

PUBLIC

Code Assessment

of the DAI Wormhole

Smart Contracts

March 29, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 System Overview 6

4 Limitations and use of report 10

5 Terminology 11

6 Findings 12

7 Resolved Findings 13

8 Notes 17

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Maker team,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of DAI Wormhole according to
Scope to support you in forming an opinion on their security risks.

The current version of the DAI Wormhole allows fast withdrawal (called "teleport" in the project's
terminology) of DAI from a supported L2 solution onto L1 Ethereum. Using trusted oracles, the DAI can
be issued on the receiver domain based on the promise that the amount will eventually be settled through
the default bridge.

The most critical subjects covered in our audit are functional correctness and access control. Security
regarding all the aforementioned subjects is high. General subjects covered were code complexity and
gas efficiency. All the aforementioned subjects were of high quality.

In summary, we find that the codebase in its current state provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 6

• Code Corrected 5

• Specification Changed 1

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the DAI Wormhole repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

DSS Wormhole

V Date Commit Hash Note

1 21 December 2021 4db18d06cd5840d77acc16b916a851e1f5ccf137 Initial Version

2 14 February 2022 af7fc2b7c3a5a1e0ce79460793ae0f2bf3570c67 Second Version

3 18 March 2022 79fcb913c765a60ee86f72754da23238db076e63 Third Version

Optimism DAI Bridge

V Date Commit Hash Note

1 21 December 2021 2c3fbbcce9dab9b6bea23eb57e941665069a50b7 Initial Version

2 14 February 2022 a03f13abb7f2197b95cd6c02f118c1c2b18e8a77 Second Version

3 18 March 2022 962ece1de4a49ccdb5928b081ee9e446f05d37b6 Third Version

Arbitrum DAI Bridge

V Date Commit Hash Note

1 16 March 2022 f94ce7e72a391a4eec7970381c09736ab8fe4397 Initial Version

For the solidity smart contracts of dss-wormhole, initially the compiler version 0.8.9 was chosen.
Optimization was not enabled during development. For the final version the compiler version was
changed to 0.8.11 with optimization enabled. For the solidity smart contracts of optimism-dai-bridge,
the compiler version 0.7.6 was chosen. For the solidity smart contracts of arbitrum-dai-bridge, the
compiler version 0.6.11 was chosen.

The following files are in scope for this assessment:

dss-wormhole:

• WormholeConstantFee.sol

• WormholeFees.sol

• WormholeGUID.sol

• WormholeJoin.sol

• WormholeOracleAuth.sol

• WormholeRouter.sol

• relays/BasicRelay.sol

optimism-dai-bridge:

• common/WormholeGUID.sol

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

• l1/L1DAIWormholeBridge.sol

• l2/L2DAIWormholeBridge.sol

arbitrum-dai-bridge:

• common/WormholeGUID.sol

• l1/L1DaiWormholeGateway.sol

• l2/L2DaiWormholeGateway.sol

2.1.1 Excluded from scope

• The Maker Oracle Feeds are not part of this review. The oracleAttestations are fully trusted. This
includes the certainty about finality of the individual L2 Domain, the resulting state changes of the
respective L2 transaction and that the settlement of the DAI amount is guaranteed.

• An independent audit assesses the risks introduced by this new system.

• For the contracts in the optimism dai bridge repository only the new wormhole functionality was
reviewed. The Optimism DAI bridge itself has been reviewed previously.

• For the contracts in the arbitrum dai bridge repository only the new wormhole functionality was
reviewed. The Arbitrum DAI bridge itself has not been reviewed by ChainSecurity.

• Generally it is assumed that the message passing from L2 to L1 provided by the L2 solution works
as documented and eventually relays the message onto L1.

• Version 2The EnumerableSet library from OpenZeppelin introduced in has not been reviewed.

3 System Overview
The current version of the DAI Wormhole allows fast withdrawal (called "teleport" in the project's
terminology) of DAI from a supported L2 solution onto L1 Ethereum. In the future the DAI Wormhole will
be generalized to support transfers between arbitrary L2 solutions / different chains (called "Domains").
Support for L2->L2 transfers of DAI will be added.

The most popular L2 solutions today all have a certain time delay for message passing from L2 to L1.
Depending on the L2 solution this varies from a couple of hours up to 1 week. The DAI wormhole
leverages special Maker Oracles monitoring the supported L2 solution's DAI Wormhole Bridge contract.

