PUBLIC

Code Assessment

of the Core Protocol V1
Smart Contracts

October 18, 2022

Produced for

MYSCX

FINANCE

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Notes

o N o o~ W N PP

Monitoring

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG

10
11
12
16
22
25

https://chainsecurity.com

1 Executive Summary

Dear Myso Team,

Thank you for trusting us to help MYSO Finance with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Core Protocol V1
according to Scope to support you in forming an opinion on their security risks.

MYSO Finance implements a borrowing system which does not expose borrowers to liquidation risks.
Each loan has the same duration and does not rely on any price oracle or curve-based pricing.

The most critical subjects covered in our audit are asset solvency, functional correctness, access control,
and precision of arithmetic operations. Security regarding all the aforementioned subjects is high. In the
first iteration of the engagement, we uncovered a few medium-severity issues related to the functional
correctness that were addressed in the updated codebase.

The general subjects covered are upgradeability, documentation, trustworthiness, gas efficiency and
code complexity. The contracts in scope of this review are not upgradable and do not have any privileged
account, hence the security regarding upgradeability and trustworthiness is high. The project has
extensive documentation and inline code specification. We reported possibilities to improve the gas
efficiency which were acknowledged by MYSO Finance but not adopted due to code size restrictions.
Regarding code complexity, we highlighted a functionality that implements a complex logic to optimize
storage costs and could be simplified, see Optimizations at the cost of added complexity.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

(EIED-Severity Findings 0
()-Severity Findings 0
(Medium)-Severity Findings 4
W Code Corrected) 2
S peciication Changed! 2
(Low)-Severity Findings 16
W Code Corrected) 9
S peciication Changed! 1
Y) 2
Wik Accepied) 1
.) 3
@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the following source code files inside the Core Protocol V1 repository
based on the documentation files:

* BasePool . sol

einterfaces/ | BasePool . sol
einterfaces/| PAXG sol

e pool s/ paxg- usdc/ Pool PaxgUsdc. sol

e pool s/ usdc-wet h/ Pool UsdcWeét h. sol

e pool s/ wet h- cusdc/ Pool Wt hCusdc. sol
e pool s/ wet h-dai / Pool Wet hDai . sol

e pool s/ wet h-usdc/ Pool Wt hUsdc. sol

The table below indicates the code versions relevant to this report and when they were received.

V | Date Commit Hash Note

1 | 29 Aug 2022 eaab5c68f0238a45bfbaa51351bace4c55543c059 Initial Version
2 | 26 Sep 2022 b3a80dfd3f989688ada7bed341ca7ad775e96211 Version 2

3 | 11 Oct 2022 67b472411ced07d282dc7c757bb183elee5e74f5 Version 3

4 | 18 Oct 2022 810069f12e0056062ca2f7ef2ed6cb006badbOal Version 4

For the solidity smart contracts, the compiler version 0. 8. 17 was chosen.

2.1.1 Excluded from scope

Any file not listed above, third party libraries, and any external token that Core Protocol V1 interacts with
were outside the scope of this code assessment.

2.2 System Overview

This system overview describes the received version ((Version 2)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

MYSO Finance offers a borrowing system with a fixed interest rate and no liquidation. Moreover, it does
not rely on any price oracle or curve-based pricing.

To do so, MYSO Finance uses pools, BasePool . sol , that hold a loan token L and collateral token C,
where borrowers can take a loan against the collateral that they need to repay before a tenor period. If

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

the loan is repaid during the tenor period, LP can claim the repaid amount in L token. If the tenor period
expires, the loan cannot be repaid and the LP can claim the collateral.

When a loan is taken for a transferred amount X of collateral, the final loan amount is derived from
X'=X' - X *protocol Fee with X' =X-transf er Fee(X), where t r ansf er Fee is the fee, if any, taken
by the token transfer, e.g. PAXG. Then, the final loan amount is Y(X") =(X"*m c*al)/ (X"*m c+al),
where i pc is the fixed maximum amount of loan per collateral and al is the maximum available liquidity
in the pool,i.e.,al =total Liquidity-M N_LI QU DI TY.

The fixed interest rate at maturity depends on the liquidity of the pool before (P), and after the loan
(P- Y(X")). It is computed as the arithmetic average of r (P) and r (P-Y(X")), where r (x) is defined
as follows:

r1*51 .
v if X<Bl

(rp—r)* (B —x)

rn, + B, B,

if Bi=x=8B,

r if B, <x

where B_1 and B_2 are two liquidity bounds (in loan token decimals), and r _1 and r _2 are the rate
parameters (in 18 decimals). With this formula, the rate is parabolic when the total liquidity is below B_1,
linear when the liquidity is between the target bounds, and constant with rate r _2 when there is a lot of
liquidity. This ensures the LP a minimal interest rate of r _2. In some cases when the interest rate moves
from flat to linear, or from linear to parabolic for a loan, it becomes cheaper to borrow two smaller loans.

