PUBLIC

Code Assessment

of the FlapperUniV2SwapOnly

Smart Contracts

July 27, 2023

Produced for

N Maker

@EHAINSEEURITY

by

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

o O A W N P

Notes

@ MakerDAO - FlapperUniV2SwapOnly - ChainSecurity - © Decentralized Security AG

© 0 N 01 W

10

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of FlapperUniV2SwapOnly
according to Scope to support you in forming an opinion on their security risks.

MakerDAO implements a new Flapper contract for the Maker Core contract Vow that is used to convert
DAl surplus. In comparison to the old Flapper contract, the DAI are only swapped on a Uniswap v2 pair
and the proceedings sent to a predefined r ecei ver address instead of deposited into the pair as
liquidity.

The most critical subjects covered in our audit are functional correctness and frontrunning. Functional
correctness is high and frontrunning is only possible to a small extent determined by the want factor.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ MakerDAO - FlapperUniV2SwapOnly - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EED-Severity Findings

()-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

@ MakerDAO - FlapperUniV2SwapOnly - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the FlapperUniV2SwapOnly repository
based on the documentation files. The scope consists of the following solidity smart contracts:

1. ./src/FlapperUniV2SwapOnly.sol

The table below indicates the code versions relevant to this report and when they were received.

Date Commit Hash Note
\Y

20 July 70246121db072856fe1219089¢89ad24f600 | FlapperUniV2SwapOnly code
1| 2023 dc99 delivered

For the solidity smart contracts, the compiler version 0. 8. 16 was chosen.

2.1.1 Excluded from scope

Any other file not explicitly mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

UniswapV2 is not in scope of this review.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

MakerDAO offers FlapperUniV2SwapOnly, a new version of the flapper contract.
FlapperUniV2SwapOnly uses Uniswap V2 to periodically exchange the surplus DAI accumulated in the
Vow for Gem tokens. The acquired Gem tokens are then sent to a receiver.

The contract FlapperUnivV2SwapOnly differs from the previously deployed FlapperUniV2 because it does
not use the acquired Gem to supply liquidity to the Uniswap V2 pool, and instead only takes Gem from
the existing Uniswap pool.

2.2.1 FlapperUnivV2SwapOnly

The contract is used by the Vow to exchange surplus DAI to Gem tokens, expected to be MKR, in order
to redistribute the surplus DAI to MKR holders through MKR buy-back.

Initialization of the contract consists in contract creation, during which immutable variables are set, and
calling of fi | e() which allows a privileged account to set the following state variables of the contract:

 pi p: The price oracle used as a reference to protect the Flapper against excessive slippage.

« hop: The cooldown period between successive calls of ki ck() .

@ MakerDAO - FlapperUniV2SwapOnly - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

e want : The relative anti-slippage parameter, the output amount value, estimated with the oracle, has
to be at least want times the input value.

Contract deployment also sets the | i ve variable to 1. Call of cage() by a war d irreversibly sets | i ve
to 0.

All the functionality exposed by the contract is guarded by the aut h modifier, only allowing war ds to call,
however unprivileged users are expected to be able to trigger calls of ki ck() through Vow. fl ap() .
The Vow allows users to call f | ap() when a surplus (and no debt) is present.

The main function ki ck() exposes the following functionality:

Its argument | ot is a RAD amount of DAI that is intended to be exchanged on UniswapV2 for the Gem.
The output amount of Gem corresponding to a swap of size | ot is computed from the current reserves of
the Uniswap pool. The output amount from Uniswap is compared with the ideal output amount for | ot ,
as indicated by the price reported by the oracle pi p. If the output is lower than the want threshold,
execution reverses to prevent an excessive amount of slippage. When the Flapper is set in the Vow, it is
given rights to move DAI in the Vat on behalf of the Vow through hope() . The Flapper therefore moves
| ot from the Vow to itself, and exits the | ot amount of ERC20 DAI token to the Uniswap pool through
DaiJoin. Finally swap() is called on the Uniswap pool to obtain Gem tokens. The receiver of swap() is
set to the global receiver variable, which is expected to be a PauseProxy controlled by the
Governance.

Besides the main ki ck() function, the contract exposes the following functionality:
rely() and deny(), to add or remove accounts from the war ds mapping.
cage(),tosetthel i ve variable to 0 and disable the contract permanently.

file(), to set the pi p oracle address, the hop cooldown period length and the want anti-slippage
parameter.

2.2.2 Roles & Trust Model

Wards are trusted, maliciously operating wards can empty the Vow DAI surplus. It is assumed that the
Governance chooses sane parameters for want , hop and pi p.

in particular the wards are Vow, that will call ki ck() and cage() in the event of system shutdown, and a
Governance proxy that will select flapper parameters. The Governance proxy is trusted not to call
ki ck() directly.

@ MakerDAO - FlapperUniV2SwapOnly - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ MakerDAO - FlapperUniV2SwapOnly - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ MakerDAO - FlapperUniV2SwapOnly - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings

In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings

(1 1)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

@ MakerDAO - FlapperUniV2SwapOnly - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

6 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

6.1 Call to Vow.flap() Can Be Sandwiched

The parameters for the FlapperUniV2 deployed at time of the audit are a | ot of 5000 DAI, a cooldown
period of 1577 seconds between calls to Vow. f | ap() , and 98% slippage tolerance through want .

An MEV searcher can therefore sandwich the Vow. f | ap() call and extract up to 2% of the 5000 DAI
every 26 minutes. The gas cost of calling f | ap() is around 20$ at the current gas price of 30 Gwei.
Assuming the sandwich attack gas cost is within the same order of magnitude (one frontrunning
transaction and one backrunning transaction, on warm token addresses, and warm Uniswap pool), we
expect a MEV searcher to extract a profit of around $50 per call. This amounts to a possible loss for the
protocol of around $2800 daily.

@ MakerDAO - FlapperUniV2SwapOnly - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 FlapperUniV2SwapOnly
	2.2.2 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Notes
	6.1 Call to Vow.flap() Can Be Sandwiched

