

PUBLIC

Code Assessment

of the DSS-Charter

Smart Contracts

November 17, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 12

7 Notes 14

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Maker team,

First and foremost we would like to thank MakerDAO for giving us the opportunity to assess the current
state of their DSS-Charter system. This document outlines the findings, limitations, and methodology of
our assessment.

The code reviewed was of a high standard. However, no documentation for the smart contracts reviewed
was provided for the audit.

No security issue has been uncovered during the audit. The findings include a medium severity design
issue:

• Possible Revert Due to Underflow

Several low severity design issues and notes are in this report. For a complete list of issues please refer
to the Findings section.

After the intermediate report all reported issues have been addressed except some optimization issues
which have been acknowledged.

The communication with your team during the audit was very good and helped to resolve arising
questions quickly.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 6

• Code Corrected 3

• Acknowledged 3

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the DSS-Charter repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V
Date Commit Hash Note

1
18 October 2021 3ea76ac216216c24f26f374ba5d3809066026ad

e
Initial Version

2
16 November
2021

2a62443ee1fa5d37d5c0ea78862d145d53288c
7b

After Intermediate Report

For the solidity smart contracts, the compiler version 0.6.12 was chosen. This version, although being
deprecated, has been chosen explicitly to be consistent through all newly developed maker modules.

The files in scope for this review were: CharterManager.sol, join-managed.sol and
DssProxyActionsCharter.sol.

2.1.1 Excluded from scope
All files not listed above.

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

DSS-Charter introduces a permissioned vault manager which allows users to take debts with origination
fees instead of standard fees of Maker (stability fee). This is targeted for institution which have off-chain
agreements with Maker. The fee is accrued when debt is taken and in exchange those urns feature
fix/beneficial lending rates. For this, special ilks (collateral types) will be enabled in the Vat of the Maker
system. These ilks use a special join adapter, which is also part of this review (join-managed). The
join-managed adapter ensures that entrance/exit of collateral happens through the CharterManager
only, and the CharterManager contract ensures that this is done only for urnproxys.

The receiver of the fee in form of generated DAI is the VOW Contract (Settlement Engine).

Anyone may open an urnproxy at the CharterManager contract and deposit collateral in form of a
supported ilk. Apart from permissioned vaults, un-permissioned vaults may be supported as well. Note
that, by default the un-permissioned mode is enabled for any ilk where any user is allowed to draw
debt. The mapping gate allows wards to enable the permissioned mode per ilk. For ilks with the
permissioned mode enabled, only whitelisted accounts, namely accounts that have received a non-zero
debt ceiling may draw debt. Attempts of un-permissioned vaults to draw debt for those ilk fails as their
debt ceiling is zero.

Joining or exiting collateral and repaying debt (call to frob() with dart less or equal to zero) are
indifferent between permissioned and unpermissioned vaults for any ilk.

The intended use is that each user executes the DssProxyActionCharter code through his own DSProxy.
Note that it's nevertheless possible to directly interact with the CharterManager.

The contracts of the system are:

CharterManager:

The main manager contract for DSS-Charter functionality. User are expected to use the
DssProxyActionsCharter contract executed in the context of their own DsProxy contract to interact with
the CharterManager. Interacting directly with the CharterManager is possible but must be done with care
as there are some limitations which could result in lost funds. For each user a urnproxy contract is
deployed which is in control of the urn at the Vat. During creation, the urnproxy gives full permission to
the CharterManager (VAT.hope()). This ensures that all interactions with the urns created through the
CharterManager requiring permissions can only be executed through the CharterManager. Notably
owners of a UrnProxy must not attempt to repay debt by either joining DAI into their UrnProxy or moving
DAI into their UrnProxy using VAT.move(). DAI balance in the mapping at the VAT will be inaccessible.
Repaying dart works by taking DAI from msg.sender vault at the VAT while executing frob() on the
urnproxy.

The CharterManager features a mapping proxy to store the link between urnproxys and users.

