

PUBLIC

Code Assessment

of the Liquity V2 Governance

Smart Contracts

January 22, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 14

4 Terminology 15

5 Open Findings 16

6 Resolved Findings 19

7 Informational 43

8 Notes 46

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Liquity Team,

Thank you for trusting us to help Liquity with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Liquity V2 Governance
according to Scope to support you in forming an opinion on their security risks.

Liquity implements a governance contract that distributes the incoming revenues based on the votes from
users that have a stake in the system. A set of contracts are also provided to simplify the development of
smart contracts that serve as proposals in the voting, known as initiatives.

Version 3

The most critical subjects covered in our audit are precision of arithmetic operations, asset solvency,
invariant preservation, functional correctness, and front-running. Several issues of high and critical
severity issues were identified in the first two iterations of the codebase, see Resolved Findings. The
Governance contract was refactored in to mitigate the reported issues by changing the core
accounting and placing new restrictions on user operations (always reset all votes before new
allocations).

In summary, we find that the codebase provides a satisfactory level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 6

• Code Corrected 5

• Specification Changed 1

Medium -Severity Findings 12

• Code Corrected 7

• Specification Changed 4

• Risk Accepted 1

Low -Severity Findings 24

• Code Corrected 18

• Specification Changed 1

• Code Partially Corrected 2

• Acknowledged 3

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Liquity V2 Governance repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 25 Sep 2024 1add9a44d62faa8d7ab382d5d00ffcf8f522faee Initial Version

2 21 Oct 2024 168760d750d7051c51f9804b136e1032f7e72f65 Version with Fixes

3 16 Dec 2024 d11e15a11ebdb26c7b297572d9674a7801f50922 Refactored Version

4 16 Jan 2025 e7ed5341f2f54fb9bf89497a7be294c61f21ebe3 Final Version

For the solidity smart contracts, the compiler version 0.8.24 and EVM version cancun were chosen.

The following files were in the scope for this review:

src/interfaces
src/utils/DoubleLinkedList.sol
src/utils/Math.sol
src/utils/Types.sol
src/BribeInitiative.sol
src/CurveV2GaugeRewards.sol
src/Governance.sol
src/UserProxy.sol
src/UserProxyFactory.sol

Version 2The following files were added to the scope in :

src/utils/EncodingDecodingLib.sol (removed in version 3)
src/utils/UniqueArray.sol

Version 3The following file was added to the scope in :

src/utils/Ownable.sol

Version 4The following file was added to the scope in :

src/utils/VotingPower.sol

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 5

https://github.com/liquity/v2-gov/tree/1add9a44d62faa8d7ab382d5d00ffcf8f522faee
https://github.com/liquity/v2-gov/tree/168760d750d7051c51f9804b136e1032f7e72f65
https://github.com/liquity/v2-gov/tree/d11e15a11ebdb26c7b297572d9674a7801f50922
https://github.com/liquity/v2-gov/tree/e7ed5341f2f54fb9bf89497a7be294c61f21ebe3
https://chainsecurity.com

2.1.1 Excluded from scope
Any file not listed explicitly above is excluded from the scope. Tests, third-party libraries, ERC20 tokens,
and other contracts from Liquity, such as LQTY token, LUSD, Staking V1, etc., were not in scope of this
review. The external integrations of the system (CurveV2 gauges, bribe tokens, etc.) are out of scope for
this review, and are expected to always work correctly and according to specification. Finally, the
following files were explicitly excluded from the scope:

src/utils/BaseHook.sol (removed in version 4)
src/UniV4Donations.sol (removed in version 4)
src/utils/Multicall.sol (replaced with MultiDelegateCall.sol in version 3)

Version 2The following files were added in and explicitly excluded from the scope:

src/utils/SafeCallMinGas.sol
src/ForwardBribe.sol (removed in version 3)

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section, we have added subsections for each of the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Liquity implements the Governance module of the wider Liquity V2 system. The Governance serves
mainly as a voting-based distribution platform of the incoming revenues. One-fourth (known as the
"incentive portion") of the total revenue earned in fees by the core protocol, denominated in BOLD (the
native stablecoin of LiquityV2), are sent to the Governance contract.
Proposals (known as Initiatives, in LiquityV2 parlance) are encoded as arbitrary addresses, which may
implement specific hooks called by the Governance contract upon relevant user actions. They are voted
upon by the users and, in case they pass (see next sections for more details), they are awarded an
appropriate fraction of the total BOLD accrued, based on the votes received.
Users can only vote "YES" or "NO" (referred to as "votes" and "vetoes", respectively) to initiatives. To
gain some voting power in this platform, users must be holders of LQTY (the secondary token of Liquity
V1), and must stake in LiquityV1 through the Governance contract of Liquity V2. The Governance
contract deploys and manages a UserProxy contract for every user. A user's voting power is updated iff
he directs his staking/unstaking requests to the Governance contract, which performs the due
bookkeeping and then relays them to the correct UserProxy.
A user's voting power increases with time, following a linear growth, with the staked LQTY amount being
the slope. A new amount added to a pre-existing stake starts off with a voting power of 0 (to prevent
flash-loan-like abuses): therefore, right after staking, the total voting power stays the same (the line is
continuous), but the slope increases. Conversely, when unstaking, there is an immediate drop
(discontinuity) in the user's voting power, besides the obvious decrease of the slope. The overall trend
followed by the user's voting power over time, as the user stakes and unstakes, is depicted in Figure 1.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 6

https://etherscan.io/address/0x4f9fbb3f1e99b56e0fe2892e623ed36a76fc605d
https://chainsecurity.com

A stake behaves like a line , with the slope being the LQTY amount, and the intercept
 being the "virtual" or "average" staking timestamp: the voting power behaves as if all the LQTY had

been staked at once, at this ideal point in time. When a user stakes additional LQTY at time , he is
"adding the line" (not shown in the picture) to his current stake, which then becomes

, with being the total stake, and being the updated
average staking timestamp of the user. The picture shows another staking event, after which the line
becomes . Then, when the user unstakes LQTY at time , he "erodes" part of his
pre-existing stake, with its pre-existing "average timestamp" . This means that he "subtracts the line"

 from his stake, resulting in the new line : the average
staking timestamp remains the same, and the voting power immediately drops by the appropriate fraction

/ . Such "line arithmetic" patterns are ubiquitous throughout the system.
When voting on an initiative, users allocate part of their staked LQTY - rather than their current voting
power - for the "YES" or for the "NO". Therefore each initiative has also two associated "stakes", one for
the "YES" and one for the "NO", each growing in voting power linearly over time, with different slopes and
intercepts. When a user allocates LQTY from his stake that has an average timestamp of , he adds
the line to the relevant stake ("YES" or "NO") of the initiative; when de-allocating, he
subtracts the same line. For proper accounting, this does not modify the "staking line" of the user;
instead, an additional per-user variable is tracked, called allocatedLQTY, which simply limits the
maximum LQTY amount that can be unstaked.
As noted, the "YES" and "NO" votes for an initiative increase over time, and it is these vote counts that
decide whether an initiative passes, and how much its payout should be. To keep the outcomes
race-free, and to make the system as a whole more "predictable", the operations are clocked in
sequential epochs of equal one-week duration. The system state is snapshot at epoch boundaries,
providing an unambiguous reference point to decide on initiative results.
Given the full system state at the end of epoch x (total BOLD accrued for payout + number of "YES" and
"NO" votes for every initiative), an initiative can be in one of three "states", during all of epoch x+1:

1. Claimable. The initiative has more "YES" than "NO" votes, and the "YES" votes are above a
threshold, which is the max of

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

1. Version 3a fraction of 3% (lowered to 2% in) of the total number of "YES" votes

2.
Version 3

the number of votes required to achieve a minimum payout of 500 BOLD (lowered to 0 in
)

The initiative can be "claimed" permissionlessly, which causes the appropriate fraction of the total
BOLD accrued to be transferred to it, and a hook (onClaimForInitiative()) to be called. The
fraction of the total BOLD to be awarded is computed as the proportion of "YES" votes among all
Claimable initiatives: this means that "NO" votes only decide whether an initiative passes, but are
then inconsequential for the payout in case it does.

2. Deregisterable. The initiative has more "NO" than "YES" votes, and the "NO" votes are above a
threshold, equal to the "YES" threshold. Alternatively, the initiative can also just be "stale" (see next
point). The initiative can be de-registered permissionlessly, requiring re-registration to be voted on
again.

3. "Limbo". The winning option ("YES" or "NO") does not reach the threshold. If an initiative stays in
this state for 4 consecutive epochs then it becomes "Deregisterable".

This "state machine" has been made more explicit and rigorous (and more granular), in Version 2
of the codebase.

Version 3 Version 3

Initiatives can be registered permissionlessly. This requires a flat payment of 100 BOLD (raised to 1000
in), and a voting power above 0.1% of the total "YES" votes (lowered to 0.01% in), in
order to avoid spam.
Users can vote freely on initiatives with part of their staked LQTY at any point during an epoch. A
noteworthy observation is that the users' vote allocations are not reset at epoch boundaries; instead, they
persist until they are explicitly de-allocated. In particular, an initiative can be claimed more than once,
across several epochs, if it keeps meeting the abovementioned requirements.

Almost all of the system's functionality is implemented in the Governance contract (which also acts as
the UserProxyFactory); the integration with Liquity V1's staking contract is handled by the
UserProxy. Liquity also offers two example initiative implementations - one integrating with CurveV2
and one with UniswapV4 - both deriving from a base BribeInitiative contract.
In what follows, we detail the workings of the main contract functionalities.

2.2.1 UserProxy

The UserProxy contract is the address effectively holding a LQTY stake in Liquity V1, in lieu of the user;
all of its state-modifying functions can only be called by the Governance contract, which invokes it in
response to user actions.
This will be deployed as a per-user minimal clone of a "master" implementation (see next section). The
clone does not have any state variables, nor immutables of its own: in particular, it does not "know" which
user address it is acting on behalf of, so the Governance needs to pass this address every time as a
function argument.
Its functions are:

1. stake(): Pulls LQTY funds from the user and stakes them on Liquity V1. This action causes the
pending Liquity V1 rewards (possibly accrued through a pre-existing stake) to be sent to the
UserProxy. These rewards, denominated in ETH and LUSD, are not relayed to the user
immediately; instead, they are kept in the UserProxy contract, and can be later retrieved via a call
to unstake().

2. stakeViaPermit(): Same as the previous one, but the LQTY funds are pulled after a call to
permit() to the LQTY contract; this saves the need for an explicit approval in a separate
transaction.

3. unstake(): Unstakes the specified LQTY amount from Liquity V1. This action again causes
pending Liquity V1 rewards to be pushed to the UserProxy: in fact, one can decide to

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

unstake() 0 LQTY in order to simply collect the rewards. The unstaked LQTY amount, together
with the entire ETH and LUSD balance of the UserProxy, is pushed to the specified recipients.
This allows to correctly account for the previously-uncollected rewards from calls to stake().

4. staked(): View function (callable by anyone) that returns the current LQTY amount staked by this
UserProxy.

