

PUBLIC

Code Assessment

of the Endgame Toolkit

Deployment Scripts

December 12, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Findings 13

6 Resolved Findings 14

7 Notes 17

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Endgame Toolkit according
to Scope to support you in forming an opinion on their security risks.

MakerDAO implements a toolkit for SubDAO governance including a governance token, a proxy contract
for governance spell execution and a reward farming contract. This audit report reviews the security and
correctness of the corresponding deployment scripts.

The most critical subjects covered in our audit are functional correctness, access control and frontrunning
resistance.

In a production setting, Deployment verification is strongly recommended.

While Foundry does not atomically perform deployment, no frontrunning possibilities have been found.

The current state of the deployment and initialization scripts shows a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 3

• Code Corrected 2

• Specification Changed 1

Medium -Severity Findings 0

Low -Severity Findings 3

• Code Corrected 3

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Endgame Toolkit repository based on
the documentation files.

The following deployment scripts are part of the scope of this review:

Version 1

script/
 CheckStakingRewardsDeploy.s.sol
 StakingRewardsDeploy.s.sol
 dependencies/
 SDAODeploy.sol
 StakingRewardsDeploy.sol
 StakingRewardsInit.sol
 SubProxyDeploy.sol
 SubProxyInit.sol
 VestInit.sol
 VestedRewardsDistributionDeploy.sol
 VestedRewardsDistributionInit.sol

Version 2

In version 2, the following files have been removed:

script/
 CheckStakingRewardsDeploy.s.sol
 StakingRewardsDeploy.s.sol

The following files have been added:

script/
 01-StakingRewardsDeploy.s.sol
 02-StakingRewardsInit.s.sol
 09-CheckStakingRewardsDeployment.s.sol

Version 3

In version 3, the repository has been restructured. The following files have been removed:

script/
 01-StakingRewardsDeploy.s.sol
 02-StakingRewardsInit.s.sol
 09-CheckStakingRewardsDeployment.s.sol

The following two files have been added:

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

script/
 dependencies/
 phase-0/
 FarmingInit.sol
 phase-0/
 01-FarmingDeploy.s.sol

Version 6

In version 6, the following files have been removed:

script/
 dependencies/
 phase-0/
 FarmingInit.sol
 phase-0/
 01-FarmingDeploy.s.sol

The following files have been added:

script/
 dependencies/
 phase-1b/
 Usds01PreFarmingInit.sol
 UsdsSkyFarmingInit.sol
 phase-1b/
 01-UsdsSkyFarmingDeploy.s.sol
 11-Usds01PreFarmingDeploy.s.sol

Version 8

In version 8, the following files have been added:

script/
 dependencies/
 phase-1d/
 LsmkrSpkFarmingInit.sol
 SkySpkFarmingInit.sol
 SpkSkyFarmingInit.sol
 UsdsSpkFarmingInit.sol
 phase-1d/
 01-UsdsSpkFarmingDeploy.s.sol
 11-SkySpkFarmingDeploy.s.sol
 21-SpkSkyFarmingDeploy.s.sol
 31-LsmkrSpkFarmingDeploy.s.sol

Version 9

In version 9, the deployment script for SPK has been added:

script/
 phase-1d/
 40-SpkDeploy.s.sol

The table below indicates the code versions relevant to this report and when they were received.

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

V Date Commit Hash Note

1 20 Sept 2023 e66d59a05c21bed6624e12db2b2cbda2fdb0a7e8 Initial Version

2 03 Oct 2023 5efa2cac3b22fa94b2599cd83cb4bfea19747091 Second Version

3 20 Oct 2023 5dc625fd6a07c7c24a97a45553c2287f38807e44 Updated Phase-0

4 15 Nov 2023 f95d2fae7992cc88ca2c6725e9ea284c895b6f3b Refactor VestInit

5 17 Jan 2024 2e1d277957563400d394b03c49346aff407593c6 Refactor StakingRewards

6 28 Aug 2024 eb49fa619a30e4d67f46cbb21b2ef19705ff0554 Renaming and Pre-farming

7 06 Sept 2024 14268515aa729a588096f0d579ea38bde3e9ba2f Minor Changes

8 09 Oct 2024 5bf4b1771b99f5f8758fd40a4ac567f797b5405b SPK Farming

9 09 Dec 2024 e6c3a783614748717b4cb8d671c907a1feb71121 SPK Deployment

Version 4For the solidity smart contracts, the compiler version 0.8.19 was chosen. In the compiler
version was downgraded to 0.8.16.