The intention of MYSO Finance is to deploy several pools per token pair with different mi pc or tenor
durations, in order to cover the range of each supported token pair price changes. Each Basi cPool has
an internal loan counter | oanl dx, starting at 1, so that it can give each loan a unique ID. The counter is
incremented by 1 after each new loan.

Every token transfer is done with OpenZeppelin's saf eTr ansf er library.

2.2.1 Pool owner

The pool owner (pool Cr eat or) receives the protocol's fee. The actual owner can give ownership to
another address with function pr oposeNewCr eat or and the new owner needs to take ownership with
the function cl ai nCr eat or .

2.2.2 Actions approvals

The set Appr oval s function can be used by anyone to allow other addresses to trigger action on their
behalf. The possible approval actions are REPAY, ROLLOVER, ADD LI QUI DI TY, REMOVE_LI QUI DI TY
and CLAI M The function resets every time the approvals from nsg. sender for an appr ovee.

2.2.3 Collateral and repayments aggregation

Aggregation of loans into buckets is a feature of the system that makes it possible for LPs to claim their
repayments and collateral from a batch of loans in a single call and without the need of iterating through
all the loans. The contract supports three sizes of buckets: baseAggrBucket Si ze,
10 x baseAggrBucket Si ze, and 100 x baseAggr Bucket Si ze, where baseAggr Bucket Si ze is
set in the constructor and should be a multiple of 100. An LP should always claim from buckets with
bigger size to make the claiming cheaper in terms of gas. However, claiming should always be performed
in ascending order based on loan Ids, as claiming recent loans or buckets prevents the LP from claiming
any previous loan. In order to claim from a bucket, an LP should have had the same amount of shares for
all loans in the bucket.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.4 Liquidity Providers

The actions of the liquidity providers are tracked in two arrays. The first one, shar esOver Ti e, tracks
the history of the shares updates and the second one, | oanl dxsWher eShar esChanged, tracks the
history of the | oanl dxs where such update occurred. The second array always has one less element
than the first one, because the first liquidity addition for an LP is not counted as an update. That way, LPs
know how many shares apply to each loan and how much they can claim. Moreover, a pointer is used to
indicate which index of the shar esOver Ti ne array must be considered for the next claim. In addition to
the pointer, the field f r onlLoanl dx indicates the lower bound index from which LP can claim.

e addLi qui di ty: LP can use this function to initially add liquidity or for top-up. The senders can call
this function for themselves or on behalf of someone else if approved (ADD_LI QUI DI TY). The LP
will receive a number of shares based on the pool's state and the amount of liquidity they provide.

For a liquidity amount X, the number of shares is given by:
=& if totalLpShares =0
X *totalLpShares
totalLiquidity
Note that if t ot al LpShar es==0 and t ot al Li qui di t y! =0, the remaining dust is swept from the pool
and sent to the treasury before adding new liquidity.

otherwise

erenoveli qui di ty: LP can remove liquidity based on their current shares with this function. The
senders can call this function for themselves or on behalf of someone else if approved
(REMOVE_LI QUI DI TY). It is not possible to remove liquidity before the M N_LPI NG_PERI OD which
is set to 120 seconds to avoid flash liquidity provision. Caller need to provide the number of shares Y
they want to remove, the liquidity they receive back is given by the formula
(Y * (totalLiquidity - MN_LIQUD TY)) / total LpShares.

claim LP or approved addresses (CLAI M can claim their share on repaid (loan tokens) or
defaulted (collateral tokens) loans with this function. They need to provide an ordered array of each
loan index they want to claim where they have non-zero shares. The loan indices in the array must
correspond to a period where the number of shares has not been updated, i.e. the indices must be
between two values in the | oanl dxsWher eShar esChanged array. Once the checks for the indices
validity has passed, the LP's fr onLoanl dx and curr Shar ePtr are updated to point to the next
valid index that is claimable, so no double claiming is possible. The claimed collateral is always
transferred to the nsg. sender . The cl ai mfunction allows to directly reinvest the claimed L tokens
in the pool, it can be done by the LP or an approved address (ADD_LI QUI DI TY), otherwise the
claimed L tokens are transferred to the nsg. sender . If a claimable loan index is missed, the claim
is skipped and cannot be claimed later.

cl ai mFr omAggr egat ed: This function allows LPs to claim repayments and collateral from multiple
loans (repaid or defaulted), whose tenor period has passed. The contract sets consecutive loans in
groups, called buckets, to optimize the gas costs of claiming hundreds or thousands of loans without
the need to iterate through them one by one. The function takes as input an array of indices
_aggl dxs which should be ordered and represent the limits of consecutive buckets to be claimed.
Similarly as in cl ai m if the _i sRei nvest ed flag is set to t r ue, tokens are reinvested into the
pool. The caller must specify the starting and ending indices of the buckets they want to claim from
and must be entitled to claim every | oanl dx in the bucket. The difference between two indices of
the _aggl dx must match the size of the target bucket, and cross bucket claims are not possible.

e overri deShar ePoi nt er : LP can use this function in order to skip claims. However, once a claim
is skipped there is no going back.