2.2.2 UserProxyFactory

The UserProxyFactory deploys a UserProxy "master" implementation contract only once, in its
constructor; then, when needed, it deploys minimal per-user Clones of it: these clones are compliant with
ERC-1167, and are deployed with the CREATE2 opcode, for deterministic correspondence between user
and UserProxy; the salt provided to CREATE2 is the user address, left padded with zeros.
There are two functions:

1. deriveUserProxyAddress(): A view function that pre-computes the deterministic address of
the UserProxy clone corresponding to the specified user address.

2. deployUserProxy(): Deploys the UserProxy Clone associated to msg.sender. This can be
called permissionlessly by anyone to pre-deploy their own UserProxy. Still, the Governance is
the only address that can then interact with that proxy.

2.2.3 Governance

The main contract of the system. Inherits from UserProxyFactory, therefore it exposes all the
foregoing proxy-deployment functions. It defines functions to interact with the UserProxy clones, in
order to intercept the user's staking/unstaking requests, and update its own internal bookkeeping before
relaying them. Finally, it implements the full voting functionality, with methods to propose initiatives, vote
for them (or against them), claim them, and unregister them.
The staking-related functions are:

1. depositLQTY(): Deploys the UserProxy associated with msg.sender, if it does not exist
already, then calls stake() on it, after updating the user's averageStakingTimestamp as
described before. The user's total stake (i.e. the slope of the line) does not need to be tracked into
an explicit per-user variable, as it is readily available by calling UserProxy.staked().

2. depositLQTYViaPermit(): Same as before, but calls into UserProxy.stakeViaPermit().
This variant removes the need for a separate LQTY approval but, remarkably, it cannot be used for
sponsored transactions: the signer of the Permit struct is checked to be msg.sender, who
therefore has to pay for the gas fees.

3. withdrawLQTY(): Forwards the call to UserProxy.unstake(), specifying msg.sender as the
recipient of the unstaked LQTY and the accrued ETH and LUSD. As was mentioned, a per-user
variable allocatedLQTY is kept that counts how many LQTY the user has allocated in total: this
variable is read here to assert that the user does not unstake too much, touching the LQTY that
have been allocated to initiatives.

4. claimFromStakingV1(): Calls UserProxy.unstake() with a 0 amount, in order to simply
collect the rewards. A caller-supplied _rewardRecipient, instead of msg.sender, is specified
as the recipient of ETH and LUSD rewards.

The voting system is more complex. Before diving into its functions, we briefly describe the most
important accounting-related state variables that are tracked, and their intended semantics.
As was noted, each initiative has two "stakes" (slope + intercept) associated with it, one for the "YES"
and one for the "NO". These are tracked into dedicated per-initiative variables: they are updated every
time someone votes on an initiative, allocating LQTY either for the "YES" or for the "NO". We call these
"running" variables (as opposed to "snapshot") because they are updated at every user vote.
Again as noted before, not all initiatives end up being Claimable in the next epoch; to compute the payout
for those that do, the proportion of "YES" votes should only be taken among Claimable initiatives, in order

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

to properly distribute the accrued BOLD. To this end, a global "counted YES" stake is tracked, combining
all the "YES" stakes of the initiatives that will be Claimable in the next epoch. This is also a running
variable, as it is updated "live" at every user vote. This consideration also motivates the introduction of a
further per-initiative running variable, a counted flag telling whether that initiative is currently contributing
towards the global "YES" sum. This behavior has changed in Version 2 of the codebase: now all
initiatives (except those that were already deregistered) count towards the global state. The
counted flag has been removed.
At epoch boundaries (the first time any action is taken in an epoch), the global running "YES" stake gets
snapshot into a separate global state variable, which will remain unchanged as a firm reference point for
all of this new epoch. This state variable actually counts the number of votes (not LQTY) that the global
running "YES" line evaluates to, at the beginning of this new epoch: we call this variable the
voteSnapshot. This will be used as the denominator in the claiming function, when computing the
fraction of accrued BOLD to be paid out.
The total BOLD balance of the contract is also snapshot into a boldAccrued state variable, which will
be the total payout available for repartition among initiatives, in this new epoch. Should a Claimable
initiative not be claimed, this mechanism allows the unclaimed funds to simply be carried over to the next
epoch.
The procedure is similarly repeated for the per-initiative stakes. The first time in an epoch any action is
taken on an initiative, its "YES" staking line is evaluated at the epoch's initial timestamp, and gets
snapshot into a separate per-initiative variable. If the initiative is not counted, though, this
initiativeVoteSnapshot is instead set to 0 (starting from Version 2, this is no longer
applicable).
Note that no "iteration over all initiatives" is ever performed in the snapshotting logic: an initiative's
snapshot is only taken the first time in an epoch that that initiative is touched.

All of this having been clarified, we can now describe the four main voting-related functions.

1. registerInitiative(): Allows anyone with sufficient voting power to register an arbitrary
address as an initiative. First, it updates the global snapshot, in case it is stale. Then, it asserts that
the initiative does not exist already, and that the caller's voting power is large enough. After pulling
a flat BOLD payment from msg.sender, the initiative is registered in the system, and an optional
onRegisterInitiative() hook is called on it.

2. unregisterInitiative(): Allows anyone to de-register an existing initiative that is in the
Deregisterable state. First, it updates the global snapshot, and the initiative's snapshot, in case they
are stale. Then, it asserts that the initiative indeed exists and is Deregisterable; as a special case
not mentioned before, no initiative can be unregistered if it is younger than 4 epochs. Once these
checks pass, it is erased from the system, and an optional onUnregisterInitiative() hook is
called on it.

3. allocateLQTY(): Allows LQTY stakers to batch-vote on several initiatives at once. First, it
updates the global snapshot, and the initiatives' snapshots, in case they are stale. Then, for every
specified initiative, it adjusts the user's "YES" and "NO" allocation: this modifies the initiative's
running "YES" and "NO" stakes, and, depending on the counted flag, the global running "YES"
stake (this is now done unconditionally, starting from Version 2). Through an additional,
per-user per-initiative data structure, the function asserts that the user never ends up with positive
"YES" and "NO" stakes for the same initiative. Also, an additional check is performed, not specified
before: additional votes can only be allocated during the first 6 days of an epoch, so only
withdrawals are possible past this cutoff. Finally, the per-user allocatedLQTY is updated, and an
optional onAfterAllocateLQTY() hook is called on the affected initiatives.

4. claimForInitiative(): Allows anyone to claim BOLD for an initiative that is in the Claimable
state. First, it updates the global snapshot, and the initiative's snapshot, in case they are stale.
These snapshots are used to compute the payout: 0 if the initiative is not Claimable, the
appropriate fraction of the total BOLD accrued otherwise. The sum is transferred to the initiative,
and an optional onClaimForInitiative() hook is called on it.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

2.2.4 BribeInitiative

An example implementation for a basic bribe-based initiative, provided to developers to be inherited and
extended.
Bribes are denominated in two tokens, BOLD and a different, arbitrary ERC20. Anyone with an interest in
the initiative can deposit any amount of the two tokens, as bribes for the voters. The bribes are
proportionally shared among the users who vote for it: this signal is intercepted by implementing the
onAfterAllocateLQTY() hook, which allows to have a full picture of everyone's "YES" votes across
the epochs.
Bribes are strictly linked to an epoch, to be shared among those who voted for the initiative in that epoch;
they never expire, nor are they carried over: a user can come at any point and claim his fair share of the
bribes for an epoch arbitrarily far back in the past.
Since the voting platform is such that a user's vote persists without any user action, the initiative's internal
data structures should allow to detect the most recent epoch at which the user voted. To suit sparse
allocations (across epochs), the initiative stores a per-user linked list, with each item containing an epoch
number and a user's final allocation in that epoch. When a user claims for a past epoch x, the initiative
must determine what is the largest epoch y <= x that is present in the list. Instead of computing it, it
explicitly asks y as a hint from the user, which is then verified.
A similar, global linked list is stored to keep track of the total "YES" allocation, across the epochs. As for
the per-user list, retrieving the most recent epoch y <= x for a given epoch x requires an explicit hint by
the user.
The contract's main functions are:

1. depositBribe(): Allows anyone to deposit any amount of BOLD and the second bribeToken,
to be aggregated to the bribes for an arbitrary future epoch.

2. claimBribes(): Allows a user to batch-claim for several epochs at once. For every individual
claim, the user provides the epoch x and the aforementioned hints y1 <= x and y2 <= x, for its own
list and for the global list. After verifying the hints (checking that they are indeed the largest y <= x
present in the respective list), the contract simply computes the relevant proportion of the bribes,
marks the epoch as claimed by the user, and transfers the bribes.

3. onAfterAllocateLQTY() Hook called by (and only callable by) the Governance, upon user
votes. Updates the user's and the global allocation linked lists.

This implementation does not specify what to do with the BOLD awarded as claims by the Governance,
and leaves the onClaimForInitiative() hook to be implemented by derived contracts.

2.2.5 Changes in Version 2

• The snapshotting logic has been revised and is now cleaner: the functions snapshotVotes() and
snapshotVotesForInitiatives() now simply carry the running state into the relevant
snapshot variable, in case it is outdated, without recomputing anything. In particular, the function
snapshotVotesForInitiatives() no longer computes whether an initiative should be
counted; the counted flag has actually been completely suppressed: all initiatives now contribute
to the running GlobalState, whether or not they are CLAIMABLE.

• An explicit InitiativeStatus has been introduced as an enum to represent the 7 states in which
an initiative can be, across its lifetime. This effectively models initiatives as finite-state machines;
state transitions mostly happen at epoch boundaries, because most of the states are only dependent
on snapshot values: the only two exceptions are the transition from CLAIMABLE to CLAIMED (when
an initiative is claimed for, it goes into the CLAIMED state for the rest of the epoch) and from
UNREGISTERABLE to DISABLED (when an initiative is unregistered, it goes into the DISABLED state
permanently). These states are now used as a firm reference point to decide on outcomes of user
actions (register/unregister/vote/claim).

• The function allocateLQTY() now requires users to reset their allocations before setting the new
ones.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

• The function UserProxy.unstake() now sends all tokens to a single recipient address.

• The BribeInitiative contract now distributes bribes based on the user's voting power, rather
than their allocated LQTY.

2.2.6 Changes in Version 3

• A new role owner with limited privileges is introduced in Governance: owner can register at any
point after deployment initiatives for epoch 1. This function can be called only once as the owner
role is immediately renounced in registerInitialInitiatives(). If the initial initiatives are
passed as _initiatives in constructor, then owner should be the deployer and the role is
automaticalle renounced.

• The internal representation of staking lines has been modified: instead of tracking slope (LQTY
amount) and x-intercept (average timestamp), the code now tracks slope and y-intercept (called
offset). The previous representation was inconvenient, as the x-intercept (which is ideally a
fractional number) was rounded to an integer: this rounding error applied every time two lines were
added or subtracted, leading to severe accounting issues. The new representation is more precise,
as now no precision is lost upon line arithmetic operations: some minor rounding errors are still
present upon allocation and unstaking, but they do not impair the coherence of the system by
violating its core invariants.

• The bookkeeping has been made more granular: the per-user, per-initiative allocation struct now
tracks all of the line (slope and offset) that was allocated by the user to the initiative. This allows the
allocation to be perfectly undone upon resets. Furthermore, the user's state now consists of an
"allocated line" and an "unallocated line". Together, they sum to the user's total line, which is no
longer tracked explicitly (although the slope can be retrieved by a call to stakingV1). The sum over
all initiatives of a user's allocations equals his allocated line.