2.1.1 Excluded from scope
Any other file not explicitly mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

Version 3

Version 6

: Files in subfolder phase-0-alpha are for demo purposes only and hence out of scope of the
review. Note that since , the directory has been removed.

2.2 System Overview
Version 1This system overview describes the initially received version () of the deployment scripts and

libraries as defined in the Assessment Overview.

At the end of this report section we have added subsections for each of the changes accordingly to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

MakerDAO offers deployment scripts for the Maker Endgame toolkit, consisting of the generic SubDAO
governance token SDAO, SubDAO governance proxy SubProxy, and a token farming module for NGT
(and, later, SDAO) tokens.

2.2.1 SDAO deployment
An instance of the SDAO contract is supposed to be deployed for every SubDAO, representing the
governance tokens of that SubDAO. For each SubDAO, the deploy function of library SDAODeploy is
expected to deploy the contract and change the owner from the deployer to Maker's PauseProxy. This is,
however, only planned for a later stage (Phase 1) of the Endgame plan.

2.2.2 SubProxy deployment
For each SubDAO, a SubProxy is deployed and initialized. First, the deployer creates a new SubProxy
contract and changes the owner from the deployer to Maker's PauseProxy. Then the PauseProxy adds
the address of the SubProxy to the chainlog. Similarly to the SDAO token, the SubProxy is planned for a
later stage (Phase 1) of the Endgame plan.

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 7

https://github.com/makerdao/endgame-toolkit/tree/e66d59a05c21bed6624e12db2b2cbda2fdb0a7e8
https://github.com/makerdao/endgame-toolkit/tree/5efa2cac3b22fa94b2599cd83cb4bfea19747091
https://github.com/makerdao/endgame-toolkit/tree/5dc625fd6a07c7c24a97a45553c2287f38807e44
https://github.com/makerdao/endgame-toolkit/tree/f95d2fae7992cc88ca2c6725e9ea284c895b6f3b
https://github.com/makerdao/endgame-toolkit/tree/2e1d277957563400d394b03c49346aff407593c6
https://github.com/makerdao/endgame-toolkit/tree/eb49fa619a30e4d67f46cbb21b2ef19705ff0554
https://github.com/makerdao/endgame-toolkit/tree/14268515aa729a588096f0d579ea38bde3e9ba2f
https://github.com/makerdao/endgame-toolkit/tree/5bf4b1771b99f5f8758fd40a4ac567f797b5405b
https://github.com/makerdao/endgame-toolkit/tree/e6c3a783614748717b4cb8d671c907a1feb71121
https://chainsecurity.com

2.2.3 Farming module deployment and initialization
Each farming module consists of three contracts: DssVestMintable, StakingRewards, and
VestedRewardsDistribution. A farming module is expected to be deployed for each SubDAO. DssVest
generates a stream of tokens to the VestedRewardsDistribution, which is then configured as prizes for
users staking DAI/NST in StakingRewards.

DssVestMintable can mint an amount of NGT (SDAO in Phase 1) as its vesting stream to
VestedRewardsDistribution. As such, it needs to be a ward to the NGT token to be able to call its
mint() function. create() allows wards of DssVestMintable to create streams of tokens towards any
address. As such, the only ward after deployment has to be the trusted Maker's PauseProxy. cap, the
maximum amount of tokens per second that are streamed in a vest, has to be increased from the default
0.

StakingRewards is constructed with an owner address that can pause the contract and is expected to be
Maker's PauseProxy, the rewardsDistribution which is an address that can notify new rewards and
is to be VestedRewardsDistribution, rewardsToken which is the address of the NGT token, and
stakingToken which is the token staked for farming (either DAI or NST).

