

PUBLIC

Code Assessment

of the EndGame Toolkit

Smart Contracts

October 10, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Informational 13

7 Notes 14

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Maker with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of EndGame Toolkit according
to Scope to support you in forming an opinion on their security risks.

In the latest version reviewed changes were made to the StakingRewards contract: updating the rewards
duration can now be done during an active distribution. Furthermore the constructor now features an
additional check to prevent an unsupported configuration. Overall the endgame-toolkit offers a new
governance token for SubDAO-level governance, a SubProxy for executing governance delegatecalls
and a farming module allowing stakers to earn rewards.

The most critical subjects covered in our audit are security, functional correctness and seamless
integration with the existing system. While security regarding all the aforementioned subjects is high, this
reports contains some notes about the proper use of the contracts. The most significant finding discusses
Precision Loss in rewardRate Calculation.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk Accepted 1

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the EndGame Toolkit repository based
on the documentation files.

Version 1The scope for consists of the two solidity smart contracts:

./src/SDAO.sol

./src/SubProxy.sol

Version 2In the scope was extended to include the farming module:

./src/VestedRewardsDistribution.sol

./src/synthetix/StakingRewards.sol

For the StakingReward contract, the focus was on validating that the upgraded contract is equivalent to
the original one. This is not a complete review of the Synthetix StakingReward contract.

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 2 May 2023 da937582c5b8ca444fd31627f91a6fa5ede35d92 Initial Version

2 28 June 2023 ab305de703e51a3523b18991cd136f4c1fc1298b Farming Module

3 10 July 2023 f0919fd1e6e1ea933fd42eaf24840fb40da797df Fixed Typo

4 4 Oct 2023 cc223aa66ca7a5da38219beab6363f6b3eb44efb Updated SDAO

5 17 Jan 2024 2e1d277957563400d394b03c49346aff407593c6 Updates

6 28 Aug 2024 eb49fa619a30e4d67f46cbb21b2ef19705ff0554 Updated Commit

7 06 Sept 2024 14268515aa729a588096f0d579ea38bde3e9ba2f Updated Commit

8 09 Oct 2024 5bf4b1771b99f5f8758fd40a4ac567f797b5405b Updated Commit

Version 5For the solidity smart contracts, the compiler version 0.8.19 was chosen. In the compiler
version was downgraded to 0.8.16.

2.1.1 Excluded from scope
Any other file not explicitly mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

2.2 System Overview
Maker implements a toolkit for SubDAO-level governance with:

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 5

https://github.com/makerdao/endgame-toolkit/tree/da937582c5b8ca444fd31627f91a6fa5ede35d92
https://github.com/makerdao/endgame-toolkit/tree/ab305de703e51a3523b18991cd136f4c1fc1298b
https://github.com/makerdao/endgame-toolkit/tree/f0919fd1e6e1ea933fd42eaf24840fb40da797df
https://github.com/makerdao/endgame-toolkit/tree/cc223aa66ca7a5da38219beab6363f6b3eb44efb
https://github.com/makerdao/endgame-toolkit/tree/2e1d277957563400d394b03c49346aff407593c6
https://github.com/makerdao/endgame-toolkit/tree/eb49fa619a30e4d67f46cbb21b2ef19705ff0554
https://github.com/makerdao/endgame-toolkit/tree/14268515aa729a588096f0d579ea38bde3e9ba2f
https://github.com/makerdao/endgame-toolkit/tree/5bf4b1771b99f5f8758fd40a4ac567f797b5405b
https://chainsecurity.com

• A mintable ERC-20 SDAO token for SubDAO governance, which supports EOA and smart contract
signature validation for approvals.

• A SubProxy for executing governance delegatecalls, which isolates the context of execution for
spells from the main governance contract to avoid potential exploits messing with the original
contract storage.

• A farming module allowing to claim rewards when staking tokens.