2.2.5 Borrowers

| oanTer ns: borrowers can call this function by specifying the amount of collateral (after token
transfer fees) and it will return the following values:

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

« the loan and repayment amounts, in loan token decimals, that would apply if the loan was
taken with the current total liquidity,

« the pledge amount, which is the collateral amount minus the protocol fee
« the protocol fee, in collateral token decimals

« the current total liquidity, in loan token decimals

The | oanTer ns function will revert if one of the following conditions is satisfied: the pre- or
post-loan liquidity is under the pool's M N_LI QUI DI TY; the loan amount is smaller than the
pool's minimum loan amount; the repayment amount is smaller than the loan amount; or the
repayment amount per LP share goes down to 0 due to rounding error.

e borrow: borrowers call this function when they want to take a loan. The final loan amount is
computed by the | oanTer s function and is given by the formula detailed above. After the loan is
taken, the total liquidity of the pool is reduced by the loan amount. Upon calling this function,
borrowers must provide the following parameters:

* the address that will take the loan, either themselves or someone else without constraints
« the amount of collateral the borrower will send

* the minimum loan limit, in loan token decimals

« the maximum amount the borrower agrees to repay, in loan token decimals

+ a deadline before which the borrow must occur

« a referral code, currently not used but can serve later for a possible referral program

Once the loan terms have been computed, the aggregation buckets are updated accordingly (+
collateral amount per share), the global loan counter is incremented, the collateral is transferred
from the nsg. sender, the protocol fee is transferred to the treasury and the loan amount is
sent to the nsg. sender.

It is important to note that a loan can be taken on behalf of anyone, the collateral amount is
transferred from nsg. sender and the loan amount is sent to the nsg. sender . However, only
the loan owner can repay it or issue the respective approvals.

1 epay: this function allows borrowers to repay their loan before the tenor period ends. They must
provide the target | oanl dx, the recipient, which must be either the approved sender (REPAY) or the
loan owner, and the amount of L tokens they are sending back. A loan cannot be repaid in the same
block the loan was taken to avoid flashloans behaviors. The sent amount after transfer must be at
least equal to the amount that must be repaid, but also cannot be too big. There is a 1%margin on
the maximum repayment amount that can be sent, any extra payment will benefit the LP. There is no
partial repayment. Once all the checks have passed, the aggregation buckets are updated (-
collateral amount per share, + (repayment amount + extra) per share), the loan tokens are
transferred from the nsg. sender and the collateral is sent to the specified recipient.

eroll Over: the rol | Over function allows borrowers to repay an old loan and take a new one
without moving the collateral. The sender must be the loan owner or must be approved (ROLLOVER).
The parameters are the | oanl dx that need to be repaid, a minimum loan limit for the new loan, a
maximum repay limit for the new loan, a deadline before which the rollover must take place, and the
amount of L token that will cover the roll over cost. As for r epay, a roll over cannot happen after the
loan expiry or in the same block that it was taken. The amount sent must at least cover the roll over
cost, but also must be in a 1%margin for maximum roll over cost coverage, any extra payment will
profit the LP. The roll over cost is determined by the difference between the old loan's repayment
amount and the new loan amount. The new loan amount is computed by the | oanTer ns function
and is given by the formula detailed above. Once the repayment checks have passed, the
aggregation buckets are updated (- old collateral amount per share, + (repayment amount + extra)
per share), the new loan info is stored, the aggregation buckets are updated with the new loan (+
new collateral amount). Note that the new collateral amount is equal to the old one

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

minus the protocol fee. After the new loan is taken, the total liquidity of the pool is reduced by the
amount of the new loan, the sent amount of loan token is transferred from the nmsg. sender, and the
protocol fee is sent to the treasury. This function is particularly beneficial for loans where the
collateral is a token with transfer fees since the collateral is not transferred from the borrower to the
pool again.

2.2.6 Trust model

Pool contracts do not have any privileged account with special permission and are not upgradable,
however MYSO Finance is trusted to deploy the pools with the correct parameters. Anyone can deploy
pools with arbitrary tokens, hence LPs and borrowers should validate the pools they interact with. The
addresses that have been approved for actions are trusted to behave in a non-adversarial way for the
approver.

