplus. Note that this sufficient surplus check is circumvented by this new flapper as
this flapper pulls more than the expected amount of DAI.

The contract's main function ki ck() works as follows:
« Pulls DAI from the nsg. sender (Vow).

« Swaps this DAI to Gem tokens in the UniswapV2 pool. A sanity check on the exchange rate is done
using an external oracle.

« Calculates and pulls an additional amount of DAI from the nmsg. sender (Vow) in order to add the
received Gem tokens and DAI in a balanced manner to the pool.

« A sanity check on the DAI amount is done before the DAI and Gem tokens are transferred to the
pool. The LP tokens are minted to the receiver.

The receiver will be a PauseProxy controlled by the Governance. LP tokens are internally called "Elixir".
Shutdown / Global settlement:

In step 1 of the shutdown procedure the End module will call Vow. cage() which in turn calls the flapper.
Since this flapper holds no assets, no funds must be move, the contracts | i ve status is simply disabled.

LP tokens at the r ecei ver are considered lost for the system in case of Emergency Shutdown due to
malicious governance.

Administrative functions to add/remove priviledged roles (rel y() /deny()) and to update parameters
file() exist.

FlapperMom
This contract is used to bypass the governance delay when disabling the flapper in an emergency.

Since MakerDAO contracts do not feature fine grained access control, any priviledged account (war d)
may call any priviledged function on the contract. To expose certain priviledged functions only, Mom
contracts are used: These smart contracts feature code which allows to call certain functions on the
target contract only, hence restricting access.

FlapperMom must be given the ward role in FlapperUniV2. It exposes st op() which updates the hop
parameter of the flapper to t ype(ui nt 256) . max. Consequently, executions of ki ck() will be paused
until the value has been reset.

stop() is a priviledged function. Access control is determined through a DsAuth scheme: Either the
contract itself or the owner can call the function. Furthermore, if an authority contract is set, the authority
contract is queried whether to grant access for this nsg. sender () on this function.

Finally the contract offers functionality for the owner to update the owner (set Owner()) and the
authority contract (set Aut hority()).

OracleWrapper

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

This contract facilitates the conversion between an MKR/USD oracle and the USD value of the new
governance token. The denomination of the new token is that 1 MKR token is equivalent to 1200 of the
new governance tokens.

2.2.1 Trust Model and Roles

The Gem token used will be a rebranded version of the MKR token, the denomination is intended to be 1
MKR will be worth 1200 of this token.

With this flapper, surplus DAI is no longer auctioned off for MKR tokens. Instead, DAI is exchanged for
Gem tokens and deposited into the pool. All Ip pool shares minted are transferred to an external recipient
set upon deployment. This recipient is intended to be a pause proxy controlled by the Governance.

The Governance is fully trusted to set all parameters honestly and correctly. The file functions feature no
sanity checks, the assumption is that the governance thoroughly checks the parameters before the
transaction is executed.

Callers of Vow. f | ap() which invokes FI apper . ki ck() are untrusted.

Uniswap V2 is expected to work correctly as documented. The pool is expected to have sufficient
liquidity, an illiquid pool may have negative consequences for this flapper. And it is assumed the
exchange rate on uniswap v2 is synced with other markets.

Wards of FlapperMom and the price feeds are fully trusted.

2.2.2 Changes in Version 2

* Flapper will first call sync() in case there is a donation to the pair and use the updated balance for
swap and deposit later.

* Now the total amount of surplus for swap and donation is computed and pulled only once from Vow
which saves one external call to vat and daiJoin.

« the Ki ck event is modified to show the swapped surplus and Gem token amount, the total amount
of surplus used, and the liquidity minted.

2.3 Deployment Scripts

After the review of the main contracts deployment scripts have been added in (Version 3). These are
libraries which contain functions facilitating the deployment and initialization of the contracts.

FlapperDeploy: Library implementing functions to deploy the contracts. These are intended to be used
locally with foundry in order to deploy the contracts.

e depl oyFl apper Uni V2() : Deploys a new instance of FlapperUniV2 and FlapperMom with the
given parameters. Ownership of both contracts is transferred to the given owner. The deployer
retains no priviledged role afterwards.

«depl oyOr acl eW apper () : Deploys a new instance of OracleWrapper with the given parameters.
This contract features no priviledged roles.

Flapperlnit: Library implementing functions to initialize the contracts. This library is intended to be used in
a contract which is later executed as delegatecall in the priviledged pause proxy of the Governance.

«i nit Fl apper Uni V2() : After performing sanity checks, the initial values are set in the flapper and
the vow. Adds vow and nomas wards. MCD_ADM fetched from the chainlog is set as the mom's
authority and the chainlog is updated for MCD_FLAP and FLAPPER_MOM.

*initOracl eWapper(): Calls ki ss on the pi p, this adds the wrapper as a bud ensuring it can
read from the pricefeed. Finally the address is set in the chainlog.

Despite the sanity checks, the functions rely on the parameters passed by the Governance to be correct.