To initiate a fast transfer of DAI between different domains, the user calls initWormhole() on the
L2DAIWormholeBridge contract. After it ascertained the finality of the transaction initiating the transfer
the Maker Oracle issues a signed attestation allowing the user to immediately mint DAI on L1 through
WormholeOracleAuth.requestMint() (green path).

From time to time, the collected DAI at the L2DAIWormholeBridge contract is transferred in one batched
transaction via the normal bridge mechanism of this L2 solution onto L1 using flush(). After the
message has been relied to L1, the transfer can be finalized using finalizeFlush() of the
L1DAITokenWormholeBridge contract. On L1 the received DAI token are used to settle the debt created
by the preliminary distributed DAI to the user (blue path).

As this approach described above requires the cooperation of the Maker Oracle Feeds, it is not trustless.
In order remove the requirement to trust the Maker Oracles Feeds, the L2DAIWormholeBridge contract
implements functionality allowing the users to transfer the message via the Bridge mechanism of the
Domain / L2 solution. Note that depending on the L2 solution this bridge may not be trustless and

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com/security-audit/makerdao-optimism-dai-bridge/
https://chainsecurity.com

requires to trust the sequencer. While this path is slower it allows the user to eventually retrieve his DAI
(red path).

Fees: Transfers through the DAI Wormhole incur a fee which is taken when the DAI are minted on the
destination domain. To determine the fee the code calls a fee adapter contract which may be changed. At
the time of the audit one constant fee contract implementation existed.

Ilk: DAI must be available on L1 in order to immediately mint DAI to the user before the actual DAI tokens
have been transferred via the bridge mechanism. A new ilk type has been introduced alongside the
WormholeJoin adapter: Upon unwrapping the attestation issued by the trusted Maker Oracle Feed this
promised DAI is locked as gem inside the VAT for an urn belonging to the WormholeJoin contract. Using
this gem collateral, collateral is locked as ink, art and eventually DAI is generated. On settlement, the
received DAI is joined back into the VAT and used to settle the debt. This special ilk has a fixed stability
fee rate of 1.

Note that for L2->L2 transfers, while the teleporting happens directly the settlement takes a detour from
L2(a) -> L1 -> L2(b).

3.1 Contracts:
• WormholeJoin: join contract representing the "promised Dai" gem, it is also responsible for

managing the debt of the different domains

• WormholeRouter: the router facilitates the communication between gateways (WormholeJoin or
bridges), it forwards minting requests and settlement from a gateway to another

• WormholeOracleAuth: this contract has the burden to receive and verify the signed messages
emitted by the Maker Oracles and request the minting of Dai for the receiver. To be allowed to
create the minting request, the message has to be signed by a certain number (threshold) of
different Maker Oracles. 0 or 1 as threshold values have the same effect, i.e., only one approved
signer is needed.

• WormholeFees: interface for wormhole fees

• WormholeConstantFees: implements WormholeFees with a constant fee

• WormholeGUID: contains the WormholeGUID struct, representing a minting request on a given
domain, and allows to compute its hash

• L2DAIWormholeBridge (L2DaiWormholeGateway): wormhole bridge on Optimism (Arbitrum). Users
will call initiateWormhole, this will burn Dai on L2, emit an event that will be picked by the

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Maker Oracles (fast path) which will sign the WormholeGUID, and send a cross-domain message to
let the user take the slow path if needed. This contract also has a flush function that will trigger the
settlement on L1.

• L1DAIWormholeBridge: wormhole bridge on L1. The L2 cross-domain account can trigger its
finalizeFlush function, which will trigger the settlement on L1. Any user can submit a
WormholeGUID to the finalizeRegisterWormhole function, it will trigger a minting request
(slow path).

3.2 Roles:
• Initiator: Account initiating the DAI transfer by calling initiateWormhole(). They can specify the
operator and receiver.

• Operator: Account allowed to initiate the minting process on the destination domain.

• Receiver: Account receiving the minted DAI on the destination domain.

In this release the destination domain can only be L1 / Ethereum.

3.3 Trust Model
Wards: For every contract, each address set to 1 in any of the wards mapping is fully trusted and
expected to behave correctly.

