

PUBLIC

Code Assessment

of the Claim Fee Maker

Smart Contracts

May 12, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 12

7 Notes 18

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Claim Fee Maker according
to Scope to support you in forming an opinion on their security risks.

Claim Fee Maker implements an addition to the Maker protocol enabling fixed-rate debt over a certain
period of time. This addition works with existing ilks/vaults without the need for any change to the core
system.

The most critical subjects covered in our audit are the security of the new contracts, the functional
correctness and the impact of these changes on the core Maker system.

Claim Fee works by issuing claims for which the holder can claim compensation for the stability fee
accrued. DAI for payout might be generated by minting unbacked stablecoin accounted to the VOW.
Issuance collects no payment, the privileged role issuing claims must compensate the VOW accordingly,
this is not handled by the smart contracts reviewed.

A claim fee is not connected to an actual debt position / urn. Plans exist to address this, please refer to
note: No connection between ClaimFee and actual Debt.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 5

• Code Corrected 2

• Specification Changed 2

• Risk Accepted 1

Low -Severity Findings 9

• Code Corrected 6

• Risk Accepted 2

• Acknowledged 1

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Claim Fee Maker repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

Claim Fee Maker

V Date Commit Hash Note

1 02 Mar 2022 25f54df55b8f74311a17dc331c221a54b688afd6 Initial Version

2 02 May 2022 76dab7ab3f48efac325f092d2085c5f8415f0904 Second Version

3 11 May 2022 4c02193cc671f534ad85dbc2ae114ea93b32901b Third Version

DSS Gate

V Date Commit Hash Note

1 02 Mar 2022 71ea33e6868220aa2153daeb9e8134cc0c8478d9 Initial Version

2 25 Apr 2022 43260bfc5da0818d80bf6607485b9e74cbce9180 Second Version

Version 3

The solidity smart contracts are written for compilers of versions 0.8.x. The exact version has not been
specified in the initial version reviewed. In the compiler has been fixed to 0.8.13, the most
recent version at the time.

The files in scope are ClaimFee.sol of the Claim Fee Maker repository and gate1.sol of the DSS
Gate repository.

2.1.1 Excluded from scope
All files not explicitly listed above.

2.2 System Overview
Claim Fee Maker implements an addition for the Maker protocol enabling fixed-rate debt over a certain
period of time. To achieve this, a claim fee balance can be issued for a certain ilk (collateral type),
issuance time and maturity. This claim fee balance can later be redeemed to offset the stability fee being
accrued by a regular vault. The DAI amount required is generated by minting unbacked DAI in the VAT
on behalf of the VOW. This concept allows implementing fixed rate debt for existing ilks/vaults with rates
based on the stability fee without the need for any change to the core system.

The system consists of two contracts.

1. ClaimFee

Privileged actions to be executed by the governance:

• issue

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

• Issues a claim fee balance for a supported ilk with an issuance and maturity to the
specified address. No funds are collected. The claim fee balance is supposed to be
distributed/sold through various methods to vault owners. The amount issued must be in an
18 decimal representation.

• withdraw

• Allows to burn claim fee balance of any user.

• initializeIlk

• enable support for an ilk. The governance is trusted to add only normal ilks without
special behavior which may not be supported by claim fee.

Unprivileged actions for owners of claim fee balances:

• collect

• Allows to collect the accrued stability fee in DAI.

• rewind

• Rewinds issuance of the claim back to a past timestamp. User must provide DAI to cover
for the extra yield which can now be withdrawn.

• slice

• Slices one claim balance into two claim balances at a timestamp.

• merge

• Merges two claim balances with contiguous time periods into one claim balance.

• activate

• Activates a claim fee balance whose issuance timestamp does not have a rate value set.
Yield earned between issuance and activation becomes uncollectable and is permanently
lost. Required as for collect() there must be a stored rate at the issuance timestamp.

• moveClaim

• Transfer claim fee balance to another address.

Users can give approvals to act on their behalf within ClaimFee using hope()/nope().

For the calculation of the stability fee to be repaid to the holder of the claim fee balance, the system
needs data about the evolution of the rate.

• snapshot allows anyone to store a snapshot of the current rate of the given ilk

• insert Privileged action. Within some safeguards, governance can manually add missing values.
Governance is trusted to do this correctly, the safeguards do not entirely prevent errors, added rates
may not respect the requirement for monotonic increase of rates with time. Should this happen, the
system will break.

