

PUBLIC

Code Assessment

of the Arbitrum Token Bridge

Smart Contracts

October 09, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Notes 13

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Arbitrum Token Bridge
according to Scope to support you in forming an opinion on their security risks.

MakerDAO implements a custom token bridge between Ethereum and Arbitrum that supports the
bridging of multiple tokens.

The most critical subjects covered in our audit are functional correctness, access control and the
integration with Arbitrum's messaging infrastructure. The general subjects covered are error handling,
trustworthiness and specification. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Arbitrum Token Bridge repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V
Date Commit Hash Note

1
01 Jul
2024

6248966bd8dac6261fb296f9743a0b
9432cfec71

Initial Version

2
09 Jul
2024

c3c60c2fcd870d48d6886c187c7cab
b38c22ab76

After Intermediate Report

3
08 Oct
2024

aedb60f1a7efe2edb8a80611c2e601
d262c03997

Fileable Escrow, Upgradeable & L2 Withdrawal
Limits

For the solidity smart contracts, the compiler version 0.8.21 was chosen.

The files in scope were:

deploy/
 L2TokenGatewayInstance.sol
 L2TokenGatewaySpell.sol
 TokenGatewayDeploy.sol
 TokenGatewayInit.sol

src/
 L1TokenGateway.sol
 L2TokenGateway.sol

In version 3 the following file was added:

deploy/
 L1TokenGatewayInstance.sol

2.1.1 Excluded from scope
All other files are not in scope. Arbitrum and its messaging are not in scope and are expected to work
correctly. The tokens that are bridged are expected to be standard ERC-20 tokens (e.g. no rebasing, no
fees, no call-on-transfer) that conform to the required interfaces (e.g. support MakerDAO's rely / deny
authentication). Additionally, other interacted with contracts are out of scope (e.g. escrow, governance
relays).

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 5

https://github.com/makerdao/arbitrum-token-bridge/tree/6248966bd8dac6261fb296f9743a0b9432cfec71
https://github.com/makerdao/arbitrum-token-bridge/tree/6248966bd8dac6261fb296f9743a0b9432cfec71
https://github.com/makerdao/arbitrum-token-bridge/tree/c3c60c2fcd870d48d6886c187c7cabb38c22ab76
https://github.com/makerdao/arbitrum-token-bridge/tree/c3c60c2fcd870d48d6886c187c7cabb38c22ab76
https://github.com/makerdao/arbitrum-token-bridge/tree/aedb60f1a7efe2edb8a80611c2e601d262c03997
https://github.com/makerdao/arbitrum-token-bridge/tree/aedb60f1a7efe2edb8a80611c2e601d262c03997
https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section we have added subsections for each of the changes accordingly to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Since Endgame introduces a set of new tokens to the system, MakerDAO introduces a more generalized
Arbitrum token bridge to support multiple tokens (e.g. DAI, NST, sNST, ...).

2.2.1 Token Bridge
Following Arbitrum's token bridging design with token gateways, gateways on L1 (Ethereum Mainnet)
and on L2 (Arbitrum One) gateways are deployed. L1TokenGateway and L2TokenGateway are
deployed on L1 and L2 respectively.

Both implement MakerDAO's common access control mechanism with rely and deny to (de-)authorize
addresses. Authorized addresses (auth) can

1. use rely and deny,

2. close the bridge with close (closing one gateway only deactivates sending messages to its
counterpart),

3. and add support for tokens with registerToken (registers an L1-to-L2-token-mapping).

Sending funds from L1 to L2 does the following:

1. A user calls outboundTransfer or outboundTransferCustomRefund on L1TokenGateway.

2. Funds from the user are pulled an moved to an escrow contract.

3. A retryable ticket to call finalizeInboundTransfer is generated through Arbitrum's inbox
(sends a message).

4. Eventually, the message arrives on Arbitrum.

5. finalizeInboundTransfer is called on the L2TokenGateway.

6. The L2 token is minted with mint.

Sending funds from L2 to L1 is similar and is described below:

1. A user calls outboundTransfer (one of the two available functions) on L2TokenGateway.

2. Funds from the user are burned with burn.

3. A message to call finalizeInboundTransfer on the L1 gateway is sent through the ArbSys
contract.

4. Eventually, the message arrives on L1.

5. finalizeInboundTransfer is called on the L1TokenGateway.

6. The bridged token is moved from the escrow to the user. Furthermore the code is designed to support
calls through the Arbitrum Router. When a call originates from the router contract set, the data is
processed accordingly to extract the address to receive the tokens. Note that Arbitrum-specific details are
omitted and, hence, some differences are not evident from the descriptions (e.g. sending messages from
L1 to L2 requires paying fees in ETH on L1).

