PUBLIC

Code Assessment

of the DSSProxyActions
Smart Contracts

December 6, 2022

Produced for

N Maker

@EHAINSEEURITY

by

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG

10
11
12
14

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of DSSProxyActions according
to Scope to support you in forming an opinion on their security risks.

MakerDAO implements a new version of the proxy actions contract that, similar to the previous proxy
actions contract, offers functions that batch interactions with the DAI Stablecoin system.

The most critical subjects covered in our audit are functional correctness and interactions with the core
contracts. Security regarding all the aforementioned subjects is high.

The general subjects covered are code complexity, gas efficiency and error handling. Security regarding
all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the DSSProxyActions repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

Date Commit Hash Note
V
11 November 4624b701a4f38c4f62f07a8fde55eblce7c8532¢e | Initial Version
1| 2022
05 December 8017cel43d75cd81bf36b4e02b2f34ec64164ba | After Intermediate Report
2| 2022 7
06 December 40bb4493e7cf4fac92f84e0b021d3bc44fb7b752 | Final Version
3| 2022

For the solidity smart contracts, the compiler version 0. 6. 12 was chosen.
The file DssProxyActions.sol with contracts

DssProxyActions

DssProxyActionsEnd

DssProxyActionsDsr

was in scope of this review.

2.1.1 Excluded from scope

Contracts the Proxy Actions interact with, e.g.

CDPManager

ProxyRegistry

Pot

and core contracts of the DAI Stablecoin System such as VAT, JUG or END

as well as the Ds/DssProxy are not in scope of this review.

2.2 System Overview

The new proxy action contracts implement functions aggregating actions for interaction with the DAI
Stablecoin system. These functions are intended to be executed through the user's proxy contract. This
proxy may be a Ds-Proxy or Dss-Proxy.

Some of the functions of the DssProxyActions work on urns managed by the CDPManager. Such
positions are identified by a CDP (collateralized debt position) id. An urnproxy is used to hold the position
in the VAT. For more information please refer to the documentation of the CDPManager. Other functions

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG 5

https://github.com/dapphub/ds-proxy
https://github.com/makerdao/dss-proxy
https://github.com/makerdao/dss-cdp-manager
https://chainsecurity.com

access the urn of the proxy or the funds held by the proxy directly. DssProxyActionsEnd exits positions
from the CDPManager and thereafter handles them directly from the proxy context. DssProxyActionsDsr
does not use the CDPManager.

In contrast to the previous version, immutables are now used to store addresses of system contracts, due
to this the interface of some functions changed.

2.2.1 DssProxyActions

The following functionalities are implemented:

transfer (address gem address dst, uint256 ant): Transfers specified token from the
source to the destination.

et hJoi n_j oi n(address ethJoin, address urn): Payable function joining nsg. val ue into the
urn.

gemJoi n_j oi n(address gemJoi n, address urn, uint256 am): Joins the amount of tokens
into the urn. Tokens originate from nsg. sender .

hope(address addr, address usr):Approve an address for one's urn.
nope(address addr, address usr):Remove approval to act on one's urn.
open(bytes32 il k, address usr):Opens anew position in the CDPManager.

gi ve(ui nt 256 cdp, address usr): Transfer the ownership of a CDP in the CDPManager to the
passed address.

gi veToProxy(ui nt256 cdp, address dst): Transfers the ownership of a CDP in the
CDPManager to the proxy of the passed address. The passed dst address may already own a proxy in
the registry or only if dst is not a contract a new proxy is deployed.

cdpAl | ow(ui nt 256 cdp, address usr, uint256 ok): Change allowance of usr on the cdp
position in the CDPManager.

urnAl | owm address usr, uint256 ok): Change allowance status of usr on the urn in the
CDPManager.

flux(uint256 cdp, address dst, uint256 wad): Moves gemheld by the urnproxy of the CDP
in the CDPManager to the urn address specified.

frob(uint256 cdp, int256 dink, int256 dart): Calls CDPManager. frob(), which
eventually executes f r ob to modify the urns

i nk/art onthe VAT, all address parameters will be the ur npr oxy.