Usability of the system, redemption of claim fee heavily depends on existing entries for rates at
timestamps. Users may be unable to complete their action and collect their DAI if entries for the required
timestamps do not exist. Users must be especially careful when executing slice and/or transferring
(receiving) claim fee balances.

Considerations for VAT shutdown:

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Shutdown of the Claim Fee contract may be initiated by a privileged role at any time or by anyone in case
the VAT of the DAI stable coin system has been shutdown.

• close() initiation of shutdown.

• calculate() set the rate for payout. This allows Maker governance to payout the residual value of
the unused claim fee balance in DAI depending on the closure timestamp and the maturity.

• cashClaim() allows user to cash out. User needs to provide a claim fee with issuance of
latestRateTimestamp[ilk] and the respective maturity for wich a ratio has been set by the
governance. Slice() might be used to split the claim fee into the required parts. The later part
starting at latestRateTimestamp[ilk] until maturity for cashClaim(). With the first part, the
stability fee refund may be collected using collect().

Collect() must be used to collect the stability fee up to the closure.

Transfer of DAI is done within the VAT accounting only, no actual DAI tokens are transferred.

Considerations for liquidations:

As this addition is separate from the core system, no special considerations must be taken for
liquidations. There is no connection between the debt of an urn and the claim fee balance covering this
debt. The urn may be liquidated if it reached an unhealthy state. Up to the maturity the claim fee balance
can still be redeemed for the stability fee this debt would have accrued.

2. Gate1

Claim Fee generates the DAI required for payout by minting unbacked stablecoin for the VOW.
Accessing vat.suck() directly would require the contract to bear the ward role inside the core Maker
system. To mitigate this risk, a gate contract is introduced which will bear the ward role in the VAT
contract and restrict the access / maximum bad debt that can be generated.

2.3 Trust Model & Roles
Contract ClaimFee:

wards: Address with admin authority. Fully trusted to always behave honestly and correctly.

bud : Less privileged role than wards but fully trusted to behave honestly and correctly at all times. The
ClaimFee contract is a bud in the Gate1 contract.

users: normal users, untrusted.

The issuance of the claim fee balance does not collect any funds. Moreover, compensating the
stability fee is done by minting unbacked stablecoin accounted to the VOW. We assume that the
claim fee balances issued by the privileged role (the governance) are sold and the collected
amount of DAI is forwarded to the VOW. Furthermore, to settle the debt, vow.heal() has to be
executed accordingly. The system makes a surplus if the fixed rate exceeds the reimbursed
variable rate. Otherwise, the VOW incurs a loss.

We assume that jug.drip() is executed frequently for all supported ilks and the resulting increments in
the rate are small.

Furthermore, it is assumed that either snapshots are executed for all ilks regularly, or the governance
updates the respective values.

Contract Gate1:

wards: Assumed to be the Maker governance exclusively. Fully trusted to always behave honestly and
correctly. Most importantly they can set the approvedtotal which limits the amount this contract can
draw as unbacked stablecoin from the VAT.

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedRedemption Blocked When No Rate Entry at Maturity Exists

Low -Severity Findings 3

• AcknowledgedGate1 Withdraw Timestamp

• Risk AcceptedLeftover Claims

• Risk AcceptedSlice at Timestamp With No Rate

5.1 Redemption Blocked When No Rate Entry at
Maturity Exists
Design Medium Version 1 Risk Accepted

After the shutdown of the ClaimFee contract, users may exchange their claim balance for DAI using
cashClaim(), if it has a maturity after the closure timestamp. However, this requires a valid entry in
ratio[ilk][maturity] which must be set manually for each ilk and maturity by the governance.

Since the function slice allows users to split their claim fee, many arbitrary maturity timestamps may
exist. If the user still holds all segments up to the maturity, they may be able to merge them using
function merge(). However, these segments may not be available anymore: Individual segments may
have been redeemed already, or be unavailable to the user as they have been transferred using the
function moveClaim.

Overall, users may be blocked and unable to redeem their claim fee.

Risk accepted:

Deco accepts the risk that rate entries might be missing for maturity timestamps. They pledge to provide
appropriate support to ensure all maturities have a valid ratio set in case of emergency shutdown.

5.2 Gate1 Withdraw Timestamp
Design Low Version 1 Acknowledged

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

In the Gate1 constructor, the withdrawAfter timestamp is set. The only check made using this value is
to see if it is in the past. Thus, not setting the value at all would save gas and yield the same results.