Maker Oracle Feeds: These actors and their Oracle attestations are fully trusted. The Oracle feeds are
expected to sign the hash of a WormholeGUID if and only if they observe a WormholeInitialized
event on L2. Furthermore, before signing they must ensure that the transaction is finalized and its state
cannot change anymore. The authorized signers in WormholeOracleAuth are trusted to sign valid
messages since they are the Maker Oracle Feeds.

The L2 bridges are trusted by Oracle Feeds and L1 bridges to emit minting events if and only if they
receive a valid L2 withdrawal transaction.

Each gateway, either WormholeJoin or bridge deployed by Maker, is trusted by the WormholeRouter
to be non-malicious.

Each contract in the scope of this audit is fully trusted by the other parts of the system to behave correctly
at all time.

The users are not trusted and can only submit messages that have been signed by trusted entities,
Maker Oracle Feeds or bridges.

Moreover, the Maker system needs to trust the L2 sequencer to include the wormhole transaction.

Changes in Version 2:

• The WormholeConstantFee implementation now only charges a fee for fast withdrawals:
Withdrawals after guid.timestamp + ttl (ttl is expected to be set to
Time in seconds to finalize flush (not wormhole) via the slow path) do not
incur a fee.

• Users no longer specify a max fee but a max fee percentage based on the amount of the wormhole.

• Specifiying the operator for a wormhole is now optional.

• The receiver can always mint DAI of the wormhole.

• An operatorFee has been introduced. This is an additional fee in DAI and not subject to
any limit checks (up to the full value of the wormhole), notably it's independent of the set
maxFeePercentage.

• The fee interface has been changed to:

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

function getFee(
 WormholeGUID calldata wormholeGUID, uint256 line, int256 debt, uint256 pending, uint256 amtToTake
) external view returns (uint256 fees);

• requestMint() now returns the postFeeAmount and the totalFee.

• BasicRelay: This contract introduces a gasless relay for the oracle fast path. For wormholes with
the operator set as this BasicRelay contract and given a valid signature from the receiver of the
wormhole, anyone can relay the wormhole. The signature covers all parameters for the function call.
OracleAuth.requestMint() is executed and succeeds only when the full amount of the
wormhole has been successfully minted, the gasFee amount of DAI is transferred to the relayer.

Changes in Version 3:

• WormholeJoin.cure() now returns the total debt used by this contract based on the stored art
value. Only actions of WormholeJoin can modify this value, and the value stored is always updated
accordingly. The change is necessary in order for the function to return the debt correctly under all
circumstances, notably during shutdown of the VAT where end.skim() may "settle" the vault.

In version 3 of the optimism dai bridge contracts the DAIWormholeBridge contracts (L1 and L2) have
been renamed to DAIWormholeGateway.

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedFees May Block Slow Path

Medium -Severity Findings 2

• Code CorrectedL2 Addresses

• Code CorrectedMinting Pending DAI Incurs Additional Fees

Low -Severity Findings 6

• Code CorrectedMissing or Incomplete Natspec

• Specification ChangedSpecification Mismatch

• Code CorrectedCode Inefficiency

• Code CorrectedInterface Mismatch

• Code CorrectedMissing Index

• Code Correctedfile() Casting Bytes32 to Uint256

7.1 Fees May Block Slow Path
Design High Version 1 Code Corrected

The slow path goes through L1DAIWormholeBridge.finalizeRegisterWormhole() which calls
requestMint with maxFee = 0.

When the vat is live, the computed fee in _withdraw function of WormholeJoin may be > 0 and the
transaction would revert due to:

require(fee <= maxFee, "WormholeJoin/max-fee-exceed");

This essentially prevents users who are censored by the oracle to redeem using the slow path.

Code corrected:

The only fee currently present, the WormholeConstantFee, now features a ttl after which the fee returned
for this WormholeGUID is 0.

7.2 L2 Addresses
Design Medium Version 1 Code Corrected

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The address format can differ across L2 systems / different domains the DAI wormhole connects. While
the majority work with address of 20 bytes, compatible with the solidity address type, other systems can
use other address format. One example of those is StarkNet where addresses of are of type felt which
are larger than 20 bytes.

Code corrected:

The receiver and operator fields of the WormholeGUID struct have been replaced by bytes32
types to accommodate for address formats up to 32 bytes.

7.3 Minting Pending DAI Incurs Additional Fees
Design Medium Version 1 Code Corrected

Using the DAI Wormhole may take a fee from the user. This fee is taken on L1 and transferred to the
VOW. The fee is accounted for inside _withdraw() and calculated using an external Fee adapter
contract based on the wormholeGUID which contains all information about the transfer, the current debt
and the line, the debt ceiling according to the source domain.