qui t (ui nt 256 cdp, address dst): Calls CdpManager . qui t, which eventually executes f or k()
on the VAT. This allows to migrate the cdp (i nk / ar t) into the given destination urn.

enter (address src, uint256 cdp): Calls CdpManager. ent er (). Allows importing an urn into
the CDP. Uses VAT. f or k() to migrate the i nk / art between the urns.

shift(uint256 cdpSrc, uint256 cdpOg): Calls CdpManager. shift (). Allows shifting the
i nk/ art from one CDP to another.

| ockETH(address ethJoi n, ui nt 256 cdp): This payable function joins Ether and locks it as
collateral (i nk) into the CDP.

| ockGen{address gemiloin, uint256 cdp, uint256 ant): This function joins Gem tokens and
locks them as collateral (i nk) into the CDP:

freeETH(address ethJoin, uint256 cdp, uint256 wad): Frees locked Ether collateral (i nk)
and exits it to the user.

freeGem(address gemJoin, uint256 cdp, uint256 ant): Frees locked collateral (i nk) and
exits it to the user.

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

exi t ETH(address ethJoin, uint256 cdp, uint256 wad): Exits free Ether collateral (gen) to
the user.

exi t Gem(address gemJoin, uint256 cdp, uint256 ant): Exits free collateral (genj to the
user.

draw(ui nt 256 cdp, uint256 wad): Exits the specified amount of DAI tokens. Draws more debt if
needed.

wi pe(ui nt 256 cdp, uint256 wad): Joins the specified amount of DAI. If the sender has access
rights on the CDP in the CDPManager, wipes debt of the CDPs urn using all available DAI. If the sender
doesn't have access rights on this CDP the debt of the CDP is reduced using the joined DAl amount.

wi peAl | (ui nt 256 cdp): Wipes all debt of the CDP. The amount of DAl needed must be made
available either already at the VAT or the Proxy.

The following functions with "safe" prepended to the name feature an additional check ensuring the
owner of the CDP before calling their base function described above:

saf eLockETH(addr ess et hJoin, ui nt 256 cdp, addr ess owner)
saf eLockGen(address gemJoin, uint256 cdp, uint256 ant, address owner)
saf eW pe(ui nt 256 cdp, ui nt 256 wad, addr ess owner)

saf eW peAl | (ui nt 256 cdp, address owner)
Furthermore, the following functions aggregating one or more previously described functionalities exist:

| ockETHANdDr awm addr ess et hJoi n, ui nt 256 cdp, ui nt 256 wadD)
openLockETHANdDr aw(addr ess et hJoi n, byt es32 ilk, ui nt 256 wadD)
| ockGemAndDr awm(address gemJoi n, uint256 cdp, uint256 antC, uint256 wadD)
openLockGemAndDr awm(addr ess gemJoi n, bytes32 ilk, uint256 am C, uint256 wadD)
w peAndFr eeETH(address ethJoin, uint256 cdp, uint256 wadC, uint256 wadD)
wi peAl | AndFr eeETH(addr ess et hJoi n, ui nt 256 cdp, ui nt 256 wadC)
w peAndFr eeGen{ address gemJoin, uint256 cdp, uint256 antC, uint256 wadD)
wi peAl | AndFr eeGen(address gemJoi n, uint256 cdp, uint256 antC)

2.2.2 DssProxyActionsEnd

The shutdown of the Dai Stablecoin System happens in several distinct steps as described in detail in the
documentation:
https://docs.makerdao.com/smart-contract-modules/shutdown/end-detailed-documentation

This proxy actions contract facilitates the interaction in the shutdown process and exposes the following
function:

function freeETH(address ethJoin, address end, uint256 cdp) and

function freeGem address gemJoi n, address end, uint256 cdp): Frees locked collateral
(i nk). Settles the outstanding debt of the urn (ar t) if needed, exits the ink from the UrnProxy controlled
by the CDPManager into a free urn then withdraws these funds to the nsg. sender .

function pack(address end, uint256 wad): Joins the amount of DAI specified and packs them
into bag.

function cashETH(address ethJoin, address end, bytes32 ilk, uint256 wad) and

function cashGenm(address genmloin, address end, bytes32 ilk, uint256 wad):
During the final step of the Shutdown process, allows the user to redeem DAI previously added to bag for
the corresponding share of the specified collateral gem.