Following functions are available to interact with the urn:

• join: Allows to deposit a supported collateral

• exit: Allows msg.sender to exit collateral from his urn

• frob: Allows to modify a vault if msg.sender has the permission to do so. Reducing the debt is not
subject to any restriction. Increasing the debt however has certain conditions, these condition
depend on whether the chosen ilk is restricted to permissioned vaults only or not:

• For ilks Restricted to Permissioned Vault the fee parameter nib and the minimum health
factor peace are set per user

• Otherwise these parameters are set per ilk

Note that the extra health check may be disabled.

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

• flux: Allows to transfer collateral in the Vat accounting between users if msg.sender has the
permission to do so.

• quit: In case of shutdown of the Vat, allows to move the ink and art balance to another urn, this
urn may be a "free" urn not managed by the CharterManager.

The owner of the urnproxy (which is the DSProxy of the user if the user uses DssProxyActionsCharter as
intended) can give and remove approval to other addresses to act on their behalf using the
hope/nope() functionality.

Note that it is possible although useless to use the CharterManager to interact with normal or deprecated
ilks.

Unhealthy urns created through the CharterManager may be liquidated. There is a caveat participants of
the auction have to be aware of: The exit of the collateral bought via the managed-join adapter can only
be done through the CharterManager and the CharterManager only operates on proxy vaults. Hence a
user either supplies the address of his urn proxy in the auction or moves the gem using vat.flux to such a
vault in order to be able to exit the gem via the CharterManager. Using the public getOrCreateProxy
function of the CharterManager anyone may create an urn proxy.

The CharterManager is upgradable through a proxy scheme: The main CharterManager contract
features functionality to add/remove wards and to set the implementation address. The fallback function
executes the code of the set implementation address as delegatecall for all other function selectors.

Join-Managed:

Permissioned Join adapter to deposit/withdraw collateral. The permission is required to ensure all
interaction, including depositing of collateral happens through the CharterManager.The CharterManager
ensures that only urnproxy vaults can deposit.

DssProxyActionsCharter:

To facilitate the interaction with the core functionality a wrapper contract DssProxyActionsCharter exists.
This is an adapted version of the ProxyActions contract.

The interaction with the CharterManager contract is intended to happen through the
DssProxyActionsCharter contract as follows: Each user deploys his own DSProxy through which he
executes the code of the DssProxyActionsCharter contract. Note that the DsProxy contract of the user is
the owner of the UrnProxy in the CharterManager.

Following functionality are implemented:

• lockETH(): Allows users to send Ether, wraps it into WETH, joins it through the CharterManager
into the Vat and locks it into a debt position.

• lockGem(): Allows users to deposit tokens, joins it into the Vat through the CharterManager and
locks it into a debt position.

• lockETHAndDraw()/lockGemAndDraw(): Allows a user to deposit, lock Ether or Tokens as
collateral, generate debt and receive DAI.

• freeETH(): Allows users to unlock WETH in his debt position and receive it as Ether.

• freeGem(): Allows users to unlock collateral token in his debt position and have it transferred.

• exitETH(): Allows users to exit unlocked WETH collateral and receive Ether.

• exitGem(): Allows users to exit unlocked collateral.

• draw(): Allows users to generate DAI given to available collateral and receive DAI

• wipe()/wipeAll(): Allows users to repay some or all of their debt.

• wipeAndFreeETH()/wipeAllAndFreeETH(): Allows users to repay some or all of their debt and
withdraw Ether as collateral.

• wipeAndFreeGem()/wipeAllAndFreeGem(): Allows users to repay some or all of their debt and
withdraw the collateral token.

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• hope()/nope(): Allow another address to act on one's urnproxy in the CharterManager contract.

• quit(): Executes quit() on the CharterManager. Used when the Vat is shut down.

DssProxyActionsEndCharter:

Used in case the Vault Engine is shut down. Allows users to settle & retrieve their funds. For a detailed
explanation of the shutdown process please refer to the documentation:
https://docs.makerdao.com/smart-contract-modules/shutdown/end-detailed-documentation. This contract
wraps functionality to facilitate interaction through vaults held at the Charter through UrnProxys during
shutdown.

• freeETH(): Frees the position through the End contract and transfers Ether to the user.