Acknowledged:

The additional storage write is a one-time cost during deployment.

5.3 Leftover Claims
Design Low Version 1 Risk Accepted

ClaimFee.collect() reimburses the stability fee accrued between the issuance and collect
timestamp. If the collect timestamp is not equal to the maturity, a new claim fee is issued from the collect
timestamp to the maturity.

In general, it's very unlikely that a valid rate is stored for the maturity timestamp: Apart from values
manually inserted by the governance, rates stored through function snapshot() can only exist for valid
block timestamps. The maturity of a claim fee could have been set months in advance upon issuance or
the claim fee could have been sliced in various ways. Hence, most of the time, it's not possible to collect
up to the maturity timestamp. This design will result in minting many small "leftover" claims.

Risk accepted:

There will be standardized maturity timestamps, e.g.the first day of the month at 12:00:00 UTC.
Additionally, it is planned to run bots that regularly take snapshots to ensure that any leftover claims are
sufficiently small to be negligible. Lastly, users will be warned against using functionality which creates
non-standard maturity timestamps.

5.4 Slice at Timestamp With No Rate
Design Low Version 1 Risk Accepted

The function slice allows users to split their claim at a certain timestamp. However, it is possible that
the timestamp at which they split their claim does not have a valid rate. Unless they later merge their
claims again, or the governance adds a valid rate for the split timestamp, it may not be possible for the
user to redeem the full value of the claims.

Risk accepted:

As stated previously, it is intended to have standardized maturity timestamps so that users can know in
advance which timestamps will have valid rates. Using such timestamps, users are able to split their
claims without incurring any losses. Should the need arise there are two pathways to mitigate the
situation: Governance may insert snapshots at timestamp or users can use activate() to activate a
claim fee balance at a timestamp with a rate set. Note that yield earned between issuance and the
activation timestamp becomes uncollectable and is permanently lost.

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedIncreasing VAT Debt After Shutdown, After thaw()

Medium -Severity Findings 4

• Specification ChangedComments Regarding vow.heal()

• Specification Changed Risk AcceptedGovernance Can Burn From Users

• Code CorrectedGate1.heal()

• Code CorrectedtotalSupply Mapping Not Updated

Low -Severity Findings 6

• Code CorrectedAddress of VOW

• Code CorrectedDuplicate Check

• Code CorrectedMaturity in the Past

• Code CorrectedUnused Constants and Function

• Code Corrected AcknowledgedVarious Event Issues

• Code Correctedthis Keyword in initializeIlk

6.1 Increasing VAT Debt After Shutdown, After
thaw()
Design High Version 1 Code Corrected

ClaimFee generates the required DAI by calling vat.suck() through the Gate1 contract which acts as a
safeguard to enforce a limit on the maximum amount of DAI that can be generated by adding bad debt to
the system.

vat.suck() is independent of the system status, notably whether the VAT is live or not. Hence, the call
to vat.suck() will add more bad debt and generate DAI when the VAT is in shutdown. This occurs
even after end.thaw() has been called in step 6 of the shutdown, which fixes the total outstanding
supply of DAI.

The Gate1 contract's purpose is to limit access of the ClaimFee contract in the core maker system: In
order to draw bad debt using vat.suck() one needs to be a ward in the VAT to be able to pass the
auth modifier. To avoid giving full privileges to the external ClaimFee contract, an intermediary contract
Gate1 is introduced, which will be given the privileged role in the VAT. The code of the Gate1 contract
enforces limitations in order to limit the risk for the core system. In its current state, the Gate1 contract is
missing restrictions to prevent drawing more debt when the VAT is in shutdown.

For further reference:

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

https://github.com/makerdao/dss/blob/master/src/end.sol#L410
https://docs.makerdao.com/smart-contract-modules/shutdown/end-detailed-documentation#6.-thaw
https://github.com/makerdao/dss/blob/master/src/vat.sol#L230

Code corrected:

A check for the condition VatAbstract(vat).live() == 1 was added to the accessSuck function
in the ClaimFee contract. This prevents the debt from increasing after the VAT is in shutdown.