• Unstaking now requires the user to have no allocation on initiatives. This is because there is no easy
way to proportionally scale down all of his allocations.

• The functions to stake/stakeViaPermit/unstake now all accept optional parameters signalling
whether the pending LiquityV1 rewards should be paid out, and to which address.

• An initiative is considered now in the WARM-UP state only during the epoch that it is registered.

2.2.7 Changes in Version 4

• The requirement imposed on users, to have a zero allocation when staking or unstaking, has been
lifted.

• The Governance no longer calls an initiative's onAllocateLQTY() hook upon NO votes.

2.3 Roles and Trust Model
The following roles can be identified in the system:

1. Deployer. Expected to parametrise the system meaningfully and correctly upon deployment, but
otherwise untrusted for the ordinary operations of the system.

2. Users. Completely untrusted.

3. Initiatives. Trusted by the users who vote for them or interact with them in any way. Untrusted by
the rest of the system.

4. BribeToken. Trusted by the voters of a BribeInitiative. Tokens that transfer less than the
specified amount (such as cUSDCv3) are not supported. Should the BribeToken be malicious, it
could arbitrarily re-interpret the transfer functionality to block the claiming of bribes. Still, it

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

cannot steal the BOLD bribes, alter the recorded allocations, or tamper with the Governance in
any way.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedVetoes Can Be Removed Past the Epoch Voting Cutoff

Low -Severity Findings 5

• AcknowledgedExcessive Gas Buffer in safeCallWithMinGas()

• AcknowledgedFunction safeCallWithMinGas() Always Forwards MIN_GAS_TO_HOOK

• AcknowledgedHard Requirements on claimBribes Might Harm User Experience

• Code Partially Corrected Risk AcceptedInconsistent Timestamp Used for Registration Threshold

• Code Partially Corrected AcknowledgedPossible Stuck Tokens in BribeInitiative

5.1 Vetoes Can Be Removed Past the Epoch
Voting Cutoff
Correctness Medium Version 1 Risk Accepted

CS-V2Gov-012

The function Governance.allocateLQTY() asserts that no "YES" votes can be cast past the six-day
cutoff. However, the implemented check is not sufficient to cover the case where someone de-allocates
some "NO" votes at the last moment.
This effectively nullifies the intended protection for users, who should be given the last 24 hours to block
"malicious" proposals. The proposer can allocate some "NO" votes on his own initiative, lulling the users
into a false sense of security that the initiative will not pass, only to de-allocate them at the last moment.

Risk accepted:

Liquity is aware of this behavior and replied as follows:

We believe that the Veto is a first class citizen, so much so that removing a
vote is a necessary functionality to make Vetos work. In lack of the ability to
remove votes, Vetos would lose their first class position and would make it +EV
to vote on something instead of Veto.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

5.2 Excessive Gas Buffer in
safeCallWithMinGas()
Correctness Low Version 2 Acknowledged

CS-V2Gov-037

The function safeCallWithMinGas() calls hasMinGas(), which deducts a gas buffer from the total
gas left, before verifying whether that is enough to forward the specified amount of gas to a call. The
buffer is computed to account for the worst-case cost of the CALL opcode itself; however, the
Governance always triggers this call with value set to 0, so positive_value_cost and
value_to_empty_account_cost are zero.

Acknowledged:

Liquity acknowledged the issue and decided not to fix it

5.3 Function safeCallWithMinGas() Always
Forwards MIN_GAS_TO_HOOK
Design Low Version 2 Acknowledged

CS-V2Gov-038

The low-level call() in the function safeCallWithMinGas() always forwards _gas (set to
MIN_GAS_TO_HOOK by the Governance) to the hook, regardless of whether the user supplied more gas
in the tx, in case some complex operations need to be performed in the initiative.

Acknowledged:

Liquity is aware of this behavior and has decided to keep the code unchanged.

5.4 Hard Requirements on claimBribes Might
Harm User Experience
Design Low Version 1 Acknowledged

CS-V2Gov-013

The function claimBribes() takes as input an array of epochs, with the respective hints, and iterates
through them to claim the respective bribes for a user. The internal function _claimBribe()
implements a set of checks that cause reverts in case the claimable bribe for a user in an epoch is zero.
This might harm the user experience, as passing one epoch in which the user has zero bribes causes the
whole transaction to revert.

Acknowledged:

Liquity has acknowledged the issue but has decided to keep the code unchanged.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

5.5 Inconsistent Timestamp Used for Registration
Threshold
Correctness Low Version 1 Code Partially Corrected Risk Accepted

CS-V2Gov-019

The function Governance.registerInitiative() requires that the proposer has a sufficient voting
power, measured in terms of the snapshot total number of "YES" votes. However, the user's current
voting power is gauged at the current timestamp, rather than the start of the epoch.

Code partially corrected:

The threshold check for user voting power compared to the overall YES voting power has been changed
to use epochStart as a reference for user's voting power.

Risk Accepted:

Computing user's voting power at epochStart is not always correct as user's staking line may change
(due to deposits or withdrawals) between the epochStart and the time registerInitiative() is
executed, leading to an underevaluation of the user's voting power. Liquity is aware of this inconsistency
and accepts the associated risks.

5.6 Possible Stuck Tokens in BribeInitiative
Design Low Version 1 Code Partially Corrected Acknowledged

CS-V2Gov-018

The contract BribeInitiative implements the function depositBribe() that allows anyone to
deposit BOLD and another ERC20 token as bribes. These tokens are transferred out only when there are
eligible user to claim bribes. However, it is possible that an initiative might not receive any YES vote in an
epoch although there is a bribe. In such scenarios, the deposited tokens for that epoch would be stuck
and cannot be recovered.

Furthermore, _claimBribe() rounds down the bribe amounts, therefore there is some dust that
accumulates over time and is not recovered.

Code partially corrected:

Version 4As of , there is no more dust left behind after everyone has claimed: the accounting now keeps
track of the "remaining" amounts to be paid out, and the votes "already" used to claim.

Acknowledged:

The possibility of the stuck token if no YES votes are recorded is still present. Liquity replied:

We believe the change could create more issues.
In such a scenario it would be in the briber's interest to vote with 1 wei and
get all the bribes back.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedInitiative Votes Can Be Manipulated

High -Severity Findings 6

• Code CorrectedDeallocating From DISABLED Initiatives Makes GlobalState Incorrect

• Code CorrectedVotes in BribeInitiative Are Evaluated at Current Timestamp

• Code CorrectedInitiative Hooks Are Susceptible to Low Gas Attacks

• Code CorrectedTypo in the Code Causes Incorrect Calculation

•
Specification Changed

User's Average Timestamp Can Change Between Allocation and Deallocation of LQTY

• Code CorrectedVote Tallying Is Incorrect

Medium -Severity Findings 11

• Code CorrectedBribes Are Capped at Total Balance

• Specification ChangedConflicting Functionalities for ForwardBribe

• Specification ChangedGovernance Does Not Enforce Warm-Up Period for Initiatives

• Specification ChangedInitiative's Timestamp Can Be Manipulated

• Code CorrectedBribe Accounting Is Based on LQTY Amounts Instead of Votes

• Code CorrectedEOAs Are Not Supported as Initiatives

• Code CorrectedInitiative Deregisterability Is Inconsistent

• Code CorrectedInitiative Is Deregisterable Right After Claiming

• Specification ChangedPossible Frontrun in CurveV2GaugeRewards

• Code CorrectedStuck Allocations

• Code CorrectedUnsafe Casting on Math Functions

Low -Severity Findings 19

• Code CorrectedPossible Underflow in withdrawLQTY

• Code CorrectedRounding Error on Offset Calculation

• Code CorrectedAllocation of Zero LQTY Triggers State Updates and Emit Events

• Code CorrectedCurveV2GaugeRewards Does Not Check remainder

• Code CorrectedIncomplete Events

• Specification ChangedMeaningless Checks in BribeInitiative._claimBribe()

• Code CorrectedMismatch of Code With the Error Message

• Code CorrectedRemaining ToDos in the Codebase

• Code CorrectedUnsafe Casting in lqtyToVotes

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

• Code CorrectedInconsistent Behavior for Retrieval of Tokens From Staking V1

• Code CorrectedIncorrect Specifications

• Code CorrectedInitiative Snapshot Is Never Deleted

• Code CorrectedInitiatives Can Be Registered With No Staking in First Weeks

• Code CorrectedPossible Simplification of onAfterAllocateLQTY

• Code CorrectedReturn Value of Ether Transfer

• Code CorrectedSpecial Check in onAfterAllocateLQTY

• Code CorrectedUnnecessary Approval Given to LQTYStaking

• Code CorrectedVotes for UNREGISTERABLE Initiatives

• Code Corrected_calculateAverageTimestamp() Could Be off by One Second

Informational Findings 7

• Code CorrectedConfusing Name for Initiative Status

• Code CorrectedEncoding Functionalities Are Unused

• Code CorrectedGovernance Interface Is Incomplete

• Code CorrectedInconsistent Use of safeTransfer

• Code CorrectedMisleading Function Name

• Code CorrectedSigned Integers Are Needlessly Wide

• Code CorrectedUnused Function in Math

6.1 Initiative Votes Can Be Manipulated
Security Critical Version 1 Code Corrected

CS-V2Gov-001

The Governance contract uses the type uint88 for accounting the LQTY tokens allocated to an
initiative:

struct InitiativeState {
 uint88 voteLQTY; // LQTY allocated vouching for the initiative
 uint88 vetoLQTY; // LQTY allocated vetoing the initiative
 ...
}

The total supply of LQTY token is capped at 100 million (18 decimals), hence it fits in uint88. The
function allocateLQTY() uses the type int176 when a user changes its vote regarding an initiative:

function allocateLQTY(
 address[] calldata _initiatives,
 int176[] calldata _deltaLQTYVotes,
 int176[] calldata _deltaLQTYVetos
) external;

A positive value signifies an additional allocation of either votes or vetoes to an initiative, while a negative
value signifies a removal of previously allocated LQTY either as votes, or vetoes.

The function allocateLQTY() passes mostly the user input values in _deltaLQTYVotes and
_deltaLQTYVetos to function add() which performs an unsafe casting from int192 to uint88, see

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

Unsafe casting on Math functions. Due to unsafe casting in add() any value larger than 2^88-1 or
smaller than -2^88-1 would be truncated, hence having higher bits ignored. For instance, both 2^88
and -2^88 would be casted to 0.

The only occurrence where the function allocateLQTY() accesses the full value of the input is in the
following code snippet:

userState.allocatedLQTY = add(userState.allocatedLQTY, deltaLQTYVotes + deltaLQTYVetos);

Note that both deltaLQTYVotes and deltaLQTYVetos are of type int176, hence the addition is
performed on the full width of the input parameters. Having a value of 2^88 or -2^88 in either of the
inputs, would break the accounting as it would be treated as 0 by the rest of the function.

To exploit the vulnerability, an attacker can perform the following steps:

• Allocate X LQTY as votes to initiative A.

• Allocate 1 LQTY as vetoes to initiative B.