Tokens: Any external token used in the system is considered fully trusted and pool deployer should
carefully assess supported tokens. Only ERC20-compliant tokens without special behavior (e.g., transfer
callbacks like ERC777, or inflationary/deflationary tokens) and implementing function deci nal s are
supported by the system. This review is limited to pools that integrate with the following tokens:

* PAXG 0x45804880De22913dAFE09f4980848ECEGEChAf78
* DAl : 0x6B175474E89094C44Da98b954EedeAC495271d0OF
* WETH: 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2
» USDC: 0xA0b86991c6218b36c1d19D4a2e9EbOCE3606eB48

Finally, for upgradable tokens such as USDC we assume new implementations are always trusted and
according to the existing specifications.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.
EIED-severity Findings e
(C)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 6

« Missing Event for poolCreator Update ()

* Gas Optimizations () ()

» Force Other LPs to Sell Cheap Loans (I Risk Accepted)
» Optimizations at the Cost of Added Complexity

« Rollover Not Allowed in Certain Situations ()
» Unclaimed Tokens Remain Locked ()

5.1 Missing Event for pool Cr eat or Update
[Low](Version 3](j

The functions that allow an update of the pool creator perform important state change without emitting an
event.

Acknowledged:

MYSO Finance has acknowledged this issue, but has decided to keep the functions as-is due to
limitations on the code size.

5.2 Gas Optimizations
I (Low)(Version 2)()()

1. State variables r1, r2, liquidityBndl, liquidityBnd2, and mi nLoan are set in the
constructor and are read-only afterwards, thus they can be declared as i nmrut abl e to save gas.

2. In function r enoveli qui di ty, the SLOAD to access t ot al Li qui di ty when emitting the event
could be avoided if memory variables are used.

3. In function bor r ow, the storage field t ot al LpShar es is passed to updat eAggr egat i ons. Even
if it is a hot address, accessing it again costs 100 gas, a memory variable would be more

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

efficient as MLOAD costs 3 gas. It is also the case for | oanl dx in the bor r ow function and in the
rol | Over function.

4.rol | Over function computes _sendAnount - getLoanCcyTransferFee(_sendAnmount)
multiple times. Storing the result in a memory variable will save gas.

5. In function updat eAggr egati ons, r epaynent Updat e is always computed but is only needed
when _i sRepay istrue.

6. In (Version 2), the constant variable t r easury was changed into a state variable pool Cr eat or
which could be declared as i nmut abl e.

7. In (Version 3), function bor r ow performs an unnecessary SLOAD to get the loan index when emitting
the event Bor r ow.

Code partially corrected:
3. The storage variables t ot al LpShar es and | oandl dx are stored in memory variables.

4. The logic has been moved in function checkAndGet SendAnount Af t er Fees and the result of the
subtraction is cached.

Acknowledged
MYSO Finance replied:

We acknow edge that certain variables could be nade i mutable and al so within
functions a few cases where storing a repeatedly used variable as a nenory vari abl e
woul d al so save gas, but we were running agai nst byte code linits and stack too deep
errors, and instead of significantly refactoring, we decided against inplenmenting many
of the optim zations.

5.3 Force Other LPs to Sell Cheap Loans
(7DD (Low) (Version 1)() Risk Accepted

Liquidity providers have the guarantee that they receive a minimum interest (flat rate r 2) from the repaid
loans. If there is enough demand for borrowing from a pool, the interest rate goes up which makes it
more attractive for LPs to provide liquidity into it. However, one can implicitly force LPs to lend tokens at a
lower interest rate. To achieve that, an attacker needs to add liquidity into a pool and then borrow.

For example, if the available liquidity in a pool is between | i qui di t yBnd1 and | i qui di t yBnd2, the
attacker adds enough liquidity, so the interest rate gets lowered. Taking a loan immediately after this
operation, the attacker consumes part of its liquidity and part of other LPs liquidity with a lower interest
rate than the market rate. The attacker borrows enough tokens such that the interest rate is back to the
one before the attack started. This way, the liquidity added by the attacker is not exposed to lower
interest rates, while other LPs effectively were forced to sell loans with low interest rates.

Code partially corrected:

MYSO Finance implemented two mitigation measures to reduce the likelihood of such attacks:

1. Smart contracts (or EOA) cannot add liquidity and borrow from the pool in the same transaction
(or block), as functions addLi qui di ty and borrowtrack t x. ori gi n. This complicates but
does not eliminate the risk of the attack described above. Instead of using

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

one single contract to atomically provide liquidity and borrow, an attacker would need to take
the risk of carrying the attack non-atomically, or use flashbots, which require more work.

2. Increase the minimum LP-ing period from 30sec to 120sec to increase the exposure of the
attacker's liquidity to the same attack vector.

Risk accepted:

MYSO Finance is aware that the attack is inherent to the system's architecture and states that the two
mitigation measures described above will reduce the likelihood of such attacks but not fully prevent them.
Furthermore, the attack does not lower the interest rates below the flat rate of a pool (r 2), hence LPs still
earn a minimum yield.

5.4 Optimizations at the Cost of Added

Complexity
(Design [(EELITR| Risk Accepted

The function updat eLpArrays considers 7 different cases when an LP updates its position and
optimizes the storage usage by avoiding storing redundant data. This optimization of the storage comes
with added complexity in the logic of the function updat eLpAr r ays although the majority of cases (4 out
of 7) are expected to happen rarely.

Risk accepted

The client accepts the risk associated with the code complexity to optimize storage gas costs and will
consider refactoring the function in a future version of the codebase.