• freeGem(): Frees the position through the End contract and transfers Tokens to the user.

• pack(): Locks new DAI supplied from the DsProxy into a bag in preparation to the call to
cashETH/Gem().

• cashETH(): Allows to withdraw the Ether for the DAI locked in pack().

• cashGem(): Allows to withdraw the collateral token for the DAI locked in pack().

2.2.1 Trust Model & Roles
Wards: Fully trusted to behave honestly and correctly at all times. They can set the parameters and can
update the implementation of the CharterManager contract.

Permissioned Users: Whitelisted for certain ilks with a set debt ceiling. The ceiling only applies if the
Gate is set for this ilk to be used by permissioned vaults only.

Un-permissioned Users: Untrusted. Can interact with the CharterManager contract with un-permissioned
ilks only.

Users must fully trust the CharterManager contract as it features full access on the user's vault in the Vat.
Due to the upgradeability this requires users fully trust the wards as they have the power to change the
implementation code of the CharterManager.

Users are expected to use their own DsProxy and execute the code of the DsProxyActionsCharter
contract.

We assume that the DssCharterProxyAction is used frequently and hence calls to jug.drip() are done
frequently updating the ilks rate.

Tokens: The CharterManager disregards the return value of the ERC20
transfer()/transferFrom() and approve() calls. ERC-20 tokens that do not revert on failure are
not supported. In the Maker system the adapter (join) will take care of the token idiosyncrasies and hold
the collateral tokens. The join-managed contract reviewed expects and handles the return values of the
ERC-20 tokens. This doesn't work for all supported collateral token in the Maker system, USDT which is
not compliant with the ERC-20 standard as it does not feature a return value on transfers will not work
with this join-managed contract. Generally it is assumed that only trusted tokens are added to the Maker
system. Finally we assume all tokens have no more than 18 decimals. Note that although the
join-managed contract enforces this, older join adapters which are still in use did not enforce this
restriction.

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 7

https://docs.makerdao.com/smart-contract-modules/shutdown/end-detailed-documentation
https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• AcknowledgedInefficient _validate

• AcknowledgedSkip Calls When No Additional Debt Is Needed

• AcknowledgedgetOrCreateProxy() or proxy[msg.sender]

5.1 Inefficient _validate
Design Low Version 1 Acknowledged

_validate may be refactored to be more efficient. The amount of external calls executed may be
reduced.

By checking whether a check of the credit line or the peace is even required first, the call to the Vat and
the calculation of the tab could be skipped in case it's not needed. The current code however calls the
Vat initially and then calculates the tab, before determining whether a credit line or peace check is
needed.

Acknowledged:

Maker acknowledged the issue.

5.2 Skip Calls When No Additional Debt Is Needed
Design Low Version 1 Acknowledged

DssProxyActionsCharter.draw() generates the debt required before exiting the DAI amount to the
user's wallet:

// Generates debt in the CDP
_frob(charter, ilk, 0, _getDrawDart(charter, vat, jug, ilk, wad));
...
// Exits DAI to the user's wallet as a token
DaiJoinLike(daiJoin).exit(msg.sender, wad);

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

_getDrawDart() may return 0 if no additional debt is required to exit the specified amount of DAI. The
calls to CdpManager.frob() and Vat.frob() will execute nevertheless in this case, despite not
being required.

Acknowledged:

Maker acknowledged the issue.

5.3 getOrCreateProxy() or
proxy[msg.sender]
Design Low Version 1 Acknowledged

The CharterManager implementation has a function getOrCreateProxy() which returns the address
of an urn managed by the CharterManager for a user, or creates a new urn if it does not exist yet.
Although, the Charter Manager features a public mapping proxy which stores the list of urns and their
respective users, multiple functions in the DssProxyActionsCharter use getOrCreateProxy function
even when not necessary, i.e., there is no need to create a new urn if it does not exist already. Examples
of such functions are wipe(), wipeAll(), cashETH(), or cashGem.

Similarly this also applies to CharterManager.quit().