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings £
(C2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings ¢

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 0

y g

(CL:0)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 1
ty g

« Pull DAI From Vow All at Once

6.1 Pull DAI From Vow All at Once
(Design [(ETYNELIIBY Code Corrected

During a ki ck() call, two operations (a swap and a mint) on the UniswapV2 pair are executed
consecutively. For each operation, an external call to the vat and daiJoin are invoked beforehand to pull
the required DAI. However, the pool state after the swap can be precomputed, which means the total
amount of DAI needed can be precomputed as well. It might be worth to do this to reduce the gas used
and hence make the transactions slightly cheaper.

CS-MUF-003

Code corrected:

The amount of DAI is now precomputed and pulled once.

6.2 Incorrect Comment

[Informational] [Version 1] Specification Changed

The comment 997 is the Uniswap LP feein _get Amount Qut () is incorrect. 99. 7%represents
the amount after deducting the fee, and the fee is 0. 3%

CS-MUF-002

function _get Amount Qut (ui nt 256 antln, uint256 reserveln, uint256 reserveQut)
internal pure returns (uint256 antQut) ({

ui nt 256 _amt | nFee antln 997;

ant Qut _ant | nFee reser veQut (reserveln 1000 _ant | nFee) ;

Specification changed:

The incorrect comment has been removed.

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Revert Reason When FlapperMom Stops
Flapper

[Informational] [Version 1]

CS-MUF-001
FlapperMom can inhibit FlapperUniV2 in an emergency. It does so by setting the minimum time between
two executions of ki ck() to type. nmax(ui nt256). ki ck() will then revert due to the addition
overflow:

requi re(bl ock. timestanp 777 hop, "Fl apper Uni V2/ ki cked-t 0o-soon");

Except when ki ck() has never been executed before and zzz is still equal to 0, the require statement
will cause the revert and emit the error MessageChannel.

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 More Than bunp Amount of DAI Used
(D (Version 1)

The Vow contract has been designed and documented with the original Flapper auctioning surplus DAI
for MKR tokens in mind.

function flap() external returns (uint id) {

requi re(vat. dai (address(this)) add(add(vat . si n(address(this)), bunp), hunmp), "Vow insufficient-surplus");
requi re(sub(sub(vat.sin(address(this)), Sin), Ash) 0, "Vow debt-not-zero");
id f | apper . ki ck(bunp, 0);

}

By design, the new FlapperUniV2 may utilize up to 2.2 times the bump amount. The Vow contract may
not anticipate the Flapper using more than the bump amount of DAI.

Depending on the values set for bunp and hunp, this could result in the Vow contract unexpectedly
holding less than hunp (surplus buffer) amount of DAI after a call to ki ck(), or a call to ki ck()
unexpectedly reverting if the required amount of DAI is not available.

This behavior is now described in the README.

8.2 Unexpected Pair State
(D (Version 1)

Generally it is assumed that the free market ensures the pair represents the current market rate.
However this can not be relied on as the state of the pair might be changed just before calling ki ck() .
There are various possibilities why the pair could be in a state not matching the current market rate.
Notably e.g. in case there is an unaccounted donation of tokens in the Uniswap pool (balance > reserve),
the flapper will first call sync() on the pair and swap on the updated balances afterwards. This state can
also be reached by an attacker donating and calling sync directly. Furthermore the state may be changed
by trading.

Generally the possible manipulation is bounded by the following checks:
* In case the swapping ratio deviates too much from the reference price feed, ki ck() will revert.

* In case the liquidity of the pool is too shallow and the amount of surplus deposited back goes over
120% of swapped, ki ck() will also revert.

In theory, the following manipulations by donations are possible:
» One can donate within the price tolerance want to make the flapper trade at a bad price.

* One can intentionally donate to revert a ki ck() by pushing the price out of the price tolerance
want .

* One can also donate to increase the liquidity and make a ki ck() which was going to revert
(deposited larger than 120% of swapped) succeed.

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

MakerDAO is aware and adds the following considerations:

* One can donate within the price tolerance want to make the flapper trade at a bad price - the assunption
is that any trade above "want” is viable. It is of course possible for anyone to nove the price with a swap,
which is probably even nore economical than a donation. As long as “want® and “lot" are set correctly both
type of attenpts should not be econonical and are of course known linmitations of a perm ssionless system

* One can intentionally donate to revert a kick() by pushing the price out of the price tol erance want

- sane
as above, this can happen with a swap and is a known given. Keepers can use flashbots to avoid it.

* One can also donate to increase the liquidity and nake a ki ck() which was going to revert (deposited |arger
than 120% of swapped) succeed - if the kick succeeds it is intended behavior.

@ MakerDAO - FlapperUniV2 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model and Roles
	2.2.2 Changes in Version 2

	2.3 Deployment Scripts

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Pull DAI From Vow All at Once
	6.2 Incorrect Comment

	7 Informational
	7.1 Revert Reason When FlapperMom Stops Flapper

	8 Notes
	8.1 More Than bump Amount of DAI Used
	8.2 Unexpected Pair State