• Allocate 2^88 - X - 1 LQTY as votes to initiative C, and simultaneously allocate -2^88
LQTY as vetoes to initiative C.

Attacker can choose the value of X depending on its preference for initiative A or initiative C.
After the steps above, the allocation of the user would be accounted as being zero.

Although the attack works by allocating 2^88 LQTY tokens, which is larger than the market cap of LQTY,
the attack is feasible because the checks on attacker's balance are enforced after all the allocations are
settled, by which point the attacker has already manipulated its allocation to be zero. Therefore, the
following check passes as the first condition is satisfied:

require(
 userState.allocatedLQTY == 0
 || userState.allocatedLQTY <= uint88(stakingV1.stakes(deriveUserProxyAddress(msg.sender))),
 "Governance: insufficient-or-unallocated-lqty"
);

Attacker gets the maximum voting power if it does not have any staked LQTY, hence its
averageStakingTimestamp is 0, which is treated by the function as having staked since the genesis
time.

Code corrected:

The codebase has been revised to avoid the possibility of the unsafe casting which was the root cause
for enabling the issue. The following improvements were implemented:

1. The input type of function allocateLQTY() for LQTY amounts is changed to int88 from
int176.

2. The functions in Math.sol are refactored to avoid performing unsafe casting.

6.2 Deallocating From DISABLED Initiatives
Makes GlobalState Incorrect
Correctness High Version 2 Code Corrected

CS-V2Gov-030

The GlobalState is now the sum of all active initiative lines, whether they are CLAIMABLE or not; an
initiative is only removed from the GlobalState upon a call to unregisterInitiative(). At that

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

point, however, users might still have LQTY allocated on that initiative: the function allocateLQTY(),
therefore, allows users to deallocate LQTY from a DISABLED initiative.
However, the function still updates the GlobalState in this case, even though the whole
initiativeState was already discounted when the initiative was unregistered. Specifically, the
subtraction of the prevInitiativeState does not happen, but the addition of the new
initiativeState does. This effectively adds the other users' voting lines back into the
GlobalState, making it incorrect.

Code corrected:

Version 3The vulnerability has been mitigated in . When an initiative is unregistered, the global state is
updated to discount the initiative that is removed:

function unregisterInitiative(address _initiative) external nonReentrant {
 ...
 state.countedVoteLQTY -= initiativeState.voteLQTY;
 state.countedVoteOffset -= initiativeState.voteOffset;
 ...
}

The internal function _allocateLQTY() has been updated to avoid updates of state when
deallocating from a disabled initiative:

function _allocateLQTY(...) internal {
 ...
 if (status != InitiativeStatus.DISABLED) {
 ...
 // Remove old initative LQTY and offset from global count
 vars.state.countedVoteLQTY -= vars.prevInitiativeState.voteLQTY;
 vars.state.countedVoteOffset -= vars.prevInitiativeState.voteOffset;
 // Add new initative LQTY and offset to global count
 vars.state.countedVoteLQTY += vars.initiativeState.voteLQTY;
 vars.state.countedVoteOffset += vars.initiativeState.voteOffset;
 }
}

6.3 Votes in BribeInitiative Are Evaluated at
Current Timestamp
Security High Version 2 Code Corrected

CS-V2Gov-031

The BribeInitiative contract now tracks both the allocated LQTY and the user's timestamp, to distribute
bribes according to the effective voting power. However, the voting power is evaluated at
block.timestamp, instead of the start of the reference epoch, which leads to a wrong proportion being
calculated for the user. This can lead to stuck bribes (if the proportions sum to less than 1), or
insolvency/stolen funds (if the proportions sum to more than 1).
If, for example, a user has an average age lower than the average age of an initiative that he votes for,
he can wait a long time to claim for that epoch, so as to "inflate" his voting power compared to the other
voters, and thus his proportion. This could lead to insolvency; however, the (flawed) mitigation described
in Bribes are capped at total balance could make things worse: since the total payout is capped at the

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

BOLD balance of the contract, rather than the total bribe for that epoch, the user could effectively steal
BOLD from the contract that were allocated for other purposes (e.g. bribes for other epochs).

Code corrected:

Version 3In the voting power is now evaluated at the end of the reference epoch.

6.4 Initiative Hooks Are Susceptible to Low Gas
Attacks
Security High Version 1 Code Corrected

CS-V2Gov-002

The Governance contract triggers calls into an initiative when a user action changes state that is relevant
for an initiative. An initiative can implement the following callback hooks:

function onRegisterInitiative(uint16 _atEpoch) external;
function onUnregisterInitiative(uint16 _atEpoch) external;
function onAfterAllocateLQTY(uint16 _currentEpoch, address _user,
 uint88 _voteLQTY, uint88 _vetoLQTY) external;
function onClaimForInitiative(uint16 _claimEpoch, uint256 _bold) external;

The initiative can implement custom logic on these callback functions to update its internal accounting for
important state updates on Governance, such as vote tracking on BribeInitiative.

The Governance contract always triggers the callback hooks inside a try/catch block, therefore a
failure in the initiative's functions does not bubble up to revert the whole transaction. Given that the
external functionalities in Governance are permissionless, an attacker can initiate a call to Governance
and pass a low amount of gas which is not sufficient to execute the code in the initiative's callback hooks.
After the failed call, 1/64 of the gas will still be available, which will be sufficient to return from the
Governance function.

For example, an attacker can trigger Governance.claimForInitiative() and pass a limited
amount of gas such that the call to onClaimForInitiative() reverts due to out-of-gas exception,
hence no state gets updated in the initiative.

Code corrected:

Version 2In , hooks are called via the helper function safeCallWithMinGas(), which ensures that a
minimum gas stipend (fixed to a constant of 350'000) is forwarded to the hook.

6.5 Typo in the Code Causes Incorrect
Calculation
Correctness High Version 1 Code Corrected

CS-V2Gov-003

The function allocateLQTY(), when discounting the prevInitiativeState from the running
GlobalState (in case it is counted), computes the new timestamp based on that of the new
initiativeState, rather than the prevInitiativeState:

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

if (prevInitiativeState.counted == 1) {
 state.countedVoteLQTYAverageTimestamp = _calculateAverageTimestamp(
 state.countedVoteLQTYAverageTimestamp,
 initiativeState.averageStakingTimestampVoteLQTY, // wrong timestamp
 state.countedVoteLQTY,
 state.countedVoteLQTY - prevInitiativeState.voteLQTY
);
 state.countedVoteLQTY -= prevInitiativeState.voteLQTY;
}

This leads to state.countedVoteLQTYAverageTimestamp being calculated incorrectly, hence
breaking the accounting of the global votes.

Code corrected:

Version 2Function allocateLQTY() has been refactored in and the code snipped shown above has
been moved to the internal function _allocateLQTY(). The issue has been fixed by passing
prevInitiativeState.averageStakingTimestampVoteLQTY as second argument to function
_calculateAverageTimestamp():

if (status != InitiativeStatus.DISABLED) {
 state.countedVoteLQTYAverageTimestamp = _calculateAverageTimestamp(
 ...
 prevInitiativeState.averageStakingTimestampVoteLQTY,
 ...
);
}

6.6 User's Average Timestamp Can Change
Between Allocation and Deallocation of LQTY
Security High Version 1 Specification Changed

CS-V2Gov-032

The Governance only tracks one averageStakingTimestamp at any given time, for each user. This is
used for all of the user's allocations and deallocations of LQTY to/from initiatives. However, this
timestamp can change (move forward) when the users adds stake. If this happens before the user
deallocates from an initiative, the function allocateLQTY() subtracts from the initiativeState a
different line (same slope, different offset) from the one that was added to it when the user allocated
LQTY to that initiative.
The subtracted line has a more recent timestamp (and thus a lower voting power), so this bug can be
exploited. For example, a user who already intends to leave the system could allocate all his LQTY on his
favourite initiative, then flash-loan a large amount of LQTY and add them to his stake (moving his
timestamp very close to the present), then deallocate the LQTY from the initiative, unstake everything
and repay the flash-loan. The deallocation will leave a constant offset "on top" of the previous
initiativeState, roughly equal to his current voting power.

Specification changed:

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Version 3The accounting of voting power for users have changed in . Instead of tracking
averageStakingTimestamp for a user, the updated codebase uses the following struct:

struct UserState {
 uint256 unallocatedLQTY;
 uint256 unallocatedOffset;
 uint256 allocatedLQTY;
 uint256 allocatedOffset;
}

Furthermore, for each allocation of a user towards an initiative, the following data are stored:

struct Allocation {
 uint256 voteLQTY;
 uint256 voteOffset;
 uint256 vetoLQTY;
 uint256 vetoOffset;
 uint256 atEpoch;
}

This information allows the accounting to reset correctly when deallocating LQTY from an initiative.

6.7 Vote Tallying Is Incorrect
Correctness High Version 1 Code Corrected

CS-V2Gov-004

The global votesSnapshot is taken at the beginning of the epoch, and it stays the same for the whole
epoch. It counts the number of "YES" votes, and will be used as the denominator in
claimForInitiative(), to calculate the payout; it is therefore crucial that the contract's operations
preserve the following invariant: the sum of the numerators used by all initiatives that can be claimed
during an epoch must equal votesSnapshot.votes. This invariant is not maintained: it can happen
that the sum of the numerators is smaller than the denominator (in which case not all the boldAccrued
can be claimed), or worse, it can be larger (in which case the system is insolvent).
There are several individual snippets across the code that concur to this issue, but the root cause can be
pinpointed as follows: the function _snapshotVotesForInitiative() recomputes whether the
initiative is Claimable or not, but in a way such that the result is unrelated to the counted flag; it can
happen that an initiative is counted but it is then not Claimable in the epoch, or worse, it can be not
counted but still Claimable. The following mock scenario exemplifies this latter case:

Epoch x ends, x+1 begins. Global snapshot: YES vote count = 101
3 votes for initiative 1 -> not counted

98 votes for initiative 2 -> counted

Running global state is only counting initiative 2

Epoch x+1 ends, x+2 begins. Global snapshot: YES vote count = 98
No new votes, just re-snapshot both initiatives

Claim initiative 1. Re-snapshot, now above threshold -> claim 3/98 of the BOLD

Claim initiative 2: Re-snapshot -> claim 98/98 of the BOLD -> insolvency

Here is a list of places in the code that concur in breaking the invariant:

1. The function _snapshotVotesForInitiative() recomputes whether an initiative is Claimable,
using a newer votingThreshold, different from the one used in the previous epoch by
allocateLQTY() to decide whether the initiative should be counted.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

2. The function allocateLQTY() computes the votesForInitiative evaluating the staking line
at block.timestamp, rather than the beginning of the next epoch. This leads to a different result
from the line evaluation performed in _snapshotVotesForInitiative() in the next epoch.

3. The function allocateLQTY() does not take into account whether the "YES" has a relative
majority, to decide whether the initiative should be counted, instead only this check is performed:
votesForInitiative >= votingThreshold.

Code corrected:

Version 2In , the code has been refactored and redesigned. What fixes this issue is a simplification of the
logic: all initiatives are now counted, whether or not they will end up being CLAIMABLE. This prevents
insolvency as described above; note, however, that it can still happen that the denominator is larger than
the sum of the numerators (this will happen every time there is a non-claimable initiative), which leads to
part of the rewards being not redeemable in the current epoch and getting carried over to the next one.
Liquity is aware of this limitation.