5.5 Rollover Not Allowed in Certain Situations
[Low] [Version 1][]

Function rol | Over in BasePool reverts if a borrower renews its loan and the new loan amount is
higher than the repayment of the previous loan. This might be the case if the pool has more available
liquidity when rollover happens than when the loan was initially taken. The restriction is enforced in the
following check:

i f (1 oanArmount | oanl nfo. repaynent) revert InvalidRoll Over();

Acknowledged

MYSO Finance has decided to keep the code unchanged as this scenario is expected to happen rarely,
and users still have an alternative to perform the same operation, as explained in their response:

For bytecode reasons we refrained fromsupporting this use case as it would require an
additional if-else to distinguish between calling transferFrom (regular case where
borrower pays to roll Over) and transfer (rare case where borrower receives a refund).
The situation where a roll Over would lead to a refund is expected to occur - if at

all - rather rarely, hence not supporting it isn’t deenmed a significant loss in
functionality. Moreover, if necessary a borrower could al so i ndependently enul ate a
roll Over for this situation by atomically repaying and borrow ng using a flashl oan.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

5.6 Unclaimed Tokens Remain Locked
[Low][Version 1][]

Liquidity providers specify the loan indices for their claims and are allowed to skip loans that are not
sufficiently profitable. Once an LP skips a loan, it cannot claim it anymore. Hence, a pool continuously
holds loan and collateral tokens amounts that cannot be claimed by LPs and are locked. The only way to
recover loan token funds is if all LPs remove their liquidity from a pool (t ot al LpShares == 0) and
then one adds liquidity which triggers the transfer of dust to the treasury. However, there is no way to
recover collateral amounts left in the pool from skipped claims.

Acknowledged

MYSO Finance acknowledges the issue and does not plan on adding a functionality to track the
unclaimed loans as it would increase significantly the gas costs. However, MYSO Finance will simplify
the Ul for claiming and promote aggregate claims to reduce the number of unclaimed loans.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 4

« Mismatch of Implementation With Specification
* Missing Loan Owner Sanity Check When Borrowing
* Protocol Fee Computation Can Overflow

« Total LP Shares Are Capped in Pools

(Low)-Severity Findings 10
« Emission of ApprovalUpdate Event Can Be Tricked
» Deletion of Timestamps From Mapping
+ Redundant Events Emitted
» Disabled Optimizer
» Inaccessible TREASURY Account
« Insufficient Check for Minimal Loan Given Total LP Shares
» Inverted NewSubPool Event Token Fields
» Misleading ApprovalUpdate Event
» Missing Precision of Pool Parameters

* Non-indexed Events (eIl

6.1 Mismatch of Implementation With
Specification

[Medium] [Version 1] Specification Changed

The specifications of the bor r ow function state:

In this case the collateral is deducted fromthe 3rd party " nsg.sender "~ address but
the "° _onBehal fOfF°° address receives the loan and is registered as the | oan owner
(including the ability to repay and reclaimthe pledged collateral).

However, the function takes the collateral from nsg. sender and also sends the loan amount to
neg. sender in violation with the specifications:

| ERC20Met adat a(col | CcyToken) . saf eTransf er From nsg. sender, address(this), _sendAnount);

| ERC20Met adat a(| oanCcyToken) . saf eTransfer (nsg. sender, | oanAmount) ;

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Specification changed

The specification in section 'Calling Functions on Behalf' of the gitbook has been revised to reflect the
code behavior:

In this case the collateral is deducted from nsg. sender and nsg. sender al so receives
the |l oan but the_onBehal fOF address is registered as the | oan owner (including the
ability to repay and reclaimthe pledged collateral). This allows w apping and

unw appi ng of tokens through a peripheral contract.

6.2 Missing Loan Owner Sanity Check When
Borrowing

(Design LTI Code Corrected

A borrower can take a loan on behalf of anyone without restriction and this can result in the loan never
being repaid. If a borrower calls bor r owwith an _onBehal f address they do not control or is aware that
it will be the owner of a loan, the loan will default since the borrower is not the loan owner and is probably
not allowed to repay it. E.g., bor r owis called with _onBehal f =addr ess(0) , then the loan will default
for sure.

Code corrected

The function bor r ow has been updated to perform a sanity check that address _onBehal f is not set to
addr (0) by mistake. However, the caller is still responsible for providing a correct address for
_onBehal f which repays the loan if required.

6.3 Protocol Fee Computation Can Overflow

(D) (Miedium) (Version 1) TSR

The protocol fee computation in | oanTer ns can overflow if the prot ocol Fee is non-zero. The
multiplication in _pr ot ocol Fee = ui nt 128((_i nAmount Aft er Fees * protocol Fee) / BASE)
is carried in ui nt 128 and might overflow. Example is with pr ot ocol Fee = 5 * 10**5 which is also
the maximum allowed fee and _i nAnount Af t er Fees=ui nt 128(ui nt 256(2**128) / ui nt 256(5
*10**15)) +1=68056473384187692692675 which may seem to be a lot but could be a realistic
amount for collateral tokens with 18 decimals and low value.