2.2.1 SDAO
SDAO is an ERC-20 token for governance with 18 decimals. The contract is controlled by privileged roles
wards, which is initialized with msg.sender in the constructor. Any address in wards has owner access
to:

• Add a new ward by rely().

• Remove a ward by deny().

• Mint any amount of SDAO tokens to an address by mint().

Token transfers work the same way as a normal ERC-20 token but with a few restrictions. Specifically,
transfers to the zero address (address(0)) or the contract itself are not allowed. A user can also burn its
own tokens by calling burn() with its own address. In case the address specified is different to the
msg.sender, the user will burn on behalf of others if its allowance is sufficient.

SDAO supports the unlimited allowance pattern. In addition, permit() is provided for setting allowance
with signatures either from an EOA or a contract (EIP-1271). A contract can give permission to a spender
by implementing isValidSignature() with customized verification logic. If the signature length does
not equal to 65 bytes, it is assumed the allowance owner is a contract, which will be queried for signature
validation.

Changes in Version 2:

• The token parameters name and symbol can now be updated by the wards.

Changes in Version 4:

• Functions increaseAllowance and decreaseAllowance have been removed. Only functions
approve and permit remain to modify allowances.

• Permit functionality: Now, when validating a signature with a contract, if there is no code deployed at
the given address, the transaction will revert with a clear error message. Previously the transaction
would just revert.

2.2.2 SubProxy
SubProxy is the SubDAO-level PauseProxy. This proxy uses delegatecall to execute calls from context
isolated from the main governance contract. All the contracts controlled by the SubDAO must authorize
this proxy instead of the governance contract itself. The proxy itself is controlled by the wards initialized
with msg.sender in the constructor. Different from Maker's DSPauseProxy where there is only one
owner (the DSPause contract), any address in SubProxy's wards has owner access to:

• Add a new ward by rely().

• Remove a ward by deny().

• Trigger a delegatecall execution on the target address by exec().

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.3 Farming
Users will be able to farm reward tokens by staking their assets. This implementation reuses existing
code: DssVest to permissionlessly distribute the allocated funds according to certain rules and
StakingRewards forked from Synthetix to implement the on-chain reward system. These contracts are
connected through another contract called VestedRewardsDistributon.

StakingRewards:

Implements the on-chain reward system for stakers. The implementation is a fork of the well known and
battle tested Synthetix implementation. Major changes include:

• stake(uint256 amount, uint16 referral) which additionally emits an event emitting the
referral code. Referral rewards are handled off-chain.

• Update to Solidity 0.8.x, the code has been refactored accordingly.

The contract implements the following functionality:

• stake(): Allows users to stake. Stake is represented by an non-transferable ERC20 like token
interface.

• withdraw(): Allows users to withdraw their stake.

• getReward(): Allows users to claim their rewards.

• exit(): Allows users to withdraw their stake and claim their rewards.

Stakers earn rewards for staking during reward distribution periods only. The mechanism works as
follows: Reward tokens pushed to the contract are released to the stakers linearly and proportional to the
balance staked over a period called reward duration. All actions changing the staked balance of an
account must update the earned reward for the account to ensure the accounting is correct.

• notifyRewardAmount(): Permissioned function called by the RewardsDistributor after having
transferred the new batch of reward tokens to be distribution over the next period. This function
supports to be called both either outside of a rewards distribution period or within an ongoing period.
A new reward distribution is started taking all funds to be distributed into account.

Through setRewardsDuration() and setRewardsDistribution() the owner can update the
parameters governing the reward distribution.

VestedRewardsDistributor:

Connects the DssVest contract releasing the funds for the rewards according to a vesting schedule and
the StakingRewards contract. This contract must be set as beneficiary of the vestId.

• distribute(): Permissionless function, if the conditions are fulfilled (proper vestId set, unpaid
funds available) claims the outstanding rewards, forwards them to and notifies the StakingRewards
contract.

The privileged role (assumed to be the Governance SubProxy) can update the vestId. This must be
done after setup to activate the contract. If a vestId of the DssVest expires, the vestId can simply be
updated.