6.2 Comments Regarding vow.heal()
Correctness Medium Version 1 Specification Changed

One of the annotations of the Gate1 contract reads:

• does not execute vow.heal to ensure the dai draw amount from vat.suck is lower than the
surplus buffer currently held in vow

There is the following comment in Gate1.accessSuck():

// call suck to transfer dai from vat to this gate contract
try VatAbstract(vat).suck(address(vow), address(this), amount_) {
 // optional: can call vow.heal(amount_) here to ensure
 // surplus buffer has sufficient dai balance

 // accessSuck success- successful vat.suck execution for requested amount
 return true;
} catch {

• vow.heal() uses surplus DAI of the VOW (= surplus buffer) to repay bad debt of the VOW at the
VAT

• vat.suck() generates DAI by creating bad debt assigned to the VOW

Vat.suck() simply adds bad debt, there is nothing ensuring the amount of DAI drawn is lower than the
surplus buffer.

Specification changed:

The annotation and comments were removed.

6.3 Governance Can Burn From Users
Correctness Medium Version 1 Specification Changed Risk Accepted

The function ClaimFee.withdraw() allows the privileged ward role (the governance) to burn a claim
of any user. However, the function's annotation contradicts this as it states the following:

/// Withdraws claim balance held by governance before maturity
/// @dev Governance is allowed to burn the balance it owns

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 13

https://github.com/makerdao/dss/blob/master/src/end.sol#L410
https://docs.makerdao.com/smart-contract-modules/shutdown/end-detailed-documentation#6.-thaw
https://github.com/makerdao/dss/blob/master/src/vat.sol#L230
https://chainsecurity.com

Furthermore, this function can also withdraw/burn a claim balance upon/after maturity.

Risk accepted:

The annotation was changed to reflect the functionality. The risk of allowing the governance to burn any
user's balance is accepted, as they plan to add additional contracts with functionalities that require
burning claim fee balances.

6.4 Gate1.heal()
Design Medium Version 1 Code Corrected

Gate1.heal() is annotated with:

// Access to vat.heal() can be used appropriately by an integration

It simply calls vat.heal():

function heal(uint rad) external {
 VatAbstract(vat).heal(rad);
}

Vat.heal() heals bad debt of msg.sender()

function heal(uint rad) external {
 address u = msg.sender;
 sin[u] = sub(sin[u], rad);
 dai[u] = sub(dai[u], rad);
 vice = sub(vice, rad);
 debt = sub(debt, rad);
}

• The Gate1 contract however doesn't accrue bad debt when generating DAI: Gate1 only draws bad
debt using vat.suck(address(vow), address(this), amount_). The bad debt is assigned
to the VOW, only the generated DAI is assigned to the Gate1 contract:

function suck(address u, address v, uint rad) external auth {
 sin[u] = add(sin[u], rad);
 dai[v] = add(dai[v], rad);
 vice = add(vice, rad);
 debt = add(debt, rad);
}

If the Gate1 contract doesn't accrue bad debt outside of its own functionality, the function has no
purpose.

Furthermore, if Gate1 does indeed accrue bad debt, the intended backup DAI balance may be
compromised by the fact that anyone could call heal() and use some of this DAI balance to heal the
bad debt.

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Code corrected:

The heal() function of the Gate1 contract was removed.

6.5 totalSupply Mapping Not Updated
Correctness Medium Version 1 Code Corrected

The ClaimFee contract has a totalSupply mapping which should track the total supply of claims per
ilk. However, neither the mintClaim nor burnClaim functions update the mapping.

Code corrected:

The totalSupply mapping is now updated accordingly in the mintClaim and burnClaim functions.

6.6 Address of VOW
Design Low Version 1 Code Corrected

In the Gate1 Contract, both the VOW and the VAT addresses are stored as immutables. In contrast, the
ClaimFee contract stores both addresses in storage without implementing functionality to update the
address.

As reading from storage is expensive, variables set only during deployment may be changed to
immutables. During the deployment, all immutable values are inserted into the bytecode of the deployed
contract code. Hence, they can be accessed during execution without the need for an expensive SLOAD
operation.

Note that there are ongoing discussions to change the VOW to use a proxy:
https://github.com/makerdao/dss/pull/241 As such, it may be necessary to have a mutable storage
variable for its address.

Code corrected:

The VAT address was made immutable in the ClaimFee contract, and the VOW address was removed.
Instead, the VOW address is dynamically queried from the Gate1 contract when necessary.

6.7 Duplicate Check
Design Low Version 1 Code Corrected

The function issue checks the following condition:

require(initializedIlks[ilk] == true, "ilk/not-initialized");

However, the mintClaim function checks the very same condition and hence the check in issue is
unnecessary.