Code corrected

In the second version of the codebase, the variable pr ot ocol Fee was renamed cr eat or Fee and its
type was changed to ui nt 256 to avoid possible overflows in the computation highlighted in the issue
above.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6.4 Total LP Shares Are Capped in Pools
(Design [CIZMTDINZETTBY Specification Changed

The function _addLi qui di ty performs two checks to guarantee that an LP will get non-zero token
amounts from a small loan, both on repay and default. The checks are implemented as follows:

if (
((m nLoan BASE) t ot al LpShar es) newLpShar es 0 ||
(((10**COLL_TOKEN DECI MALS * m nLoan) maxLoanPer Col |) BASE)
t ot al LpShar es 0
) revert PotentiallyZeroRoundedFutured ai ns();

The first condition evaluates to t rue whenever t ot al LpShares > ninLoan * BASE. Since both
m nLoan and Base are fixed for a pool, the t ot al LpShar es is capped for a pool.

Similarly, the second condition evaluates to true whenever t ot al LpShares > ((10**COLL_TOKEN _
DECI MALS * minLoan) / naxLoanPerColl) * BASE) sets another restriction on the maximum
t ot al LpShar es.

Capping the t ot al LpShar es prevents adding liquidity to pools that are attractive to users and have
high activity.

Specification changed

The specifications have changed and the checks described above have been removed, hence the
unintended capping on total LP shares is not present anymore.

6.5 Emission of Appr oval Updat e Event Can Be
Tricked
(Design [(FIYIVEETTI)] Code Corrected

There is no restriction on the parameter _packedAppr oval s of function set Appr oval s. One could set
the 6th bit to 1 even if no approval is updated and the event will be emitted. Moreover, if bits higher than
the 6th are set, they will be shown in the emitted event.

Code corrected:

The input parameter _packedAppr oval s has been sanitized to consider only the 5 least significant bits.

6.6 Deletion of Timestamps From Mapping

(D (Cow) (Version 2) G

The timestamp stored in | ast AddOF TxOr i gi n are never deleted from the mapping although they are
used only to disallow LPs from adding liquidity and borrowing in the same block. The entries of this
mapping can be deleted, e.g., when LP remove their liquidity, to get gas refunds.

Code corrected:

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

The entry for an address in the mapping | ast AddOF TxOr i gi n is deleted when liquidity is removed.

6.7 Redundant Events Emitted
D) (Low) (Version 2) (XL

The function set Appr oval iterates through all approval types and emits an event independently if an
approval status is updated or not. Therefore, even if only one approval type is changed for an
_appr ovee, five events will be emitted.

Code corrected

Function set Appr oval has been updated to emit the event when at least one of the approvals changes
state.

6.8 Disabled Optimizer
7D (Low) (Version 1) (XL

In hardhat . confi g.j s the optimizer is not explicitly enabled and the default value for hardhat is
enabl ed: fal se. Enabling the optimizer may help to reduce gas cost.

Code corrected

The optimizer has been enabled and the r uns are set to 1000.

6.9 Inaccessible TREASURY Account
T (Low) (Version 1) YD)

The TREASURY address is declared as constant and set to
0x1234567890000000000000000000000000000001 which is not in the control of the developers,
hence all protocol fees collected by the system will be locked forever. MYSO Finance is aware of this
issue and will use a multisig account for the treasury on deployment.

Code corrected

The constant variable TREASURY is replaced with the state variable pool Cr eat or which is assigned to
neg. sender in constructor.

6.10 Insufficient Check for Minimal Loan Given
Total LP Shares
7D (Low) (Version 1) @ISR IIS)

The second condition in the following code is supposed to check that repayment amount for a loan is big
enough that all LPs can claim non-zero amounts if the loan is repaid given their share:

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

o
((repaynment Anount BASE) t ot al LpShar es) 0

) revert ErroneousLoanTerns();

The check might not work as intended for loan tokens with low decimals, e.g., USDC (6 decimals), as
BASE is a constant with value 10** 18. For example, if r epaynment Anount is 10**7 (10 USDC) and
total LpShares is 10**8 (2 LPswith 5 * 10**7 shares each) the check would still pass.

Specification changed

MYSO Finance has changed the specifications and decided to remove the check above as it effectively
would increase the minimum loan amount over time as total LP shares increase.

6.11 Inverted NewSubPool Event Token Fields
D (Low) (Version 1) (CIIILITED)

The NewSubPool event definition in | BasePool . sol specifies that the first two fields are
col | CcyToken and | oanCcyToken, but when the event is emitted in the constructor, the two fields are
setto | oanCcyToken and _col | CcyToken.