VestedRewardsDistribution receives a vesting stream of tokens from DssVest and transfers them as
rewards to StakingRewards. Its only deployment parameters are therefore the addresses of these two
contracts.

Since StakingRewards and VestedRewardsDistribution depend on each other's addresses for correct
configuration, StakingRewards is first deployed, setting its rewardsDistribution field to the zero
address. Then VestedRewardsDistribution is deployed correctly referencing StakingRewards, and finally
rewardsDistribution in StakingRewards is set to the address of VestedRewardsDistribution.

After the contracts are deployed, a vesting stream can be created by the DssVest owner with DssVest as
beneficiary, no cliff period, and the restricted field set to one.

Note: The aforementioned contracts are deployed and initialized by an EOA and the PauseProxy is not
set as ward to conduct end-to-end tests in a first step. The examined deployment entrypoint scripts will
be used as templates for Spells that will be used to integrate the contracts into the Maker ecosystem in
Phase 0.

2.2.4 Trust model & Roles
In the current state (as of this writing), the farming contracts will be owned by an EOA (or, in case of DAO
and SubProxy, not be deployed at all). The contracts should therefore be considered completely trusted.

After deployment in Phase 0/1, every contract's ownership is assumed to be transferred to Maker's
PauseProxy, and no other wards are maintained. No privileged actions happen between deployment and
transfer of ownership, such as minting of tokens, creation of vests, notification of rewards, etc. It is
important that after deployment, concerned parties thoroughly check the state of the deployed contracts
to ensure that no unexpected action has been taken on them during deployment.

For SDAO contract deployed on L2, it is expected that the L2 Governance Relay and the L2 Token
Bridge are the only wards.

2.2.5 Changes in Version 3
Actual deployment scripts for the farming module have been added: 01-Farming-Deploy.s.sol and
FarmingInit.sol. Their code is based on previously existing scripts for test / demo deployment.

The new 01-Farming-Deploy.s.sol script executed off-chain deploys a StakingRewards and
VestedRewardsDistributon contract if no respective address is already present in the local
FOUNDRY_CHANGELOG.changelog file.

For the StakingRewardsContract, the owner is set to the MCD_PAUSE_PROXY, the staking token is the
NST and the rewards token is the NGT token.

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

For the initialization, library FarmingInit is provided. This code is intended to be executed on chain in
the execution context of the MCD_PAUSE_PROXY, hence it has the necessary privileges to execute the
actions.

Given the inputs:

address nst;
address ngt;
address rewards;
address dist;
address vest;
uint256 vestTot;
uint256 vestBgn;
uint256 vestTau;

sanity checks are performed to ensure the given contracts configuration is compatible. Additionally it is
ensured that the vest, the vesting contract assumed to be an instance of a DSS-Mintable-Vest, has
minting rights on the NGT token.

The StakingRewards contract is initialized using the functionality of the StakingRewardsInit library. The
VestedRewardsDistributor contract is set as the distributor.

A new vesting stream in vest is created given the input parameters, afterwards the
VestedRewardsDistributor updated accordingly, it's local parameter vestId is set to the id of the created
vesting stream.

2.2.6 Changes in Version 5
In version 5 an additional check has been added to the init script FarmingInit to ensure the reward
token isn't equal to the staking token.

2.2.7 Changes in Version 6
In version 6, NST and NGT has been renamed to USDS and SKY respectively in the scripts. The
deployment scripts now retrieve the PauseProxy address from the chainlog, and the init scripts now add
the reward and distribution contracts to the chainlog.

In addition, pre-farming deploy and init scripts are added to deploy a StakingRewards contract with
USDS as staking token, address(0) as rewards token, and Maker's PauseProxy as the owner. The
pre-farming contract is used to keep the history and all the events on-chain, and the rewards calculation
and distribution will be achieved off-chain.

2.2.8 Changes in Version 7
VestInit.init() has been removed. Setting the cap is expected to be done manually by calling
file(). Additionally, the sanity checks in the scripts have been adjusted:

1. UsdsSkyFarmingInit: The inequality of rewardsToken and stakingToken is not validated
anymore as this is part of the constructor. Further, the comparison against the parameters passed
by governance (expected to be distinct) further ensures their inequality since governance is
expected to provide correct parameters.