Changes in Version 5:

setRewardsDuration() now allows to change the rewards duration during an active distribution.
rewardRate and periodFinish are recalculated and updated accordingly.

The constructor of StakingRewards now enforces the reward and staking tokens to be distinct. Issuing
rewards in the same tokens as the staking token is not supported and would compromise the contract's
accounting; this added check effectively safeguards against improper configuration.

Additionally, it was defined that SDAO tokens are additionally intended to be used on L2s.

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.4 Roles and Trust Model
The wards of SDAO token are trusted to not misbehave, otherwise any amount of tokens can be minted at
its discretion. The SubProxy contract would be authorized by contracts under SubDAO's control for
privileged operations, hence the wards of the proxy are assumed to behave honestly and correctly at all
times and never act against the interest of the system users. (e.g. selfdestruct the proxy, abuse
authorization, etc.).

The owner of StakingRewards and the wards of the VestedRewardsDistribution are trusted to not
misbehave.

Users (Token holder / stakers): Untrusted

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe our findings. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk AcceptedPrecision Loss in rewardRate Calculation

5.1 Precision Loss in rewardRate Calculation
Design Low Version 1 Risk Accepted

CS-MET-001

The calculation of the rewardRate causes a potentially harmful loss of precision. The default
rewardsDuration denominator (1 week reward duration) loses up to 604800 wei of precision every
time notifyRewardAmount() is called, in the following calculation:

rewardRate = reward / rewardsDuration;

and

rewardRate = (reward + leftover) / rewardsDuration;

The amount lost due to rounding has been deposited in the contract, but the internal accounting loses
track of it, rendering it unclaimable.

If rewardsToken is a token with a high value per wei, the loss can be significant. For example, if
rewardsToken is USDC, which has 6 decimals, the loss can be of up to $ 0.6048 every time
notifyRewardAmount() is called. If the token is WBTC, which has 8 decimals but much higher value
per wei, the loss is up to $ 181 every time the rewardRate is computed. Since
notifyRewardAmount() can be called every 12 seconds through VestedRewardsDistribution, the
rounding amount can be lost up to 50400 times per week.

For tokens with a higher number of decimals and a low value per wei, for example DAI or WETH, the loss
is less significant. It amounts to a maximum of $ 0.00006 per week for WETH and $ 3e-18 per week for
DAI. The maximum weekly loss can be calculated as follows:

weeklyLoss = rewardsDuration * tokenValuePerWei * blocksPerWeek

Version 5In setRewardsDuration() was updated to allow updating the rewardRate during an active
distribution. The calculation rewardRate = leftover / _rewardsDuration; is subject to similar
rounding effects / loss of precision. Notably the parameter _rewardsDuration is controlled by the

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

caller of the function, which is restricted to the trusted owner. The caller must ensure the resulting loss in
precision is acceptable.

Risk accepted:

Maker states:

Risk accepted. We are aware of the issue with precision loss, however we
wanted to avoid making changes to the original code as much as possible. The
StakingRewards contract in this context will only ever handle tokens with 18
decimals (DAI, MKR, SubDAO tokens, NewStable – Dai equivalent, NewGov – MKR
equivalent). If we take MKR as an example, its all-time high price was just
short of 6,300 USD. Let’s extrapolate its value imagining it could grow 100x
for the duration of the staking rewards program. Using the formula you provided,
we would have:

weeklyLoss = rewardsDuration * tokenValuePerWei * blocksPerWeek
 = 604800 * 50400 * (630000 * 10^(−18))
 = 0.0192036096

Even in this extreme scenario, weekly losses would amount to less than 0.02 USD,
which is acceptable for us.

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

6.1 Typo in Documentation
Informational Version 1

CS-MET-002

In the NatSpec for the VestedRewardsDistribution contract at line 23 RewardsDistribution is
misspelled.

The typo has been corrected.