The amount of the fee taken is calculated before determination of the amount that is withdrawn.

uint256 fee = vatLive ? FeesLike(fees[wormholeGUID.sourceDomain]).getFees(wormholeGUID, line_, debt_) : 0;
require(fee <= maxFee, "WormholeJoin/max-fee-exceed");

uint256 amtToTake = _min(
 pending,
 uint256(int256(line_) - debt_)
);

The fee is based on the full amount of the wormholeGUID being processed, not on the actual amount
withdrawn in this transaction. The actual amount withdrawn is limited by the maximum debt that can be
created without exceeding the ceiling. The remaining amount can be retrieved later when more debt can
be accrued using mintPending(). This however again uses function _withdraw which again
calculates the fee based on the full amount of the wormholeGUID, the current debt and debt ceiling. The
pending amount is not taken into account for the calculation of the fee.

Hence, should the amount to be withdrawn be limited by the remaining space between the debt ceiling
(line) and the current debt, the user pays fees based on the full amount, not the amount being withdrawn.
Later, when the remaining pending amount is withdrawn, the user again pays fees based on the full
amount of the wormholeGUID, effectively paying again for the same transfer.

Code corrected:

The fee computation function getFee takes more parameters (pending, amtToTake) into account. This
allows more versatile ways to compute the fee. For example, WormholeConstantFee can now
compute the fee relative to the amount being withdrawn instead of the full fee every time the full amount
is partially withdrawn.

7.4 Missing or Incomplete Natspec
Design Low Version 2 Code Corrected

• requestMint, _mint and mintPending are missing the natspec for their second return value
totalFee.

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

• the cure and getFee functions specification should specify the unit of its return value.

• the isValid function specification should describe the return value.

• the v, r and s parameters of BasicRelay.relay should be described in the specification

Code corrected:

The issues raised above have been addressed.

7.5 Specification Mismatch
Correctness Low Version 2 Specification Changed

The specification of the mintPending function says that it is only callable by the operator, but the
receiver is also allowed to call the function.

Specification changed:

The description of the mintPending function has been fixed.

7.6 Code Inefficiency
Design Low Version 1 Code Corrected

• signers mapping in WormholeOracleAuth is address => bool, it would be more gas efficient
to have a address => uint256.

• in WormholeOracleAuth, threshold is passed as a function parameter in isValid.
threshold is a storage variable in the contract and thus can be accessed directly from isValid
function and does not need to be passed as a parameter, this would save gas.

• in _withdraw function of WormholeJoin, the overflow check for _line happens every time.
Checking for overflow only once in the file function where the line for a domain is set would save
gas.

Code corrected:

• the signers mapping has been changed to a mapping(address => uint256).

• MakerDAO wants the isValid function to be used by anyone who wants to verify an oracle
attestation.

• the file function checks for _line validity and the check has been removed from _mint (new
version of _withdraw).

7.7 Interface Mismatch
Design Low Version 1 Code Corrected

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

• The signature of the DAI token's approve is
function approve(address, uint256) external returns(bool);, but WormholeJoin
and L1DAIWormholeBridge have it as
function approve(address, uint256) external; in the interface they define for
TokenLike.

Version 2:

• The interface signature of requestMint in WormholeRouter exposes only one return value out of
two. The interface signature of requestMint in L1DAIWormholeBridge exposes no return value at
all. The compiler will just drop the unused return values without causing an error, but this design
choice does not reflect the correct signatures and should be documented.

Code corrected:

• WormholeJoin and L1DAIWormholeBridge have the correct interface for the DAI token's
approve function.

• Version 3The interface signature of requestMint() in WormholeRouter has been fixed in .

• L1DAIWormholeBridge is now called L1DAIWormholeGateway. The interface is now defined
correctly in the imported WormholeInterface.

7.8 Missing Index
Design Low Version 1 Code Corrected

• domain fields are indexed in WormholeJoin events. It could be useful to index the domain field of
WormholeRouter's File event to make it more easily searchable.

• targetDomain field in Flushed event of L2DAIWormholeBridge can be indexed to ease its
search.

Code corrected:

• the domain fields in the File events are indexed.

• the targetDomain field in the Flushed event is indexed.