6.8 Bribes Are Capped at Total Balance
Correctness Medium Version 2 Code Corrected

CS-V2Gov-033

The function BribeInitiative.claimBribes() caps the payout at the total balance of the contract
(in BOLD and bribeToken, respectively), rather than the total bribe allocated for that epoch. This means
that potential cases of insolvency are mitigated by giving out tokens that were allocated for other
purposes: this can be exploited, in conjunction with the accounting bug described in Votes in
BribeInitiative are evaluated at current timestamp.

Code corrected:

Version 3The abovementioned accounting bug has been fixed in , thus removing the possibility for an
exploit.

6.9 Conflicting Functionalities for ForwardBribe
Design Medium Version 2 Specification Changed

CS-V2Gov-034

The contract ForwardBribe inherits from BribeInitiative, and therefore includes all its
bribe-payout logic. This conflicts with its additional logic that forwards all funds (including bribes) to an
immutable receiver.

Specification changed:

Version 3The contract ForwardBribe has been removed from the codebase in .

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

6.10 Governance Does Not Enforce Warm-Up
Period for Initiatives
Design Medium Version 2 Specification Changed

CS-V2Gov-035

Version 2

The function Governance.getInitiativeState() does not have a specific return value in case an
initiative is at most REGISTRATION_WARM_UP_PERIOD epochs old; in fact, this variable is unused in the
codebase . This enables a griefing attack against initiatives that do not receive enough votes in
the firts week after they are registered. An attacker can allocate veto power to such initiatives and then
unregister them.

Specification changed:

Version 4

Version 3

In , the parameter REGISTRATION_WARM_UP_PERIOD has been removed altogether: new
initiatives can be vetoed and unregistered the next epoch. Furthermore (already starting form)
the lastEpochClaim of a newly-registered initiative is set to the previous epoch, so that the
UNREGISTRATION_AFTER_EPOCHS period also applies to new initiatives.

6.11 Initiative's Timestamp Can Be Manipulated
Security Medium Version 2 Specification Changed

CS-V2Gov-046

The choice of representing a line using the x-intercept inherently leads to rounding errors, as explained in
_calculateAverageTimestamp() could be off by one second, since the x-intercept (the
averageStakingTimestamp) of a staking line is potentially a fractional number, which the function
_calculateAverageTimestamp() rounds up to an integer. A peculiar consequence of this is that a
user allocating some LQTY on an initiative, and then de-allocating them in the same transaction, does
not necessarily leave the initiative's line untouched overall: its timestamp could end up being strictly
higher (more recent) than its previous value. This can be exploited by an attacker flash-loaning a large
amount of LQTY and doing this repeatedly to all of his competitor initiatives, so as to bring their
timestamp as close to the present as possible: this would reduce their voting power (evaluated at the
epoch boundary), compared to the attacker's, granting him an unfair share of the total boldAccrued.
Here follow the details of the attacks. Suppose an initiative has a staking line , and an
attacker has a staking line .
Allocating LQTY on the initiative brings the initiative line to where

t1 = mt0 + mata
m + ma

and is the ceiling function. | When the attacker deallocates the same LQTY amount, that brings the
initiative line to where

t2 = (m + ma)⌈t1⌉ − mata
(m + ma) − ma

Let us compare (the initial timestamp of the initiative) with (its final timestamp of the initiative's
line). To simplify the analysis, let us actually focus on : applying the ceiling function to it will only make
the impact worse.
Noticing that , and applying this to the formula for , quickly yields

t2 ≥ (m + ma)t1 − mata
(m + ma) − ma

= mt0 + mata − mata
(m + ma) − ma

= mt0
m = t0

so the final timestamp will always be at least as high as the initial one. | Let us now use the other
inequality of the ceiling function, ; notice that this inequality can be arbitrarily tight: it

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

suffices that the mantissa of be very small (e.g. 0.0001) for to be very close to . | Applying this
to the formula for yields:

t2 < (m + ma)(t1 + 1) − mata
(m + ma) − ma

= mt0 + mata + m + ma − mata
(m + ma) − ma

= mt0 + m + ma
m = t0 + 1 + ma

m

This means, for example, that an attacker having a stake equal to roughly 30 times that of a "victim"
initiative can push forward its timestamp by 30 seconds. He just needs to choose and just right so
that the mantissa of is small.
This procedure can be iterated, multiple times over the same initiative, and over several initiatives
(possibly choosing different and every time), all in one transaction, with only one flash loan. This
can be repeated at every epoch; the attack does not become more expensive over time, because the
victim initiatives never get to age properly if the attacker "brings forward" their timestamp every time, so it
will always be ~1 week old every time the attack is performed.

Specification changed:

Version 3The accounting has changed in . The timestamp is not used anymore for the voting line of an
initiative, hence the issue is not applicable anymore.

6.12 Bribe Accounting Is Based on LQTY
Amounts Instead of Votes
Correctness Medium Version 1 Code Corrected

CS-V2Gov-005

The accounting on BribeInitiative is based on the LQTY amounts allocated for an initiative:

function onAfterAllocateLQTY(..., uint88 _voteLQTY, uint88 _vetoLQTY) ... {
 ...
 uint88 newVoteLQTY = (_vetoLQTY == 0) ? _voteLQTY : 0;
 ...
 _setLQTYAllocationByUserAtEpoch(_user, _currentEpoch, newVoteLQTY, true);
}

Therefore, a user A staking 1 LQTY for one year and allocating all its voting power to the initiative, would
receive the same bribe as a user B staking 1 LQTY for one month and allocating all its voting power to
the initiative. This contradicts the intended behavior is to distribute bribes to users according to their
voting power. In the scenario described above, user A should receive a bribe that is roughly 12x of the
bribe received by user B.

This design enables an attacker to manipulate the bribe accounting by taking short term loans. The
attacker executes the following steps:

• At the last block of epoch x, take a loan of LQTY tokens from a 3rd party protocol.

• On the same transaction, stake all LQTY and allocate all voting power to one or more initiatives that
pay bribes.

• At the first block of epoch x+1, unstake all LQTY and repay the loan and any interest for 12
seconds.

• Claim the bribe.

• Repeat the process for each epoch boundary.

This allows the attacker to receive large amount of bribes that are not proportional to its voting power.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

Code corrected:

Version 2The function hook BribeInitiative.onAfterAllocateLQTY() has been revised in to
take additional input arguments that enable the calculation of vote contributions per user:

function onAfterAllocateLQTY(
 uint16 _currentEpoch,
 address _user,
 IGovernance.UserState calldata _userState,
 IGovernance.Allocation calldata _allocation,
 IGovernance.InitiativeState calldata _initiativeState
) external virtual onlyGovernance

Therefore, the bribes are now calculated based on user's votes and the initiative's total votes at a given
epoch:

...
uint240 totalVotes = governance.lqtyToVotes(...);
if (totalVotes != 0) {
 ...
 uint240 votes = governance.lqtyToVotes(...);
 boldAmount = uint256(bribe.boldAmount) * uint256(votes) / uint256(totalVotes);
 bribeTokenAmount = uint256(bribe.bribeTokenAmount) * uint256(votes) / uint256(totalVotes);
}

However, this fix has introduced another vulnerability as described in Votes in BribeInitiative are
evaluated at current timestamp

6.13 EOAs Are Not Supported as Initiatives
Correctness Medium Version 1 Code Corrected

CS-V2Gov-006

The specifications of Governance state that an initiative can be any Ethereum address, including
externally-owned accounts (EOAs):

As Initiatives are assigned to arbitrary addresses, they can be used for any purpose
including EOAs, Multisigs, or smart contracts designed for targetted purposes.

The implementation of the function onRegisterInitiative() triggers inside a try/catch block a
hook in the initiative address:

try IInitiative(_initiative).onRegisterInitiative(currentEpoch) {} catch {}

Because the call into initiative is not expected to return any data, Solidity compiler adds checks to ensure
that the called address has non-empty code. This check is executed before the try/catch block, which
means that if the check fails, the revert is not caught by the try/catch logic. Hence, the registration of
any EOA as an initiative would revert when triggering onRegisterInitiative().

Code corrected:

Version 2In , hooks are called via the helper function safeCallWithMinGas(), which supports EOAs,
since it performs a simple low-level call without checking its boolean return value.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

6.14 Initiative Deregisterability Is Inconsistent
Design Medium Version 1 Code Corrected

CS-V2Gov-007

The vetoes for an initiative are not snapshot at epoch boundaries. The function
unregisterInitiative() instead decides whether an initiative is Deregisterable by recomputing the
"NO" votes, evaluating the corresponding staking line at block.timestamp, thus "inflating" the "NO"
votes compared to the "YES", which are taken from the snapshot. In fact, it is possible for an initiative to
be at the same time Claimable (because the "YES" had a majority at the epoch start) and Deregisterable
(because the "NO" were later recomputed and found to be higher than the snapshot "YES"): the outcome
will then depend on the result of a race condition, which the use of epochs is meant to eliminate.
Considering that an epoch is 7 days, the inflation in the voting power for 1 LQTY that has been staked for
a year is roughly 2% during one epoch (7/365).
On the same note, based on the reasoning exposed in Vote tallying is incorrect, it should never happen
that a counted initiative is Deregisterable, therefore the final update to the GlobalState should never
take place.

Code corrected:

Version 2A new function getInitiativeState() has been added in that returns the state of an
initiative. This ensures that initiatives are treated consistently by the codebase. An initiative can be in one
of the following states:

enum InitiativeStatus {
 NONEXISTENT,
 WARM_UP,
 SKIP,
 CLAIMABLE,
 CLAIMED,
 UNREGISTERABLE,
 DISABLED
}

6.15 Initiative Is Deregisterable Right After
Claiming
Correctness Medium Version 1 Code Corrected

CS-V2Gov-008

The function claimforInitiative() resets the number of "YES" votes to 0, to prevent double
claiming in the same epoch. However, this has the unintended side effect of giving the "NO" a relative
majority, thus possibly making the initiative deregisterable immediately afterwards (if other conditions,
like the warmup period, are satisfied).
Additionally, this breaks the assumptions from external callers of the public view function
votesForInitiativeSnapshot() on the semantics of its result.

Code corrected:

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

The number of "YES" votes is no longer reset to 0. Instead, an explicit field has been added that stores
the last epoch at which the initiative has been claimed: this is now enough to prevent double claiming,
and does not give the "NO" a relative majority.

6.16 Possible Frontrun in CurveV2GaugeRewards
Security Medium Version 1 Specification Changed

CS-V2Gov-009

The function depositIntoGauge() in CurveV2GaugeRewards should be called once in an epoch to
move the claimable BOLD tokens from the Governance to a Curve gauge:

function depositIntoGauge() external returns (uint256) {
 uint256 amount = governance.claimForInitiative(address(this));
 ...
 gauge.deposit_reward_token(address(bold), amount, duration);
 ...
}

However, one can frontrun this call and trigger the execution of claimForInitiative() in the
Governance contract. In this case the funds will be moved to CurveV2GaugeRewards but get stuck.
Any subsequent call to depositIntoGauge() in the same epoch would deposit zero tokens into the
gauge.