Code corrected:

The duplicate check was removed.

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 15

https://github.com/makerdao/dss/pull/241
https://chainsecurity.com

6.8 Maturity in the Past
Design Low Version 1 Code Corrected

The function issue places the following requirement on the maturity timestamp:

require(
 issuance <= latestRateTimestamp[ilk] && latestRateTimestamp[ilk] <= maturity,
 "timestamp/invalid"
);

However, there is no guarantee that the value latestRateTimestamp[ilk] is recent. As it makes
little sense to issue a claim with a maturity in the past, one could instead check that the maturity is
later than the current block timestamp.

Code corrected:

The issue function now ensures the condition block.timestamp <= maturity.

6.9 Unused Constants and Function
Design Low Version 1 Code Corrected

There are a few constants and a function that are unused or could otherwise be omitted.

1. The MAX_UINT constant could be replaced with the built-in Solidity constant:
type(uint256).max.

2. The constant RAD is never used.

3. The function wmul is never used.

Code corrected:

The MAX_UINT constant was replaced as suggested; RAD and wmul were removed.

6.10 Various Event Issues
Design Low Version 1 Code Corrected Acknowledged

There are a few functions in which events should be emitted or the event parameters should be indexed.

1. In the ClaimFee constructor, no Rely event is emitted when the message sender is added as a
ward.

2. No event is emitted by the close function. This is an important change regarding the functionality
of the contract and hence should emit an event.

3. No event is emitted by the calculate function. Again, this is an important storage change which
allows users to cash out. Indexing the events would allow users to search for specific ilks and
maturities.

4. The Kiss and Diss events in the Gate1 contract are not indexed.

5. The NewApprovedTotal and Draw events in the Gate1 contract could have indexed amounts.

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Code corrected:

1. A Rely event emission was added to the ClaimFee constructor.

2. A Closed event was added and is now emitted by the close function.

3. A NewRatio event was added and is now emitted by the calculate function.

4. The address parameter in the Kiss and Diss events in the Gate1 contract are now indexed.

Acknowledged:

5. The NewApprovedTotal event was removed. The Draw event now has an indexed
accessSuckStatus parameter, but the amount parameter is not indexed as Deco did not see the
need for it.

6.11 this Keyword in initializeIlk
Design Low Version 1 Code Corrected

The initializeIlk function makes the following call to the snapshot function:

function initializeIlk(bytes32 ilk) public auth {
 // ...
 this.snapshot(ilk); // take a snapshot
}

Calling a function in this way incurs an extra cross-contract call. In order to make an internal call, the
snapshot function would have to be declared public instead of external and the this keyword
removed.

Code corrected:

Version 3In the snapshot functions visibility has been changed to public, the call in
initializeIlk() has been updated accordingly.

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Circumvent withdrawAfter Restriction
Note Version 1 Code Partially Corrected

Gate1 features a restriction for function withdrawDai(). The privileged role able to pass the auth
modifier can only call withdrawDai() successfully when the withdrawal condition is satisfied:

bool withdrawalAllowed = (block.timestamp >= withdrawAfter);

The privileged role able to pass the auth modifier can always add any address as a bud using the
function kiss(). Such an account can then pass the toll modifier and successfully call suck() /
draw() and draw DAI. If the call to vat.suck() is unsuccessful (e.g. if the limit has already been
reached) this allows to withdraw the backup DAI balance of the contract.

Code partially corrected:

While it is no longer possible to add a bud when the withdrawal condition is not satisfied, an already
existing bud would still be able to circumvent the restriction. For example, after the contract is created, a
bud could be added, and only then withdrawAfter would be set to a timestamp in the future.
Alternatively, one could wait for withdrawAfter to be in the past, then add a bud and set
withdrawAfter to a future timestamp. Therefore, a ward is still able to withdraw the backup DAI
balance of the contract.

7.2 Discrepancy Between Reimbursed Amount
and Actual Stability Fee
Note Version 1 Risk Accepted

The stability fee paid in in the Maker system is based on the rate increase between when taking and
repaying the debt.

ClaimFee reimburses the stability fee based on stored snapshots of the rate.

There are corner cases where the rate stored may not match the actual rate debt was taken/repaid for at
this timestamp and hence the reimbursed amount of DAI is not the amount of stability fee paid by the
user.