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Ability to Modify name & symbol
Note Version 1

Version 2 introduces functionality for the privileged role to update the token parameter name and symbol.
Note that is unusual for ERC20 tokens and must be done with care. Some downstream applications or
smart contracts may not be designed to accommodate such changes.

Consider these illustrative examples:

• Upon deployment the name of Curve pools is set using the traded token names.

• The representative token deployed by third-party bridges to other chains is often based on the
original token's name and symbol.

7.2 Rewards in StakingRewards Might Take
Longer to Vest Than Expected
Note Version 1

Rewards added to StakingRewards could be expected to be payed out to stakers in rewardsDuration
time, which is initially set to 7 days. However, every time notifyRewardAmount() is called, a new
rewardRate is computed prolonging the vesting of the remaining amount over the next
rewardDuration.

As a simple example, assume we are distributing 1000 DAI over one week, then the rewardRate will be
rewardRate = 1000 * 10**18 / rewardDuration. If after 3.5 days have passed we call
notifyRewardAmount(), adding a 0 reward, the new rewardRate is computed as

rewardRate = (reward + leftover) / rewardsDuration;

which will amount to rewardRate = 500 * 10**18 / rewardDuration. Moreover, the
periodFinish will be pushed back by rewardDuration, moving it from
initialTime + rewardDuration to initialTime + rewardDuration/2 +
rewardDuration. Overall, the reward distribution will last 1.5 times the expected duration, with the
latter rewardDuration period having half the effective rewardRate as expected.

If we take this reasoning to the extreme, notifyRewardAmount() can be called every block, which will
every time increase the periodFinish by 12 seconds, and reduce the reward rate by
1 - blockDuration/rewardDuration. This is because the new rewardRate will be the old reward
minus the consumed reward.

rewardRatet = (rewardt − 1 − rewardRatet − 1 * blockDuration)
rewardDuration

= rewardt − 1 − rewardt − 1
RewardDuration * blockDuration
rewardDuration

= rewardt − 1
rewardDuration * (1 − blockDuration

rewardDuration)

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

= rewardRatet − 1 * (1 − blockDuration
rewardDuration)

Over n block the rewardRate will decrease from the initial rewardRate by
(1-blockDuration/rewardDuration)^n, which is an exponential decay for the rewardRate,
corresponding to an exponential decay of the remaining reward. The reward will therefore not be
distributed in a finite amount of time. Numerical simulations have showed that after 1 week 63% will have
been distributed, after 2 weeks 86%, after 3 weeks 95%, after 4 weeks almost 99%.

In practice, anybody can trigger notifyRewardAmount() at every block by calling the distribute
method of VestedRewardsDistribution, the cost of doing so in terms of gas is likely to offset any
advantage that such an attacker can get from delaying in such a way the reward rate.

Calling distribute() every block will however not pass an amount of zero notifyRewardAmount(),
but it will pass the reward per block vested in dssVest. In the steady state, when the dssVest has been
supplying a constant stream of reward for a long time, even factoring in the exponential decay behavior,
the rewardRate in StakingRewards will converge to the same constant rate as in dssVest.

7.3 Vesting Plan Must Be Restricted
Note Version 1

If a vesting plan of DSSVest is restricted, that means only the recipient of the rewards may claim them,
no one else can trigger the distribution of the rewards.

For the correct operation of VestedRewardsDistribution it's important that the plan is restricted:
VestedRewardsDistribution.distribute() forwards the amount retrieved in
amount = dssVest.unpaid(vestId); only, any excess balance held at the contract is not
forwarded.

Maker - EndGame Toolkit - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 SDAO
	2.2.2 SubProxy
	2.2.3 Farming
	2.2.4 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Precision Loss in rewardRate Calculation

	6 Informational
	6.1 Typo in Documentation

	7 Notes
	7.1 Ability to Modify name & symbol
	7.2 Rewards in StakingRewards Might Take Longer to Vest Than Expected
	7.3 Vesting Plan Must Be Restricted