2. UsdsSkyFarmingInit: The reward contract's owner is validated. Note that this check is now
explicit and has previously not been directly visible (as part of the call to
setRewardsDistribution()).

3. UsdsSkyFarmingInit and Usds01PreFarmingInit: It is not validated that the last update
time is zero. However, it is now validated that the reward rate is zero which results in a similar
property (since a zero update time would have implied a reward rate of zero). Additionally, the
reward distribution is ensured to be 0x0. For the former, in case of no unexpected updates, the

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

reward distribution would have remained without effect as it would have been overwritten
afterwards. For the latter, the post-initialization storage will be cleaner. Additionally, the changes
aim to prevent a permissionless DoS vector. Namely, getReward() could have allowed for
permissionless updates to the last update time if the period finish storage value had been set
(which, however, requires permissions). Ultimately, the validation process for governance might be
simplified.

In the latest version, the same SDAO contract for Spark will also be deployed on L2.

2.2.9 Changes in Version 8
Deployment scripts and initialization libraries have been added for the following SPK (Spark) related
farms:

1. SkySpkFarming: stake SKY to farm SPK as reward.

2. SpkSkyFarming: stake SPK to farm SKY as reward.

3. UsdsSpkFarming: stake USDS to farm SPK as reward.

4. LsmkrSpkFarming: stake lsMKR to farm SPK as reward. Note that this farm is to be used by
LockstakeUrn contracts.

These farming contracts will be deployed and initialized with the same approach as UsdsSkyFarming.

2.2.10 Changes in Version 9
A deployment script for the SPK token has been added.

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 3

• Specification ChangedStakingRewards rewardsDistribution Ownership Inconsistency

• Code CorrectedVest Minting Not Possible

• Code CorrectedVest Ownership Not Transferred at Deployment

Medium -Severity Findings 0

Low -Severity Findings 3

• Code CorrectedMissing Checks

• Code CorrectedSubProxy rely() to MCD End Instead of MCD ESM During Initialization

• Code CorrectedVest Should Not Have a Cliff Period

Informational Findings 1

• Code CorrectedRedundant Imports

6.1 StakingRewards rewardsDistribution
Ownership Inconsistency
Correctness High Version 1 Specification Changed

CS-EGTKD-001

StakingRewardsInit.init() is called by the deployer after StakingRewardsDeploy.deploy()
has been called, setting its owner to p.owner, which should be Maker's PauseProxy.
StakingRewardsInit.init() is therefore not called by the owner (as the Foundry script cannot be
run by a governance Spell) and will revert. If p.owner is the deployer, then the ownership is not correctly
transferred to the PauseProxy anywhere in the script.

Specification changed:

MakerDAO informed us that the audited deployment script is currently meant for testing purposes. The
deployer will therefore be an EOA. This will change later in Phase 0 of the Endgame Plan, where the
contracts are initialized via governance Spell setting the owner of the contracts to the PauseProxy. The
deployment scripts will be used as templates for the final Spell.

6.2 Vest Minting Not Possible
Correctness High Version 1 Code Corrected

CS-EGTKD-002

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

DssVestMintable.pay() calls the NGT token's mint() function to generate tokens for the vesting.
The functions is guarded and can only be accessed by a ward. The DssVestMintable contract is
never set as a ward of the NGT contract.

Code corrected:

The initialization script now performs the following call, setting the ward of the NGT contract:

RelyLike(ngt).rely(vest);

This call is only possible if the deployer is an EOA that has been set as ward in the NGT contract. Since
the script is currently only deploying contracts for testing purposes, the supplied NGT contract will have
the correct rights in the given environment.

6.3 Vest Ownership Not Transferred at
Deployment
Security High Version 1 Code Corrected

CS-EGTKD-003

StakingRewardsDeploy deploys DssVestMintable, whose ward has unlimited token minting ability for the
vested token by creating arbitrary new vests. The ward of DssVestMintable is not transferred to Maker's
PauseProxy after deployment. It remains at the address of the deployer.