Storing the current rate in ClaimFee does not trigger the update of the rate in the Maker system
(jug.drip()). A later transaction in the very same block may trigger jug.drip() and further
transactions modifiying a debt position of this ilk use the new rate.

Consider the following scenarios which must happen within the same block:

1. • ClaimFee.snapshot() is executed and rate A is stored

• Jug.drip() is executed -> The rate is udpated to A+x

• The user repays debt in the Maker system at rate A+x

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

When the user calls collect() on his claim fee balance he is reimbursed based on the "old" rate
stored and receives less DAI than actual stability fee paid.

2. • User takes debt in the Maker system at rate A

• Jug.drip() is executed -> rate is udpated to A+x

• ClaimFee.snapshot() is executed and rate A+x is stored

Similarly, the user may not be compensated for the full stability fee in this scenario. Note that
normally, with the stability fee based on the rate/time, the user has an incentive to increase the rate
first using jug.drip() before taking on debt. However, unaware users with the impression that
claim fee covers their stability fee may not do this.

We assume that jug.drip() is executed frequently and the resulting rate increase is small enough so
the discrepancies arising in scenarios as described above can be neglected.

Risk accepted:

The risk is accepted based on the assumption that the rate increases are small enough to be negligible.

7.3 No Connection Between ClaimFee and Actual
Debt
Note Version 1

There is no connection between an issued claim fee and debt in the VAT. ClaimFee reimburses the
stability fee its amount (art) would have accrued.

Note that the amount of claim fees issued per ilk should not exceed the amount of actual debt per ilk
otherwise more stability fee is reimbursed than is actually accrued by the system.

Deco responded:

– Our goal is to help the Maker protocol find users who want to hold a vault open for the entire term of the
claim fee so that the protocol can derive the benefits of a sticky user and collect the fixed-rate revenue
upfront without having to make any re-imbursements later to these users from the revenue generated by
variable-rate vaults held by others. We want to ensure claim fee supply stays matched to the vaults who
signed up for fixed-rate debt at the issuance date.

– ClaimFee has a transfer function which already allows a vault owner who has claim fee balance and no
longer wants to use it to transfer it to another regular vault owner. This would keep claim fee balance less
than ilk debt and not trigger the excess reimbursement issue.

– We originally planned to avoid reimbursements that exceed stability fee accrual to the system when
debt level drops directly at the urn that was supposed to use the claim fee balance, by combining both
the urn and claim fee balance and routing all its usage through a CDP Manager style contract which can
create and manage a fixed-rate vault. This CDP Manager can have the required state transitions to keep
both debt and claim fee balance of the vault in sync over its lifetime.

– We now plan to design and deploy a much simpler and standalone “Liquidation Penalty” contract
instead of the modified CDP Manager. Liquidity Penalty contract can withdraw an amount of claim-fee
balance (burn it) held by a user address to match any reduction in debt on a regular vault the same
address holds. We don’t want addresses holding claim fee balances standalone without also holding
vaults of the collateral type between the issuance and maturity timestamps of the claim fee balance. This
liquidation penalty contract could re-imburse the claim fee balance after taking a haircut on its current

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

value(let’s say 75%, make it attractive for fixed-rate vault owners to abandon their claim fee balance, but
not set it too high at like 100% to ensure no reimbursement but force claim fee holders to find buyers
among other vault owners to avoid loss of value) to ensure claim fee in circulation stays below the debt
held in urn at all times, thereby also solving the issue at the ilk level.

MakerDAO - Claim Fee Maker - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Redemption Blocked When No Rate Entry at Maturity Exists
	5.2 Gate1 Withdraw Timestamp
	5.3 Leftover Claims
	5.4 Slice at Timestamp With No Rate

	6 Resolved Findings
	6.1 Increasing VAT Debt After Shutdown, After thaw()
	6.2 Comments Regarding vow.heal()
	6.3 Governance Can Burn From Users
	6.4 Gate1.heal()
	6.5 totalSupply Mapping Not Updated
	6.6 Address of VOW
	6.7 Duplicate Check
	6.8 Maturity in the Past
	6.9 Unused Constants and Function
	6.10 Various Event Issues
	6.11 this Keyword in initializeIlk

	7 Notes
	7.1 Circumvent withdrawAfter Restriction
	7.2 Discrepancy Between Reimbursed Amount and Actual Stability Fee
	7.3 No Connection Between ClaimFee and Actual Debt