Code corrected

The definition of event NewSubPool in | BasePool is updated and the parameters are in line with the
code that emits the event:

event NewSubPool (
address | oanCcyToken,
address col | CcyToken,

6.12 Misleading Appr oval Updat e Event
D) (Low) (Version 1) (XL

The function set Appr oval s emits an event only when an approval type is set to t r ue, even if it was
previously the case, and nothing is emitted when an approval is unset. An example is: current approvals
are 10101 and the updated approvals are 10100. The event is misleading in the sense that it will be
emitted for indices 0 and 2, which have not been updated, and no Appr oval Updat e event is emitted for
the actual update of the index 4.

Code corrected

The event Appr oval is now emitted for every index with the status t r ue or f al se and independently if
it was changed from the previous state.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6.13 Missing Precision of Pool Parameters

(D (Low) (Version 1) ST

The documentations and inline specifications do not describe the precision of the pool parameters. To
improve the readability of the code and avoid possible mistakes, the decimals used for all pool
parameters suchasr1,r2,liquidityBndlandliquidityBnd2 should be stated clearly.

Code corrected

Inline code comments were added for the variables mentioned above, which specify the precision of
expected values:

ui nt 256 r1;
ui nt 256 r 2;
ui nt 256 |iquidityBndl;
ui nt 256 |iquidityBnd2;

6.14 Non-indexed Events
7D (Low) (Version 1) CXISIZET)

No parameters are indexed in the events of contracts BasePool . It is recommended to index the
relevant event parameters to allow integrators and dApps to quickly search for these and simplify Uls.

Code corrected

MYSO Finance has evaluated the events used in BasePool and has indexed parameters that they
deem useful for future Ul and dashboard integrations.

Several events such as NewSubPool and Appr oval have non-indexed parameters, however, the client
intentionally kept them unchanged.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 LP Shares Dilute Over Time

The shares of an LP dilute over time as more activity happens in a pool by users that borrow and LPs
that add more liquidity. Therefore, LPs should monitor their proportion of LP shares to the total LP shares
and remove their liquidity from a pool when their share to loan repayments or collateral becomes
insignificant.

7.2 LPs Get Slightly Less Token for Their Shares

The pool keeps a minimum of loan tokens and it does not allow LPs to fully empty a pool. When removing
liquidity, LPs get slightly less tokens than their fair share to maintain the minimum liquidity in the pool.
The relevant code is:

ui nt 256 1i qui di t yRenoved (nunthar es
(_totalLiquidity M N LIQUIDITY)) _total LpShar es;

7.3 LPs Should Be Careful When Claiming
(D) (Version 1

LPs can claim their share of repayments and collateral tokens via function claim or
cl ai nFr omAggr egat ed. It is important to note that LPs are responsible for claiming loans always in
order. Otherwise, any loan skipped during a claim is impossible to be claimed in the future.

Furthermore, LPs can skip all loans during a time window via the function overri deShar ePoi nt er.
Similarly, if an LP calls this function, they cannot claim anymore the repayments and collateral for all
loans linked with the skipped shares.

7.4 Limitations on Claiming Batch of Loans

(D) (Version 1)

Both functions cl ai mand cl ai nFr omAggr egat ed allow LPs to claim loans in batches over a period
during which the LP has not changed its shares in a pool. LPs should be aware that modifying their
position in a pool by topping up or removing liquidity, will require them to perform multiple transactions for
the claiming which increases gas costs and potentially prevents LPs from using aggregate claims.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

7.5 Locked Tokens
(D) (Version 1

ERC20 tokens could be accidentally/intentionally sent to the pool contracts. In that case the tokens will
be locked, with no way to recover them. Incidents
(https://coincentral.com/erc223-proposed-erc20-upgrade/) in the past showed this is a real issue as there
always will be users sending tokens to the token contract.

7.6 Minimum Loan Amount Allowed

(D) (Version 2

The constructor of BasePool does not enforce any restriction on the minimum allowed amount for loans.
Therefore, the pool deployer should carefully set this value depending on the specific token used as loan
token.

7.7 Positions in a Pool Are Non Transferrable

(D) (Version 1)

All positions in pools held by liquidity providers or borrowers are tracked in the contract BasePool and
they are non-transferable. Users can approve other addresses to act on their behalf, but there is no
support for transferring ownership of positions.

7.8 Possible to Overpay Loans

(D) (Version 1)

Functions r epay and rol | Over check that the user always pays at least the due amount. However,
both functions allow users to overpay their loans by 1%in case users cannot precisely calculate the
sending amount for tokens with transfer fees.

7.9 Profits of a Pool Are Not Equally Distributed
(D) (Version 1

The profits of a pool from loan repayments are not equally distributed among liquidity providers. The
system is designed such that profits for an LP depend on loans that borrow most of their liquidity. For
example, if a pool starts with an interesti and over time the interest rate goesto 3 x i, initial LPs will
earn payments from loans with interest i , while LPs joining later will have higher profits (as the interest
rate tripledto 3 x i).