Specification changed:

Version 2The specifications for the contract CurveV2GaugeRewards have changed in . The external
function depositIntoGauge() has been removed and the initiative hook
onClaimForInitiative() automatically forwards the rewards to the Curve gauge.

6.17 Stuck Allocations
Correctness Medium Version 1 Code Corrected

CS-V2Gov-010

After an initiative is unregistered, its variables are erased (i.e. reset to 0). These variables (in particular
the registration epoch) are checked in allocateLQTY() to be non-zero. Therefore, it is impossible to
reclaim votes from an initiative once it has been deregistered, without registering it again, which costs
100 BOLD, and is only effective starting from the next epoch.
An attacker may exploit this to temporarily DOS competitors and effectively reduce the total voting power
for this epoch.

Code corrected:

It is now possible to reclaim LQTY from a deregistered initiative.

6.18 Unsafe Casting on Math Functions
Security Medium Version 1 Code Corrected

CS-V2Gov-011

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

Functions add() and sub() in Math.sol perform unsafe casting when converting a value of a larger
type to a smaller type. The function add() casts an input value of type int192 into uint88 without any
range check, hence ignoring the high-order bits of the input value b:

function add(uint88 a, int192 b) ... {
 if (...) {
 return uint88(a - uint88(uint192(-b)));
 }
 return uint88(a + uint88(uint192(b)));
}

Similarly, the function sub() performs unsafe casting when converting a value of type uint256 into a
uint128.

The unsafe casting in function add() enables a severe vulnerability in the accounting of the votes, see
Initiative votes can be manipulated.

Code corrected:

Version 3

The functions have been revised to use a new function abs() that avoids the unsafe casting. All the
operations are performed on 256-bit integers as of

6.19 Possible Underflow in withdrawLQTY
Design Low Version 3 Code Corrected

CS-V2Gov-050

Function withdrawLQTY() updates user's state with the new offset and unallocated LQTY as follows:

// Update the offset tracker
if (_lqtyAmount < userState.unallocatedLQTY) {
 ...
} else {
 ...
 userState.unallocatedOffset = 0;
}

// Update the user's LQTY tracker
userState.unallocatedLQTY -= _lqtyAmount;

The function doesn't perform any check that amount of LQTY being withdrawn is less than the user's
stake. Furthermore, LQTYStaking.unstake() caps the amount to the user's stake. Therefore, if one
calls withdrawLQTY() with a larger LQTY amount than staked, the subtraction above reverts with an
underflow error.

Code corrected:

Version 4A sanity check on _lqtyAmount has been added in , with a custom error message in case of
too large a value.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

6.20 Rounding Error on Offset Calculation
Correctness Low Version 3 Code Corrected

CS-V2Gov-051

Users can allocate their voting power to different initiatives. For each allocation two values are stored:
allocated LQTY and the user's offset. Function allocateLQTY() rounds down when computing the
offset that should be added to an initiative:

for (...) {
 absoluteOffsetVotes[x] =
 _absoluteLQTYVotes[x] * int256(userState.unallocatedOffset) / int256(userState.unallocatedLQTY);
 absoluteOffsetVetos[x] =
 _absoluteLQTYVetos[x] * int256(userState.unallocatedOffset) / int256(userState.unallocatedLQTY);
}

This means that, in particular, when the user allocates all of his LQTY to many initiatives, he could be left
with 0 unallocatedLQTY and non-zero unallocatedOffset.
The rounding error is accounted in favor of an initiative if user allocates YES votes (against initiative if
user allocates NO votes).

Code corrected:

Version 4In , the in-memory copy of the user's vote trackers are updated (decreased) at each iteration of
the loop. This removes the abovementioned edge case: in case of a complete allocation, the
unallocatedOffset will be 0. We highlight that the rounding error is now path dependent, i.e., user
can influence for which initiatives the rounding error is in favor.

6.21 Allocation of Zero LQTY Triggers State
Updates and Emit Events
Design Low Version 2 Code Corrected

CS-V2Gov-047

Function allocateLQTY() executes fully and updates the initiative and global state even if both
_absoluteLQTYVotes and _absoluteLQTYVetos are zeros. Furthermore, the respective events are
emitted. Therefore, the function can also be triggered by users that do not have any staking in the
governance contract.

Code corrected:

Version 3In , checks are added to require that _absoluteLQTYVotes and _absoluteLQTYVetos be
not all-zeros, as well as that the user have a stake in the system (positive unallocatedLQTY).

6.22 CurveV2GaugeRewards Does Not Check
remainder
Correctness Low Version 2 Code Corrected

CS-V2Gov-036

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

The function CurveV2GaugeRewards._depositIntoGauge() only checks the newly-accrued
amount, rather than the total = remainder + amount, to decide whether to queue or deposit the
rewards into the gauge.

Code corrected:

The internal function _depositIntoGauge() has been revised to consider both new Bold tokens and
the remainder when deciding whether to queue or deposit the rewards into the gauge:

function _depositIntoGauge(uint256 amount) internal {
 uint256 total = amount + remainder;

 // For small donations queue them into the contract
 if (total < duration * 1000) {
 remainder += amount;
 return;
 }
 ...
}

6.23 Incomplete Events
Design Low Version 2 Code Corrected

CS-V2Gov-040

The internal function _snapshotVotes() emits the snapshotted votes and the respective epoch, but it
does not include the boldAccrued. Similarly, the function _snapshotVotesForInitiative() emits
the votes recorded for an initiative, but it does not include vetos.

Furthermore, governance does not emit an event with the success flag returned from
safeCallWithMinGas() when an initiative hook is triggered.

Code corrected:

Version 3The abovementioned fields have been added to the events in

6.24 Meaningless Checks in
BribeInitiative._claimBribe()
Design Low Version 2 Specification Changed

CS-V2Gov-039

The checks require(lqtyAllocation.value != 0 ...) and
require(totalLQTYAllocation.value != 0...), present in
BribeInitiative._claimBribe(), are not meaningful, since the value now encodes the
timestamp as well, and therefore will never be 0.

Specification changed:

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

Version 3

Version 2

The struct Item in the library DoubleLinkedList has been changed in to store in separate fields
lqty and offset instead of a single field (value in):

struct Item {
 uint256 lqty;
 uint256 offset;
 ...
}

6.25 Mismatch of Code With the Error Message
Correctness Low Version 2 Code Corrected

CS-V2Gov-048

The function BribeInitiative.depositBribe() performs the following check:

function depositBribe(..., uint16 _epoch) external {
 uint16 epoch = governance.epoch();
 require(_epoch >= epoch, "BribeInitiative: only-future-epochs");
 ...
}

The code accepts an input _epoch that is same as the ongoing epoch, while the error message
highlights that _epoch should only be in the future.

Code corrected:

Version 3The error string has been changed in to "BribeInitiative: now-or-future-epochs"

6.26 Remaining ToDos in the Codebase
Design Low Version 2 Code Corrected

CS-V2Gov-041

There are remaining TODO and @audit comments in the codebase. Addressing remaining notes help
improve the quality and readability of the code.

Code corrected:

The previous comments have been removed from the contracts in scope.

6.27 Unsafe Casting in lqtyToVotes
Design Low Version 2 Code Corrected

CS-V2Gov-049

The function lqtyToVotes() has public visibility and takes as one of the inputs the variable
_currentTimestamp which is of type uint256. The function is called with a timestamp variable of type

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

uint32 whenever called internally, however if the function is called externally and a value greater than
type(uint32).max is passed, the function performs an unsafe casting and returns an incorrect result.

Code corrected:

The unsafe casting has been removed, and the variable _currentTimestamp is now used at full width
in the multiplication

6.28 Inconsistent Behavior for Retrieval of Tokens
From Staking V1
Correctness Low Version 1 Code Corrected

CS-V2Gov-014

When unstaking or realizing the gains accrued in Staking V1, functions withdrawLQTY() and
claimFromStakingV1() in Governance, exhibit different practices:

• Function claimFromStakingV1() allows the caller to specify any address as the recipient of
funds, while withdrawLQTY() hard-codes the recipient to msg.sender.

• Function withdrawLQTY() emits an event which includes the unstaked LQTY amounts and the
respective gains, while claimFromStakingV1() does not emit any event.

Code corrected:

Version 3Both functions have been revised in to be aligned. Both withdrawLQTY() and
claimFromStakingV1() allow users to specify a recipient, and emit the same event.

6.29 Incorrect Specifications
Correctness Low Version 1 Code Corrected

CS-V2Gov-015

We provide a non-exhaustive list of incorrect natspec comments in the codebase:

Version 1 :

1. The documentation comment for the function Governance._snapshotVotes() says that it
"accrues funds for the current epoch", whereas it "snapshots votes for the previous epoch". This
could be misinterpreted: the number of votes are snapshot at the end of the past epoch, while
BOLD are accrued until the first activity in the current epoch. The accrued BOLD are valid
throughout all of the current epoch.

2. The natspec of function DoubleLinkedList.getNext() states that the head of the list is
returned if id is zero, however next pointer stores the tail of the list.

3. Similarly, the function getPrev() state that the tail of the list is returned if id is zero, however the
prev pointer stores the head of the list.

Version 3 :

4. Function claimBribes() includes a note from previous versions of the codebase which is
outdated.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

5. Function unregisterInitiative() has an inline comment that is outdated:
weeks * 2^16 > u32. Registration epoch for disabled initiatives is now set to
type(uint256).max.

6. Function getInitiativeState() has an incorrect inline comment for
Unregister Condition as an initiative is unregistable at 5th epoch that would result in SKIP.

Code corrected:

Version 4The abovementioned natspec comments have been fixed in

6.30 Initiative Snapshot Is Never Deleted
Correctness Low Version 1 Code Corrected

CS-V2Gov-016

The function unregisterInitiative() does not delete initiativeSnapshot[_initiative]
which stores outdated values in case the initiative is registered again.

Code corrected:

It is no longer possible to re-register an initiative that was previously unregistered

6.31 Initiatives Can Be Registered With No
Staking in First Weeks
Design Low Version 1 Code Corrected

CS-V2Gov-056

The deployer of the Governance contract can pre-register a set of initiatives which will be voted from
epoch 2 and onwards. This means that the total votes for the first two weeks will be zero, hence anyone
can register initiatives, bypassing the staking threshold check, however the registration fee must be paid.

Code corrected:

Version 3A new check has been added in that ensures registerInitiative() can only be called
after the second epoch:

require(currentEpoch > 2, "Governance: registration-not-yet-enabled");

6.32 Possible Simplification of
onAfterAllocateLQTY
Design Low Version 1 Code Corrected

CS-V2Gov-017

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

The function BribeInitiative.onAfterAllocateLQTY() is triggered whenever a user changes
their vote allocation in Governance, and it implements the logic to update user snapshots and global
snapshots per an initiative. The implementation handles possibilities for scenario that both _voteLQTY
and _vetoLQTY are non-zero.