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.2 Deployment and Initialization
The deployment is intended to be performed with the TokenGatewayDeploy script (see Notes for
considerations). The following actions are performed:

• L1: deployL1Gateway script is intended for usage on L1 and deploys L1TokenGateway and
gives an owner (expected to be MCD_PAUSE_PROXY).

• L2: deployL2Gateway script is intended for usage on L2 and deploys the L2TokenGateway and
gives an owner (expected to be MakerDAO's governance relay on L2
("ARBITRUM_GOV_RELAY")). Further, it deploys a reusable spell contract
L2TokenGatewaySpell described below.

L2TokenGatewaySpell is a contract implementing a set of functions intended to be delegatecalled by
the governance relay as part of bridged governance spells. Namely, it implements the following
functionality

• rely and deny to call rely and deny on the L2TokenGateway, respectively.

• close to call close on the L2TokenGateway.

• registerTokens to register a batch of tokens on the L2TokenGateway with calls to
registerToken. Further, note that the gateway is authorized for each L2 token (so that tokens can
be minted).

• init to initialize the L2 (similar to registerTokens but with sanity checks).

The initialization is implemented in function initGateways defined in TokenGatewayInit and
performs the following:

1. A set of sanity checks on the L1TokenGateway and the parameters

2. Registration of the L1 tokens and escrow allowance management

3. Relaying a governance message through the L1 side of the governance relay so that the L2 side
delegatecalls into init of the L2TokenGatewaySpell

Eventually, the message is relayed and init is used (recall that init performs the sanity checks on
L2).

2.2.3 Changes in Version 3
The escrow of L1TokenGateway is now modifiable with file. Hence, the escrow can be changed.
Note that changing the escrow needs to be done carefully (e.g. governance moving funds from old
escrow to the new one) as otherwise bridging back to L1 may revert.

The L2 bridge has a maximum withdrawal amount per token that limits the amount bridgeable from L2 to
L1 per call to outboundTransfer() for a given token. The limit can be set by authorized addresses
with setMaxWithdraw().

While the bridging mechanism has been upgradeable in previous versions, the bridge contracts are now
additionally made upgradeable by leveraging the UUPSUpgradeable library (EIP-1822 pattern with
EIP-1967 proxy storage slots). Note that upgrades must consider messages sent with the previous
version. As a consequence, an initializer function initialize() is provided along with a getter for the
implementation getImplementation() and a version (currently "1" but should be changed with
upgrades). Note that only authorized addresses can upgrade the contracts.

The deployment and initialization scripts have been adjusted accordingly to deploy the proxies with the
respective implementation, to include additional sanity checks, to publish the L1 bridge implementation
on Chainlog, to set the L2-to-L1 withdrawal limits and to file the buffer on the L1 gateway. Additionally,
the L2 spell now offers setMaxWithdraws() (function batching calls to the bridge's
setMaxWithdraw()) and upgradeToAndCall (upgrading the bridge).

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.4 Trust Model and Roles
The system defines the following key roles:

1. Users: Untrusted.

2. Governance: Fully trusted and notably controls the escrow holding the funds and the rights to
upgrade. Within the contracts in scope, governance has the capability to, for example, temporarily
map another token to legitimate L2 tokens (or L1 tokens) in order to steal funds.

3. Arbitrum: Fully trusted. If Arbitrum or its contracts misbehave, tokens could be stolen or arbitrarily
minted.

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Informational Findings 1

• Code CorrectedRedundant Initialization Parameter

6.1 Redundant Initialization Parameter
Informational Version 1 Code Corrected

CS-MKRArbBr-001

The configuration of TokenGatewayInit.initGateways contains the L2 gateway's address as
cfg.counterpartGateway. However, the l2GatewayInstance passed to the function is referring to
the same address. Ultimately, the address is passed twice to the function.

Code corrected:

cfg.counterpartGateway has been removed and l2GatewayInstance.gateway is used.

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Deployment Verification
Note Version 1

Since deployment of the contracts is not performed by the governance directly, special care has to be
taken that all contracts have been deployed correctly. While some variables can be checked upon
initialization through the PauseProxy, some things have to be checked beforehand.

We therefore assume that the initcode, bytecode, traces and storage (e.g. mappings) are checked for
unintended entries, calls or similar. This is especially crucial for any value stored in a mapping array or
similar (e.g. could break access control, could lead to stealing of funds).

7.2 Expiry of Retryable Tickets
Note Version 1

Users should be aware that the automatic execution of L1-to-L2 messages may fail. In such cases, the
retryable ticket must be executed manually. However, the ticket may expire (~1 week).

MakerDAO - Arbitrum Token Bridge - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Token Bridge
	2.2.2 Deployment and Initialization
	2.2.3 Changes in Version 3
	2.2.4 Trust Model and Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Redundant Initialization Parameter

	7 Notes
	7.1 Deployment Verification
	7.2 Expiry of Retryable Tickets