7.9 file() Casting Bytes32 to Uint256
Design Low Version 1 Code Corrected

Contrary to the other contracts which have multiple file functions with the data parameter of the actual
type of the data passed, the WormholeOracleAuth has a file function taking a bytes32 argument as
data which is then casted to uint256.

Code corrected:

The file function responsible for the threshold parameter now takes directly a uint256 data to
avoid an unnecessary conversion.

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Breaking Changes of the Solidity Compiler
Note Version 1

The new compiler version behaves differently on code related to integer conversion/negation when the
value is exactly 2**255.

The core DSS system which has been compiled with compiler version 0.6.12 first ensures that the value
of the uint is below or equal to 2**255 before converting it to a (negative) integer.

An example of this pattern can be found in e.g. GemJoin.exit():

require(wad <= 2 ** 255, "GemJoin/overflow");
 vat.slip(ilk, msg.sender, -int(wad));

This project, DSS-Wormhole uses a more recent compiler version 0.8.9. Negating 2**255 is no longer
possible and will result in the transaction reverting.

In DSS-Wormhole, WormholeJoin.settle() features such a pattern:

function settle(bytes32 sourceDomain, uint256 batchedDaiToFlush) external {
 require(batchedDaiToFlush <= 2 ** 255, "WormholeJoin/overflow");
 daiJoin.join(address(this), batchedDaiToFlush);
 if (vat.live() == 1) {
 (, uint256 art) = vat.urns(ilk, address(this)); // rate == RAY => normalized debt == actual debt
 uint256 amtToPayBack = _min(batchedDaiToFlush, art);
 vat.frob(ilk, address(this), address(this), address(this), -int256(amtToPayBack), -int256(amtToPayBack));

Note that in this case the check is superflous: The multiplication in daiJoin.join() will revert due to an
overflow on even lower values.

Nevertheless it's important to be aware of this behavior, the same code pattern behaves differently
depending on the compiler version. This requires careful attention especially when such contracts, which
have been compiled with different compiler versions, e.g. DSS-Wormhole and the VAT interact.

8.2 Finality and State Change on L2
Note Version 1

The notion of finality of transactions and the resulting state change differs across the L2 solutions. The
Wormhole system, especially the Maker Oracle Feeds must be aware of that and take each finality
definition into account. Ideally this is properly assessed and documented for each Domain the Wormhole
connects to.

8.3 Slow Path Requires Zero Fee
Note Version 1

The slow path through L1DAIWormholeBridge.finalizeRegisterWormhole() requires
successful redemption of the wormhole with no fee due to:

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

function finalizeRegisterWormhole(WormholeGUID calldata wormhole)
 external
 onlyFromCrossDomainAccount(l2DAIWormholeBridge)
{
 wormholeRouter.requestMint(wormhole, 0, 0);
}

The interface definition of WormholeFees emphasizes this:

It should return 0 for wormholes that are being slow withdrawn.

8.4 Surplus DAI for WormholeJoin in the VAT
Note Version 1

Function settle() of the WormholeJoin contract is permissionless and given enough DAI token
balance of the WormholeJoin contract (e.g., provided by the caller) can be executed by anyone.
DaiJoin.join() returns the DAI tokens into the system and the contract's balance tracked by the DAI
mapping of the VAT increases accordingly. This increased balance however is stuck when everything
has been settled.

Note that the sourceDomain can be chosen arbitrarily by the untrusted caller. Listeners of the event
Settle must be aware that this event may be triggered by anyone and may not represent a debt
repayment coming from the bridges.

MakerDAO - DAI Wormhole - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Contracts:
	3.2 Roles:
	3.3 Trust Model

	4 Limitations and use of report
	5 Terminology
	6 Findings
	7 Resolved Findings
	7.1 Fees May Block Slow Path
	7.2 L2 Addresses
	7.3 Minting Pending DAI Incurs Additional Fees
	7.4 Missing or Incomplete Natspec
	7.5 Specification Mismatch
	7.6 Code Inefficiency
	7.7 Interface Mismatch
	7.8 Missing Index
	7.9 file() Casting Bytes32 to Uint256

	8 Notes
	8.1 Breaking Changes of the Solidity Compiler
	8.2 Finality and State Change on L2
	8.3 Slow Path Requires Zero Fee
	8.4 Surplus DAI for WormholeJoin in the VAT