However, the Governance ensures that a user either votes, or vetoes an initiative, it cannot do both in the
same epoch. Taking this into consideration, the logic in onAfterAllocateLQTY() could be simplified.
For instance, the following branches could be combined to achieve the same behavior:

if (_vetoLQTY == 0) {
 ...
 _setTotalLQTYAllocationByEpoch(_currentEpoch,
 totalLQTYAllocationByEpoch.items[_currentEpoch].value + _voteLQTY - prevVoteLQTY,
 false
);
 _setLQTYAllocationByUserAtEpoch(_user, _currentEpoch, _voteLQTY, false);
} else {
 ...
 _setTotalLQTYAllocationByEpoch(_currentEpoch,
 totalLQTYAllocationByEpoch.items[_currentEpoch].value - prevVoteLQTY,
 false
);
 _setLQTYAllocationByUserAtEpoch(_user, _currentEpoch, 0, false);
}

Code corrected:

The function onAfterAllocateLQTY() has been revised and its logic has been simplified.

6.33 Return Value of Ether Transfer
Design Low Version 1 Code Corrected

CS-V2Gov-045

The following code does not check the return value of the Ether transfer via low-level call:

if (ethAmount > 0) {
 (bool success,) = payable(_lusdEthRecipient).call{value: ethAmount}("");
 success;
}

Code corrected:

Version 2A check on success has been added in .

6.34 Special Check in onAfterAllocateLQTY
Design Low Version 1 Code Corrected

CS-V2Gov-054

The function BribeInitiative.onAfterAllocateLQTY() performs this check:

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

if (_currentEpoch == 0) return;

However, the condition can never be satisfied as the epoch number starts at 1.

Code corrected:

Version 3The check has been removed in .

6.35 Unnecessary Approval Given to
LQTYStaking
Design Low Version 1 Code Corrected

CS-V2Gov-020

The function UserProxy.stake() provides an approval to LQTYStaking before triggering the staking
in Liquity V1:

lqty.approve(address(stakingV1), _amount);
stakingV1.stake(_amount);

The approval is unnecessary as the staking contract has a privileged role in the LQTYToken and does
not require an approval to pull funds.

Code corrected:

The unnecessary approval has been removed.

6.36 Votes for UNREGISTERABLE Initiatives
Correctness Low Version 1 Code Corrected

CS-V2Gov-055

The function Governance._allocateLQTY() forbids placing additional votes on an initiative that's in
the UNREGISTERABLE state. However, a comment at the beginning of the for-loop in
_allocateLQTY() says it should be allowed:

// Can vote positively in SKIP, CLAIMABLE, CLAIMED and UNREGISTERABLE states

However, a require statements does not allow voting on initiatives in the unregistable state:

require(
 status == InitiativeStatus.SKIP || status == InitiativeStatus.CLAIMABLE
 || status == InitiativeStatus.CLAIMED,
 "Governance: active-vote-fsm"
);

Currently, the only way for an initiative to leave unregistable state is if vetoes are removed from it.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

Code corrected:

The inline comment has been revised to reflect the code behavior.

6.37 _calculateAverageTimestamp() Could Be off
by One Second
Security Low Version 1 Code Corrected

CS-V2Gov-021

The function Governance._calculateAverageTimestamp() performs an integer division between
the number of votes and the LQTY amount, to obtain the average age. This could be rounded down by
one second, resulting in the final average timestamp to be rounded up by one second. This rounding
error can theoretically be used as a griefing attack to lower an initiative's average timestamp (allocated
voting power), therefore reduce its claimable rewards.

Code corrected:

Version 3The code in has been refactored to avoid the rounding error decribed above: the representation
of a staking line has been changed to consist of the slope (LQTY amount) and a y-intercept (offset) which
is always an integer, instead of the x-intercept (average timestamp) which could be fractional.

6.38 Confusing Name for Initiative Status
Informational Version 2 Code Corrected

CS-V2Gov-042

The enum variant InitiativeStatus.WARM_UP has a misleading name, since it represents initiatives
that were registered in the current epoch; this is a different semantics from the one intended for the
immutable variable REGISTRATION_WARM_UP_PERIOD.

Code corrected:

Version 3The immutable REGISTRATION_WARM_UP_PERIOD has been removed in

6.39 Encoding Functionalities Are Unused
Informational Version 2 Code Corrected

CS-V2Gov-043

The following newly functions are not used in the codebase:

• BribeInitiative._encodeLQTYAllocation()

• EncodingDecodingLib.encodeLQTYAllocation()

Code corrected:

Version 3The functions have been removed in

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

6.40 Governance Interface Is Incomplete
Informational Version 2 Code Corrected

CS-V2Gov-044

The interface IGovernance does not include all the public and external functions defined in the
Governance contract. Here is a list of missing functions.

Version 2 :

1. getTotalVotesAndState()

2. getInitiativeSnapshotAndState()

3. calculateVotingThreshold()

Version 3 :

1. resetAllocation()

Code corrected:

Version 4All the Governance functions are in the interface, as of .

6.41 Inconsistent Use of safeTransfer
Informational Version 1 Code Corrected

CS-V2Gov-024

UserProxy uses the safe transfer functionality when sending LQTY and LUSD tokens to the user in
function unstake(), but uses the token's transfer function when staking. Both LQTY and LUSD are
already deployed and they return true on success, or revert on failure.

Code corrected:

Client has chosen to use safe transfer for all transfers in UserProxy.

6.42 Misleading Function Name
Informational Version 1 Code Corrected

CS-V2Gov-025

The internal function Governance._deposit() has a misleading name as does not actually perform
any deposit. The function only deploys the UserProxy if not existent, and computes the new average
staking timestamp for the user and updates the state.

Code corrected:

Version 3The function has been renamed to _increaseUserVoteTrackers() in . By the new line
representation choice, it now updates the line's y-intercept instead of the x-intercept.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

6.43 Signed Integers Are Needlessly Wide
Informational Version 1 Code Corrected

CS-V2Gov-028

In allocateLQTY(), signed LQTY quantities are represented as int176. This is unnecessarily wide,
as the range of int88 is approximately -150M to +150M, which is enough given that the hard cap on the
LQTY supply is 100M.

Code corrected:

Version 2 Version 3The codebase has been revised in to use types int88 for LQTY amounts. In , all
integers are now 256-bit wide.

6.44 Unused Function in Math
Informational Version 1 Code Corrected

CS-V2Gov-029

The function sub() implemented in Math.sol is not used in the current version of the codebase.

Code corrected:

Version 4The function is used in codebase

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Possible Code Simplifications
Informational Version 3 Acknowledged

CS-V2Gov-052

Some parts of the code may be simplified, to make them more easily understandable and maintainable.
Below is a non-exhaustive list of such snippets:

1. In withdrawLQTY() there is an if-else clause ensuring that the user's unallocatedOffset
goes to 0 in case of a complete withdrawal. However, the fraction formula used in the if branch
would already yield offsetDecrease == unallocatedOffset in this case, without the need
for a special case.

2. In allocateLQTY(), the FSM check on DISABLED initiatives is redundant: the require will
never fail. This is because the previous check on "active votes" already implies that, for all other
states, both deltas should be non-positive. In fact, this holds not just for the DISABLED state, but
also UNREGISTERABLE.

3. In _allocateLQTY(), updating the GlobalState is done by subtracting the
prevInitiativeState and adding the new initiativeState. However, this could be
simplified by simply adding the relevant user-supplied delta, and suppressing the
prevInitiativeState altogether.

4.

Version 3

All payout snippets (in claimForInitiative(), BribeInitiative.claimBribes(),
CurveV2GaugeRewards._depositIntoGauge()) include some capping logic, to account for
potential errors leading to insolvency. However, the main source of rounding errors that led to
broken accounting (i.e. using the average timestamp to represent lines) has been removed in

. Moreover, should some other sources of error be left undiscovered, this mitigation still
does not adequately protect against them: it only makes sure that the "last" payout does not revert,
possibly at the expense of other destinations of those funds, without addressing the root cause that
led to incorrect payout calculations.

Acknowledged:

Liquity has decided to keep the code unchanged (except BribeInitiative.claimBribes())

7.2 Superfluous Calculations in Voting Threshold
Informational Version 3 Acknowledged

CS-V2Gov-053

As emphasized in note Expected immutable parameters, the parameter MIN_CLAIM will be set to 0 on
deployment. Therefore, the calculations of payoutPerVote and minVotes in function
calculateVotingThreshold are superfluous.

Acknowledged:

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 43

https://chainsecurity.com

Liquity has decided to keep the code unchanged.

7.3 BOLD Could Be Accrued for Previous Epoch
Informational Version 1 Acknowledged

CS-V2Gov-022

The function Governance._snapshotVotes() gauges the contract's current BOLD balance and
writes it into the snapshot boldAccrued variable, the first time any user action is taken in an epoch. Still,
funds might arrive early in an epoch, before any user action is taken: they would then be counted towards
the previous epoch's boldAccrued.
Users with a position both in LiquityV2 core and in the Governance might optimise for this, and time their
operations in the core just right so the corresponding fee ends up being counted in an epoch where they
have already a large voting power.

Acknowledged:

Liquity is aware of the inconsistency but has decided to keep the code unchanged.

7.4 Default Values in DoubleLinkedList
Informational Version 1 Acknowledged

CS-V2Gov-023

The view functions getNext(), getPrev(), getValue(), and getItem() in the library
DoubleLinkedList do not check if the input id exists in the list, instead they return the default values
(0s) if id does not exist. Considering that the node with id zero has a special meaning, stores the head
and the tail of the list, the default value might be misinterpreted by callers.

7.5 Possible Gas Optimizations
Informational Version 1 Code Partially Corrected

CS-V2Gov-026

The code could be optimized to reduce the gas consumption. Below, is a non-exhaustive list of potential
optimizations:

1. Functions stakeViaPermit() and unstake() in UserProxy can be marked as external.

2. Function onAfterAllocateLQTY() in BribeInitiative sets the newVoteLQTY to 0 if
_vetoLQTY is non-zero, however, this is not necessary as the Governance guarantees that only
one of the two is non-zero.

3. Function _calculateAverageTimestamp() returns early if _newLQTYBalance is zero,
however, the check is repeated in both branches of the if/else block.

4. The function claimForInitiative() returns early if the total snapshotted "YES" votes are 0, or
if the initiative's snapshot "YES" votes are 0. The first condition implies the second, therefore the
first check is redundant.

Version 2 :

5. Function Math.add() performs an unnecessary call to abs() when b is a positive value.

6. Function UniqueArray._requireNoDuplicates() copies unnecessarely the input array from
calldata to memory.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 44

https://chainsecurity.com

7. Function Governance.getInitiativeState() performs redundant SLOADs when accessing
registeredInitiatives[_initiative].

8. Function Governance.unregisterInitiative() performs redundant checks on the initiative
status, e.g. require(status != InitiativeStatus.NONEXISTENT, ...)

9. The function Governance.allocateLQTY() could skip all the updates to the
InitiativeState and the GlobalState, in case the initiative is DISABLED, and short-circuit to
the updates of the user's Allocation and UserState.

Version 3 :

10. Function UniqueArray._requireNoNegatives() copies unnecessarily the input array from
calldata to memory.

11. Function withdrawLQTY() unnecessarily overwrites a storage pointer:
userStates[msg.sender] = userState;.

12. A redundant variable upscaledSnapshotVotes is declared in registerInitiative().

13. The function _requireNoNOP() could check that only one value (either
_absoluteLQTYVotes[i] or _absoluteLQTYVetos) is non-zero to revert early if user
allocates both votes and vetos to an initiative.