The CharterManager features functions exit and flux. Both operate on the collateral of the user in the
Vat. While flux transfers the collateral in the accounting of the Vat to another address, exit exits the
collateral to the user.

From an users perspective, for the account which is the source of the collateral these should behave
similarly. Exit() however uses proxy[msg.sender] to load the address of the Urnproxy, while
flux() uses getOrCreateProxy(src).

Acknowledged:

Maker acknowledged the issue.

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code CorrectedPossible Revert Due to Underflow

Low -Severity Findings 3

• Code CorrectedInconsistent Retrieval of Ilk Parameter

• Code CorrectedPossible Optimization on Getting vat Address

• Code CorrectedUnused Function _toRad()

6.1 Possible Revert Due to Underflow
Design Medium Version 1 Code Corrected

Should the recorded DAI balance of the DSProxy at the Vat exceed the amount required to repay the
debt, the subtraction in DssProxyActionsCharter._getWipeAllWad() will underflow causing the
transaction to revert.

Code corrected:

_getWipeAllWad() now returns 0 when enough DAI is available to cover the debt.

6.2 Inconsistent Retrieval of Ilk Parameter
Design Low Version 1 Code Corrected

The function cashETH in the DssProxyActionsCharter contract takes as parameters ethJoin and ilk
among others. However, in other functions, e.g., freeETH(), wipeAllAndFreeETH(), etc. only
ethJoin is passed as parameter, while the ilk value is retrieved from the adapter:
bytes32 ilk = GemJoinLike(ethJoin).ilk().

Code corrected:

cashEth() and cashGem() now retrieve the ilk from the adapter as the other functions do.

6.3 Possible Optimization on Getting vat Address
Design Low Version 1 Code Corrected

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Multiple functions in the DssProxyActionsCharter and DssProxyActionsEndCharter contracts receive the
vat address as follows: address vat = CharterLike(charter).vat(). Considering that the vat
contract is already deployed and its address is not expected to change, the contracts can store this value
as immutable or constant to optimise gas costs.

Code corrected:

Both the address of the VAT and the CharterManager (which was previously passed as function
argument) are now stored as immutables.

6.4 Unused Function _toRad()
Design Low Version 1 Code Corrected

The function _toRad() is implemented in DssProxyActionsCharter but it is not used.

Code corrected:

The unused function has been removed.

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Overflow When Drawing More Than 100
Trillion Debt
Note Version 1

Theoretically, the function _getDrawDart() can overflow when computing dart: dart = _toInt256(
_mul(netToDraw, WAD) / _sub(_mul(rate, WAD), _mul(rate, nib))). netToDraw is in
rad (45 decimals) and wad has 18 decimals, therefore for large netToDraw (greater than 10**14) the
computation overflows.

7.2 Possible Overflow in exit()
Note Version 1

The function exit() in ManagedGemJoin contract converts uint256 wad into a negative value:
-int256(wad). Before the conversion, the following check is performed to prevent overflows:
require(wad <= 2 ** 255). Theoretically, if wad == 2 ** 255 the overflow will happen twice, but
the result matches the expected value in this case.

7.3 Unaware Users and Permissioned Ilks
Note Version 1

Unaware users may deposit collateral for a permissioned ilk. Only when a user attempts to draw debt for
such a permissioned ilk the transaction will revert.

The reason is that for a permissioned ilk an unpermissioned user has a credit line of 0, hence cannot take
on debt. The error message CharterManager/user-line-exceeded and the place where the
transaction reverts may be confusing for an unaware user.

MakerDAO - DSS-Charter - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Inefficient _validate
	5.2 Skip Calls When No Additional Debt Is Needed
	5.3 getOrCreateProxy() or proxy[msg.sender]

	6 Resolved Findings
	6.1 Possible Revert Due to Underflow
	6.2 Inconsistent Retrieval of Ilk Parameter
	6.3 Possible Optimization on Getting vat Address
	6.4 Unused Function _toRad()

	7 Notes
	7.1 Overflow When Drawing More Than 100 Trillion Debt
	7.2 Possible Overflow in exit()
	7.3 Unaware Users and Permissioned Ilks