Code corrected:

The owner of DssVestMintable is now transferred to the given admin address of the deployment script.
Since the deployment script is, in a first step, run by an EOA and only used for testing purposes, the
ownership will not be transferred to the PauseProxy. This will be different later in Phase 0 of the
Endgame plan.

6.4 Missing Checks
Security Low Version 2 Code Corrected

CS-EGTKD-007

Phase0StakingRewardsInitScript does not check the correct state of some of the deployed
contracts. In particular, the following checks are missing:

• stakingToken in StakingRewards is not checked to be the actual NST contract.

• dssVest and stakingRewards in VestedRewardsDistribution are not checked to be equal
to the actual DssVestMintable and StakingRewards contracts.

• It is not checked that the rewardRate in StakingRewards has already been updated (e.g., by
checking that lastUpdateTime is 0). This is possible if the deployer adds their own rewards
distribution contract and calls notifyRewardAmount with it.

Code corrected:

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Version 3

While originally the scripts related to the deployment and initialization of the farming module (including
Phase0StakingRewardsInitScript.sol of the issue above) have been intended for testing/demo
purposes only, in these scripts have been adapted to be used for the actual deployment in
phase 0. The missing checks have been added to the code.

6.5 SubProxy rely() to MCD End Instead of MCD
ESM During Initialization
Correctness Low Version 1 Code Corrected

CS-EGTKD-006

In the SubProxyInit library, the init() function sets MCD End as a ward of the SubProxy. MCD End has
no ability to administrate arbitrary contracts, such as the SubProxy in question. The purpose of the
rely() is therefore unclear.

Code corrected:

MCD End has been replaced with MCD ESM (Emergency Shutdown Module) which will be able to
remove the PauseProxy from the wards of the contract.

6.6 Vest Should Not Have a Cliff Period
Design Low Version 1 Code Corrected

CS-EGTKD-004

VestedRewardsDistribution requires the configured vest to not have a cliff period past the beginning.
StakingRewardsDeploy however supports a non-zero value for vestEta.

Code corrected:

The vestEta option has been removed.

6.7 Redundant Imports
Informational Version 3 Code Corrected

CS-EGTKD-005

VestInit.sol imports dss-test/ScriptTools.sol that is redundant. It is never used in this
library, in addition, it is built on top of the forge standard library that can only be used for off-chain testing.

Code corrected:

The redundant import has been removed.

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Deployment Verification
Note Version 1

Note: This is only relevant for the deployment in Phase 0/1 of the Endgame plan.

Since deployment of the contracts is not performed by the governance directly, special care has to be
taken that all contracts have been deployed correctly. While some variables can be checked upon
initialization through the PauseProxy, some things have to be checked beforehand.

We therefore assume that all mappings in the deployed contracts are checked for any unwanted entries
(by verifying the bytecode of the contract and then looking at the emitted events). This is especially
crucial for wards mappings.

In the case of DssVestMintable, special care also has to be taken to make sure that no extra awards
have been added by the deployer. During initialization, the PauseProxy adds the contract as a ward to
the NGT contract. After this, if the deployer added any awards with a controlled address as usr, they
are able to mint tokens to themselves.

MakerDAO - Endgame Toolkit - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 SDAO deployment
	2.2.2 SubProxy deployment
	2.2.3 Farming module deployment and initialization
	2.2.4 Trust model & Roles
	2.2.5 Changes in Version 3
	2.2.6 Changes in Version 5
	2.2.7 Changes in Version 6
	2.2.8 Changes in Version 7
	2.2.9 Changes in Version 8
	2.2.10 Changes in Version 9

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 StakingRewards rewardsDistribution Ownership Inconsistency
	6.2 Vest Minting Not Possible
	6.3 Vest Ownership Not Transferred at Deployment
	6.4 Missing Checks
	6.5 SubProxy rely() to MCD End Instead of MCD ESM During Initialization
	6.6 Vest Should Not Have a Cliff Period
	6.7 Redundant Imports

	7 Notes
	7.1 Deployment Verification