14. Struct DoubleLinkedList.Item uses type uint256 for each field, hence occupying 4 storage
slots, although the values require less space.

15. Function registerInitiative() gauges the user's total staked LQTY via an external call to
stakingV1, whereas it could add up his allocated and unallocated LQTY.

Version 4 :

16. Function Governance.lqtyToVotes() can be marked as external. Other functions in
Governance should use the internal version _lqtyToVotes() instead.

17. Function Governance._requireNoSimultaneousVoteAndVeto() copies unnecessarily the
input array from calldata to memory.

Code partially corrected:

Version 3The optimizations in points 1-9 have been implemented in .
Version 4Points 11 and 13 have been implemented in

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 45

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Cannot Partially Deallocate From DISABLED
and UNREGISTERABLE Initiatives
Note Version 3

Partial deallocations are implemented by first resetting all allocations and then re-allocating part of the
LQTY. This, combined with the strict FSM checks implemented in _allocateLQTY(), implies that
partial deallocations are not possible on DISABLED and UNREGISTERABLE initiatives.

8.2 CurveV2GaugeRewards Functionalities
Note Version 1

The contract CurveV2GaugeRewards should have the role distributor in the Curve Gauge in order
to call the function deposit_reward_token().

The distributor of the Curve Gauge can also call set_reward_distributor(), however no
functionality is implemented in CurveV2GaugeRewards to trigger it. This functionality would be relevant
if a new initiative is deployed to direct funds to a Curve gauge.

Liquity replied:

Following our usual procedures, we won’t keep any kind of “admin” role, meaning
that we won’t be able to call `set_reward_distribution` nor `add_reward`. We are
aware that we would need to deploy a new pool and a new gauge if more rewards
wanted to be added.

8.3 Depositing and Withdrawing LQTY in the
Same Transaction Reduce Voting Power
Note Version 1

Assuming a user has staked to 2 weis of LQTY for 60 seconds, their voting power is 120. Depositing 2
more weis of LQTY, trigger the recalculation of the averageStakingTimestamp for the user, which
results in 30 seconds, hence the voting power before and after the deposit remains the same. If the user
withdraws the 2 newly deposited weis, their voting power actually halves to 60 (from 120).

Version 4As of , this only applies to a user's unallocated staking line, see Unallocated staking line can
have unequal (virtual) average timestamp.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 46

https://chainsecurity.com

8.4 Expected Immutable Parameters
Note Version 1

All of the numeric parameters present in this overview are contract immutables, set at deployment time.
The intended values to be used upon deployment are as follows:

uint256 public immutable EPOCH_DURATION; // 7 days (604800)
uint256 public immutable EPOCH_VOTING_CUTOFF; // 6 days (518400)
uint256 public immutable MIN_CLAIM; // 0 BOLD (0)
uint256 public immutable MIN_ACCRUAL; // 0 BOLD (0)
uint256 public immutable REGISTRATION_FEE; // 1000 BOLD (1000e18)
uint256 public immutable REGISTRATION_THRESHOLD_FACTOR; // 0.01% (0.0001e18)
uint256 public immutable UNREGISTRATION_THRESHOLD_FACTOR; // 1x (1e18)
uint256 public immutable UNREGISTRATION_AFTER_EPOCHS; // 4
uint256 public immutable VOTING_THRESHOLD_FACTOR; // 2% (0.02e18)

Any significant deviation from these values can break certain functionalities of the system. For example,
setting EPOCH_DURATION to less than the block time, or EPOCH_VOTING_CUTOFF to zero, breaks the
contract; setting a low amount as REGISTRATION_FEE opens opportunity for DoS; or setting
UNREGISTRATION_THRESHOLD_FACTOR to a value less than 1 (1e18) breaks the unregistration rules.

8.5 Opportunity Cost of Vetoes
Note Version 1

Users have a finite voting power for an epoch that can be split as YES votes, and NO votes (vetoes) on
different initiatives. Voting YES for an initiative increases the share of the revenues that is claimable by
that initiative. On the other hand, voting NO for an initiative might prevent that initiative from claiming
revenues, however it does not directly increase the share of revenues for a preferred initiative.

8.6 Staking With Permit Restrictions
Note Version 1

The function UserProxy.stakeViaPermit() requires that _lqtyFrom matches the owner in the
PermitParams. Given that this function can be called only from the Governance, and _lqtyFrom is set
to msg.sender, the functionality requires that a user issuing the permit needs to also submit the
transaction on-chain.

8.7 Theoretical Overflow in Math Function
Note Version 3

Function abs() in file Math.sol takes as input a which is of type int256. If a is negative, then the
following casting is performed: uint256(-int256(a)). Theoretically, an overflow can happen if a is
-2**255 as the intermediary positive value 2**255 cannot be stored in a type int256. This means that
the function abs() only returns the correct value for integers in the range [-2**255, 2**255-1].

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 47

https://chainsecurity.com

8.8 Unallocated Staking Line Can Have Unequal
(Virtual) Average Timestamp
Note Version 4

Version 4In of the codebase, staking and unstaking no longer requires a user to completely deallocate
his LQTY, and instead only affects his unallocated staking line. When this requirement was still in force, it
ensured that the ratio between the offset and the LQTY (i.e. the "virtual" average staking timestamp) of
the unallocated line be equal to that of all the allocated lines. Now this no longer holds: while a withdraw
preserves the timestamp, a deposit moves it closer to the present. The timestamp of the unallocated line
can also be moved back by partially deallocating through resetAllocations(). These "throw out of
sync" the unallocated line with respect to the allocated ones. This is however inconsequential, because
the average staking timestamp is no longer used anywhere in the code, and no invariant relies on an
exact proportionality of all staking lines (allocated and unallocated) of a given user.
Notice, however, that the allocated lines still have all the same x-intercept, since they were drawn right
after a complete reset, which merged everything back into the unallocated line. This means that now, for
the allocated lines to be all proportional, resetting before allocating is strictly necessary (unlike a previous
version of the codebase).

8.9 Voting Thresholds and Rewards Depend on
Allocated YES Votes
Note Version 3

We emphasize that the voting threholds and rewards do not depend on the sum of potential voting power
(allocated and unallocated) of all users of the system. Instead, the global snapshot of votes tracks only
the allocated YES votes. Therefore, the tresholds might be lower than expected in an epoch if there is
significant amount of unallocated staked LQTY or NO votes (vetos).

8.10 GlobalState and UserState Are Stale if
Queried in Hook
Note Version 1

The function allocateLQTY() calls the onAfterAllocateLQTY() hook on the initiative before
updating the GlobalState and UserState variables, which therefore are stale if queried by the
initiative, in the hook, via the view functions.

Furthermore, 3rd-party protocols querying the view functions of the Governance contract should consider
that the returned data might be incorrect. Such view functions are susceptible to read-only reentrancy
attacks.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 48

https://www.chainsecurity.com/blog/curve-lp-oracle-manipulation-post-mortem#toc-read-only-reentrancy
https://www.chainsecurity.com/blog/curve-lp-oracle-manipulation-post-mortem#toc-read-only-reentrancy
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 UserProxy
	2.2.2 UserProxyFactory
	2.2.3 Governance
	2.2.4 BribeInitiative
	2.2.5 Changes in Version 2
	2.2.6 Changes in Version 3
	2.2.7 Changes in Version 4

	2.3 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Vetoes Can Be Removed Past the Epoch Voting Cutoff
	5.2 Excessive Gas Buffer in safeCallWithMinGas()
	5.3 Function safeCallWithMinGas() Always Forwards MIN_GAS_TO_HOOK
	5.4 Hard Requirements on claimBribes Might Harm User Experience
	5.5 Inconsistent Timestamp Used for Registration Threshold
	5.6 Possible Stuck Tokens in BribeInitiative

	6 Resolved Findings
	6.1 Initiative Votes Can Be Manipulated
	6.2 Deallocating From DISABLED Initiatives Makes GlobalState Incorrect
	6.3 Votes in BribeInitiative Are Evaluated at Current Timestamp
	6.4 Initiative Hooks Are Susceptible to Low Gas Attacks
	6.5 Typo in the Code Causes Incorrect Calculation
	6.6 User's Average Timestamp Can Change Between Allocation and Deallocation of LQTY
	6.7 Vote Tallying Is Incorrect
	6.8 Bribes Are Capped at Total Balance
	6.9 Conflicting Functionalities for ForwardBribe
	6.10 Governance Does Not Enforce Warm-Up Period for Initiatives
	6.11 Initiative's Timestamp Can Be Manipulated
	6.12 Bribe Accounting Is Based on LQTY Amounts Instead of Votes
	6.13 EOAs Are Not Supported as Initiatives
	6.14 Initiative Deregisterability Is Inconsistent
	6.15 Initiative Is Deregisterable Right After Claiming
	6.16 Possible Frontrun in CurveV2GaugeRewards
	6.17 Stuck Allocations
	6.18 Unsafe Casting on Math Functions
	6.19 Possible Underflow in withdrawLQTY
	6.20 Rounding Error on Offset Calculation
	6.21 Allocation of Zero LQTY Triggers State Updates and Emit Events
	6.22 CurveV2GaugeRewards Does Not Check remainder
	6.23 Incomplete Events
	6.24 Meaningless Checks in BribeInitiative._claimBribe()
	6.25 Mismatch of Code With the Error Message
	6.26 Remaining ToDos in the Codebase
	6.27 Unsafe Casting in lqtyToVotes
	6.28 Inconsistent Behavior for Retrieval of Tokens From Staking V1
	6.29 Incorrect Specifications
	6.30 Initiative Snapshot Is Never Deleted
	6.31 Initiatives Can Be Registered With No Staking in First Weeks
	6.32 Possible Simplification of onAfterAllocateLQTY
	6.33 Return Value of Ether Transfer
	6.34 Special Check in onAfterAllocateLQTY
	6.35 Unnecessary Approval Given to LQTYStaking
	6.36 Votes for UNREGISTERABLE Initiatives
	6.37 _calculateAverageTimestamp() Could Be off by One Second
	6.38 Confusing Name for Initiative Status
	6.39 Encoding Functionalities Are Unused
	6.40 Governance Interface Is Incomplete
	6.41 Inconsistent Use of safeTransfer
	6.42 Misleading Function Name
	6.43 Signed Integers Are Needlessly Wide
	6.44 Unused Function in Math

	7 Informational
	7.1 Possible Code Simplifications
	7.2 Superfluous Calculations in Voting Threshold
	7.3 BOLD Could Be Accrued for Previous Epoch
	7.4 Default Values in DoubleLinkedList
	7.5 Possible Gas Optimizations

	8 Notes
	8.1 Cannot Partially Deallocate From DISABLED and UNREGISTERABLE Initiatives
	8.2 CurveV2GaugeRewards Functionalities
	8.3 Depositing and Withdrawing LQTY in the Same Transaction Reduce Voting Power
	8.4 Expected Immutable Parameters
	8.5 Opportunity Cost of Vetoes
	8.6 Staking With Permit Restrictions
	8.7 Theoretical Overflow in Math Function
	8.8 Unallocated Staking Line Can Have Unequal (Virtual) Average Timestamp
	8.9 Voting Thresholds and Rewards Depend on Allocated YES Votes
	8.10 GlobalState and UserState Are Stale if Queried in Hook

