

PUBLIC

Code Assessment

of the Dss Proxy

Smart Contracts

June 10, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 10

7 Notes 13

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Dss Proxy according to
Scope to support you in forming an opinion on their security risks.

DssProxy implements a replacement for DSProxy, a proxy contract for users to use with the
ProxyActions contracts of the Maker applications such as Oasis.app.

The most critical subjects covered in our audit are security and functional correctness.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 4

• Code Corrected 4

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Dss Proxy repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V
Date Commit Hash Note

1 4 April 2022 d7a6348eebe7f4f412b9969ca31b213f4c7a694a Initial Version

2 4 May 2022 3b46093e41f43486f5dbff832c787729bb347066 After Intermediate Report

3 8 June 2022 10b871627ab8861e7a85644d7c4233c5fe4717e0 Third Version

For the solidity smart contracts, the compiler version 0.8.13 was chosen. For the third version, compiler
version 0.8.14 is used.

Contracts DssProxy and DssProxyRegistry are in scope of this review.

2.1.1 Excluded from scope
All contracts not listed above.

2.2 System Overview
DssProxy is a replacement for the currently used DSProxy. It`s a simple proxy contract which allows the
owner to call any address via Delegatecall. Delegatecall executes the code at the target address within
the environment (storage) of the caller's account (the DssProxy).

When an address interacts with any Maker application (e.g. the Oasis.app) for the first time, the user is
asked to deploy such a proxy contract. Using this proxy contract, the user then interacts with the Maker
application by executing the code of so-called ProxyAction contracts, smart contracts aggregating logic.

DssProxy offers the following functionality:

• execute(address target_, bytes memory data_): Main proxy function allowing a caller
able to pass the auth modifier to execute the code of the target address as Delegatecall. The target
cannot be address 0x0. If the call is successful its response is returned. If the Delegatecall fails, this
function reverts, passing along the response.

• setOwner() bearing the auth modifier, allows changing the owner of the DssProxy.

• setAuthority() bearing the auth modifier, allows changing the authority of the DssProxy.

The proxy contract has an owner and an authority stored in the storage of the contract. As
execute() may execute arbitrary code as Delegatecall, storage slots of the DssProxy may be
overwritten. Generally, the executed code should only contain logic and not access/write to the contract's
storage.

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Access control is implemented using the auth modifier: This modifier allows the owner to call any
function and additionally, if the authority is set to a non-zero address,
canCall(msg.sender, address(this), msg.sig) is called on on the authority contract in order
to determine whether access should be allowed.

Contract DssProxyRegistry serves as a factory to deploy new DssProxy contracts for individual users.
Anyone who currently doesn't own a registered DssProxy may deploy one using the build function. The
contract keeps track of the deployed DssProxies and their owners. As ownership of a DssProxy may be
transferred, the claim function allows the new owner of the DssProxy to update the entry in the registry.

2.2.1 Trust model & Roles
DssProxy:

• owner: owner of the proxy, fully trusted

• authority: DSAuth-like authority, if set it can determine whether a caller can call a function of the
DssProxy

The caller of the execute function is trusted to only target contracts which do not access/modify storage.
Otherwise, storage slots of the DssProxy might be overwritten, in particular this may affect the stored
owner and authority.

New owners of a DssProxy (after a transfer of ownership) must be very aware of the authority role and
it's privilege. These privileges may include accessing funds of the DssProxy or to retake the ownership.

DssProxyRegistry:

Fully trustless. Anyone may deploy a new DssProxy using the build function. New owners of a
DssProxy may update the entry in the registry using the claim() function. Users claiming a proxy they
became owner of are trusted to understand the power of the authority if set for their DssProxy.

2.2.2 Changes in Version 3
The following changes have been made:

• The authority and owner variables are now ordered as in the old DSProxy contract.

• The auth modifier allows now that the DssProxy calls itself.

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 4

• Code CorrectedDssProxy Constructor Does Not Emit SetOwner Event

• Code CorrectedOptimization of delegatecall Success Check

• Code CorrectedPossible Failure of create2

• Code CorrectedPossible Optimization in Proxy Check of Registry

6.1 DssProxy Constructor Does Not Emit
SetOwner Event
Design Low Version 1 Code Corrected

The constructor of DssProxy does not emit a SetOwner event. Consider emitting an event here to reflect
this important storage change.

constructor(address owner_) {
 owner = owner_;
}

Code corrected:

The constructor now emits the setOwner event.

6.2 Optimization of delegatecall Success
Check
Design Low Version 1 Code Corrected

The success check in the execute function of the DssProxy contract is as follows:

assembly {
 let succeeded := delegatecall(/*...*/)
 /*...*/
 switch iszero(succeeded)

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

 case 1 {
 revert(add(response, 0x20), size)
 }
}

However, as delegatecall can only return 0 or 1, the iszero is unnecessary. Instead, one can simply
check for case 0. With optimization enabled, this change saves 9 gas and 4 bytes of bytecode.

Code corrected:

The optimization has been implemented.

6.3 Possible Failure of create2
Design Low Version 1 Code Corrected

It is possible for the create2 operation to fail, in which case the returned address will be 0. This failure is
not checked, which would result in isProxy[0] being set to 1. Additionally, the owner's seed would be
incremented despite not having deployed a contract.

assembly {
 proxy := create2(/*...*/)
}
proxies[owner_] = proxy;
isProxy[proxy] = 1;

Code corrected:

The code now ensures that the DssProxy has been successfully created:

require(proxy != address(0), "DssProxyRegistry/creation-failed");

6.4 Possible Optimization in Proxy Check of
Registry
Design Low Version 1 Code Corrected

In the claim function of the DssProxyRegistry, the following check is made:

require(isProxy[proxy] == 1, "DssProxyRegistry/not-proxy-from-this-registry");

The isProxy mapping only contains the values 0 or 1. Hence, checking the condition == 1 is
functionally equivalent to checking the condition != 0. The latter check is more efficiently compiled, it
saves 6 gas and reduces bytecode by 3 bytes.

Code corrected:

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

The optimization has been implemented.

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 No Event on execute
Note Version 1

Integrations must be aware that compared to the DSProxy it replaces, DssProxy no longer emits a event
on execute().

7.2 isProxy Might Point to Addresses Without
Code
Note Version 1

When creating a proxy with the build function, an entry is created in isProxy, which maps the address
of the new proxy to 1 :

function build(address owner_) external returns (address payable proxy) {
 /*...*/
 isProxy[proxy] = 1;
}

This entry cannot be modified. Hence, a proxy that has been selfdestructed would still appear in
isProxy like a valid proxy.

A selfdestructed proxy in the isProxy mapping would have prevented creation of a new proxy for the
owner using DssProxyRegistry.build(): Retrieving the owner would have reverted. The
implementation of DssProxyRegistry.build() has been changed to handle this case.

MakerDAO - Dss Proxy - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust model & Roles
	2.2.2 Changes in Version 3

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 DssProxy Constructor Does Not Emit SetOwner Event
	6.2 Optimization of delegatecall Success Check
	6.3 Possible Failure of create2
	6.4 Possible Optimization in Proxy Check of Registry

	7 Notes
	7.1 No Event on execute
	7.2 isProxy Might Point to Addresses Without Code