7.10 Transfer Fee for Upgradable Tokens
(D) (Version 1

The function getLoanCcyTransferFee in contracts Pool PaxgUsdc and Pool Wet hUsdc is
hard-coded to return O as fee for the loan token, namely USDC. We would like to highlight that the pools
would not work as expected if upgradable tokens were to introduce fees in new implementations.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 23

https://coincentral.com/erc223-proposed-erc20-upgrade/
https://chainsecurity.com

7.11 i f Blocks Without Curly Braces
(D) (Version 1

It is generally good practice to enclose every i f/ el se block into curly braces. It increases code
readability and lowers possibilities for bugs like the famous goto fail; bug in Apple SSL code
https://blog.codecentric.de/en/2014/02/curly-braces/.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 24

https://blog.codecentric.de/en/2014/02/curly-braces/
https://chainsecurity.com

8 Monitoring

A thorough code audit is just one important part of a comprehensive smart contract security framework.

Next to proper documentation/specification, extensive testing and auditing pre-deployment, security
monitoring of live contracts can add an additional layer of security. Contracts can be monitored for
suspicious behaviors or system states and trigger alerts to warn about potential ongoing or upcoming
exploits.

Consider setting up monitoring of contracts post-deployment. Some examples (non-exhaustive) of
common risks worth monitoring are:

1. Assumptions made during protocol design and development.
. Protocol-specific invariants not addressed/mitigated at the code level.
. The state of critical variables

. Known risks that have been identified but are considered acceptable.

ga b~ W DN

. External contracts, including assets your system supports or relies on, that may change without
your knowledge.

6. Downstream and upstream risks - third-party contracts you have direct exposure to (e.g. a third
party liquidity pool that gets exploited).

7. Privileged functionality that may be able to change a protocol in a significant way (e.g. upgrade the
protocol). This also applies to on-chain governance.

8. Protocols relying on oracles may be exposed to risks associated with oracle manipulation or
staleness.

8.1 Project-specific monitoring opportunities

We have identified some areas in Core Protocol V1 that would be well suited for security monitoring.

We classify these into two categories: invariants and suspicious changes. If an invariant of the system
doesn't hold anymore, there has been unexpected behavior requiring immediate investigation. If a
change of a suspicious condition has been observed, something has happened which could change the
behavior of the system and requires timely investigation to ensure the continued safety.

The following monitoring opportunities have been identified:

Identified suspicious change: The functions get Col | CcyTr ansf er Fee and
get LoanCcyTr ansf er Fee are hardcoded to return a transfer fee of O for tokens that currently do not
have such fees. However, for upgradable tokens such as USDC, this could change in new
implementations, hence this change can be monitored and trigger an alert if fees ever change.

Identified suspicious change: All pools have a finite number of cycles for borrowing and adding liquidity
until a potential overflow on the total LP shares may happen. Therefore, the value of t ot al LpShar es
can be monitored and trigger an alert if it becomes large enough to overflow, e.g., larger than 2* * 240, so
a new pool can be deployed.

@ MYSO Finance - Core Protocol V1 - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Pool owner
	2.2.2 Actions approvals
	2.2.3 Collateral and repayments aggregation
	2.2.4 Liquidity Providers
	2.2.5 Borrowers
	2.2.6 Trust model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Missing Event for poolCreator Update
	5.2 Gas Optimizations
	5.3 Force Other LPs to Sell Cheap Loans
	5.4 Optimizations at the Cost of Added Complexity
	5.5 Rollover Not Allowed in Certain Situations
	5.6 Unclaimed Tokens Remain Locked

	6 Resolved Findings
	6.1 Mismatch of Implementation With Specification
	6.2 Missing Loan Owner Sanity Check When Borrowing
	6.3 Protocol Fee Computation Can Overflow
	6.4 Total LP Shares Are Capped in Pools
	6.5 Emission of ApprovalUpdate Event Can Be Tricked
	6.6 Deletion of Timestamps From Mapping
	6.7 Redundant Events Emitted
	6.8 Disabled Optimizer
	6.9 Inaccessible TREASURY Account
	6.10 Insufficient Check for Minimal Loan Given Total LP Shares
	6.11 Inverted NewSubPool Event Token Fields
	6.12 Misleading ApprovalUpdate Event
	6.13 Missing Precision of Pool Parameters
	6.14 Non-indexed Events

	7 Notes
	7.1 LP Shares Dilute Over Time
	7.2 LPs Get Slightly Less Token for Their Shares
	7.3 LPs Should Be Careful When Claiming
	7.4 Limitations on Claiming Batch of Loans
	7.5 Locked Tokens
	7.6 Minimum Loan Amount Allowed
	7.7 Positions in a Pool Are Non Transferrable
	7.8 Possible to Overpay Loans
	7.9 Profits of a Pool Are Not Equally Distributed
	7.10 Transfer Fee for Upgradable Tokens
	7.11 if Blocks Without Curly Braces

	8 Monitoring
	8.1 Project-specific monitoring opportunities