2.2.3 DssProxyActionsDsr

Dai holders can lock their DAI into the DAI Savings Rate smart contract at any time. Once locked, DAI
continuously accrues to the user's balance, based on the current DSR set by the Maker governance.

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG 7

https://docs.makerdao.com/smart-contract-modules/shutdown/end-detailed-documentation
https://chainsecurity.com

This proxy actions contract exposes the following function:

j oi n(ui nt 256 wad) : Deposits the amount of DAI specified.

exi t (ui nt 256 wad) : Withdraws the amount of DAI specified.

exi t Al l () : Withdraws all DAI of the nsg. sender in the DSR cotnract.

2.3 Trust Model & Roles

The code of the proxy actions is executed in the context of each user's proxy. The proxy actions code
simply aggregates individual calls and may calculate input values. For interactions with the core DAI
Stablecoin System, the CDPManager is used. For some interactions, the urn held by the Proxy itself may
be used.

System contracts such as the CDPManager, ProxyRegistry and the contracts of the Dai Stablecoin
System are fully trusted.

The user is untrusted.

All tokens are expected to be fully ERC-20 compliant, have 18 or fewer decimals and must not have any
special behavior including but not limited to fees or rebasing.

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings £
(C2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings ¢

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 0

y g

(CL:0)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 3
ty g

e Skim in _Free() (LRI

» Unused Function _sub() (CRSuiEea
* Use Defined Constant (SRS

6.1 Skimin Free()
7D (Low) (Version 1) XS

For End. free() to be successful, the proxy's art must be zero. However, the following code of
DssProxyActi onseEnd. free() does not strictly enforce that.

function free(
address end
ui nt 256 cdp

) internal returns (uint256 ink) {
bytes32 ilk manager . i | ks(cdp);
address urn manager . ur ns(cdp)
ui nt 256 art;
(ink, art) vat.urns(ilk, urn);

it (art 0) {
EndLi ke(end) . skimil k, urn);
(ink,) vat.urns(ilk, urn);

}

i f (vat.can(address(this), address(manager)) 0) {
vat . hope(address(manager)) ;

}
manager . quit (cdp, address(this));

EndLi ke(end) . free(ilKk);
}

First, in case that art is non-zero, end. ski n() is executed on the urnproxy. Next, the position is
transferred to the proxy. Note that the proxy could have non-zero art. Hence, the call end. free()
which frees the collateral of its msg. sender and requires that art is zero could revert.

Code corrected:

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Now, ski m() is called for the proxy and after the CDP has been transferred from the urn. Thus, it is
enforced that ar t will be zero.

6.2 Unused Function _sub()

D (Cow) (Version 1) (ST

The internal function _sub is never used.

Code corrected:

The unused function was removed.

6.3 Use Defined Constant
D) (Low) (Version 1) (XL

Contract Common defines:

ui nt 256 const ant RAY 10 27,
Instead of using the constant, function _t oRad has this value hardcoded:
function _toRad(uint256 wad) internal pure returns (uint256 rad) {

rad = _mul (wad, 10 27) ;
}

Code corrected:

This function has been removed in the final version of the code reviewed.

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Dust Amount of DAI to Be Drawn Leads to
Revert

There is a known issue in functions that use _get Dr awbDar t () : In case the additional amount of DAI to
be drawn leads to a dusty urn, the transaction reverts. This is a known edge case.

7.2 dai Shadowed

Contract Common defines the immutable dai . The internal functions _get Dr awDar t, _get W peDar t
and _get W peAl | WAd each define a local ui nt 256 dai which consequently shadows the immutable.

In the variables in the functions have been renamed.

@ MakerDAO - DSSProxyActions - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 DssProxyActions
	2.2.2 DssProxyActionsEnd
	2.2.3 DssProxyActionsDsr

	2.3 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Skim in _Free()
	6.2 Unused Function _sub()
	6.3 Use Defined Constant

	7 Notes
	7.1 Dust Amount of DAI to Be Drawn Leads to Revert
	7.2 dai Shadowed

