PUBLIC

Code Assessment

of the Liquity V2 Governance

Smart Contracts

January 22, 2025

(g Liquity

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG

14
15
16
19
43
46

https://chainsecurity.com

1 Executive Summary

Dear Liquity Team,

Thank you for trusting us to help Liquity with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Liquity V2 Governance
according to Scope to support you in forming an opinion on their security risks.

Liquity implements a governance contract that distributes the incoming revenues based on the votes from
users that have a stake in the system. A set of contracts are also provided to simplify the development of
smart contracts that serve as proposals in the voting, known as initiatives.

The most critical subjects covered in our audit are precision of arithmetic operations, asset solvency,
invariant preservation, functional correctness, and front-running. Several issues of high and critical
severity issues were identified in the first two iterations of the codebase, see Resolved Findings. The
Governance contract was refactored in to mitigate the reported issues by changing the core
accounting and placing new restrictions on user operations (always reset all votes before new
allocations).

In summary, we find that the codebase provides a satisfactory level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings 1
¥ Code Corrected 1
CIZ)-Severity Findings 6
N Code Corrcted) 5
W'Soeciication Changed) 1
(Medium)-Severity Findings 12
N Code Corrcted) 7
W'Soeciication Changed) 4
i Accepted 1
(Low)-Severity Findings 24
¥ Code Corrected 18
Y Specification Changed 1
N 2
B Acknowiedged 3

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Liquity V2 Governance repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V | Date Commit Hash Note

1 | 25 Sep 2024 | 1add9a44d62faa8d7ab382d5d00ffcf8f522faee Initial Version

2 | 21 0ct 2024 | 168760d750d7051c51f9804b136e1032f7e72f65 Version with Fixes
3 | 16 Dec 2024 | d11el5allebdb26c7b297572d9674a7801f50922 Refactored Version
4 | 16 Jan 2025 | e7ed5341f2f54fb9bf89497a7be294c61f21ebe3 Final Version

For the solidity smart contracts, the compiler version 0. 8. 24 and EVM version cancun were chosen.

The following files were in the scope for this review:

src/interfaces

src/util s/ Doubl eLi nkedLi st . sol
src/util s/ Math. sol

src/util s/ Types. sol
src/Bribelnitiative. sol

src/ CurveV2GaugeRewar ds. sol
src/ Gover nance. sol

src/ User Proxy. sol

src/ User ProxyFact ory. sol

The following files were added to the scope in (Version 2);

src/ util s/ Encodi ngDecodi ngLi b. sol

src/util s/ Uni queArray. sol

The following file was added to the scope in (Version 3):

src/util s/ Oamnabl e. sol

The following file was added to the scope in (Version 4):

src/util s/ Voti ngPower. sol

(renmoved in version 3)

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 5

https://github.com/liquity/v2-gov/tree/1add9a44d62faa8d7ab382d5d00ffcf8f522faee
https://github.com/liquity/v2-gov/tree/168760d750d7051c51f9804b136e1032f7e72f65
https://github.com/liquity/v2-gov/tree/d11e15a11ebdb26c7b297572d9674a7801f50922
https://github.com/liquity/v2-gov/tree/e7ed5341f2f54fb9bf89497a7be294c61f21ebe3
https://chainsecurity.com

2.1.1 Excluded from scope

Any file not listed explicitly above is excluded from the scope. Tests, third-party libraries, ERC20 tokens,
and other contracts from Liquity, such as LQTY token, LUSD, Staking V1, etc., were not in scope of this
review. The external integrations of the system (CurveV2 gauges, bribe tokens, etc.) are out of scope for
this review, and are expected to always work correctly and according to specification. Finally, the
following files were explicitly excluded from the scope:

src/util s/ BaseHook. sol (renoved in version 4)
src/ Uni V4Donat i ons. sol (renoved in version 4)
src/utils/Milticall.sol (replaced with MiltiDel egateCall.sol in version 3)

The following files were added in and explicitly excluded from the scope:

src/util s/ SafeCal | M nGas. sol
src/ Forwar dBri be. sol (renoved in version 3)

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

At the end of this report section, we have added subsections for each of the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Liquity implements the Governance module of the wider Liquity V2 system. The Governance serves
mainly as a voting-based distribution platform of the incoming revenues. One-fourth (known as the
"incentive portion™) of the total revenue earned in fees by the core protocol, denominated in BOLD (the
native stablecoin of LiquityV2), are sent to the Governance contract.

Proposals (known as Initiatives, in LiquityV2 parlance) are encoded as arbitrary addresses, which may
implement specific hooks called by the Gover nance contract upon relevant user actions. They are voted
upon by the users and, in case they pass (see next sections for more details), they are awarded an
appropriate fraction of the total BOLD accrued, based on the votes received.

Users can only vote "YES" or "NO" (referred to as "votes" and "vetoes", respectively) to initiatives. To
gain some voting power in this platform, users must be holders of LQTY (the secondary token of Liquity
V1), and must stake in LiquityV1l through the Governance contract of Liquity V2. The Gover nance
contract deploys and manages a User Pr oxy contract for every user. A user's voting power is updated iff
he directs his staking/unstaking requests to the Governance contract, which performs the due
bookkeeping and then relays them to the correct User Pr oxy.

A user's voting power increases with time, following a linear growth, with the staked LQTY amount being
the slope. A new amount added to a pre-existing stake starts off with a voting power of 0 (to prevent
flash-loan-like abuses): therefore, right after staking, the total voting power stays the same (the line is
continuous), but the slope increases. Conversely, when unstaking, there is an immediate drop
(discontinuity) in the user's voting power, besides the obvious decrease of the slope. The overall trend
followed by the user's voting power over time, as the user stakes and unstakes, is depicted in Figure 1.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 6

https://etherscan.io/address/0x4f9fbb3f1e99b56e0fe2892e623ed36a76fc605d
https://chainsecurity.com

Voting power

A stake behaves like a line v(t) = m - (t — ty), with the slope m being the LQTY amount, and the intercept
to being the "virtual" or "average" staking timestamp: the voting power behaves as if all the LQTY had
been staked at once, at this ideal point in time. When a user stakes ms additional LQTY at time t, he is
"adding the line" v¢(t) = ms - (t — t5) (not shown in the picture) to his current stake, which then becomes
v(t)=my - (t—t;), with m;=m+m; being the total stake, and t; =7-2*Ms't pheing the updated
average staking timestamp of the user. The picture shows another staking event, after which the line
becomes v(t) = m, - (t — t;). Then, when the user unstakes m, LQTY at time t,, he "erodes" part of his
pre-existing stake, with its pre-existing "average timestamp" t;. This means that he "subtracts the line"
vy(t)=m, - (t—t;) from his stake, resulting in the new line v(t)=(m,—m,) (t—t,): the average
staking timestamp remains the same, and the voting power immediately drops by the appropriate fraction
m,/m5. Such "line arithmetic" patterns are ubiquitous throughout the system.

When voting on an initiative, users allocate part of their staked LQTY - rather than their current voting
power - for the "YES" or for the "NO". Therefore each initiative has also two associated "stakes", one for
the "YES" and one for the "NO", each growing in voting power linearly over time, with different slopes and
intercepts. When a user allocates m, LQTY from his stake that has an average timestamp of ty, he adds
the line v,(t) = m, - (t — ty) to the relevant stake ("YES" or "NO") of the initiative; when de-allocating, he
subtracts the same line. For proper accounting, this does not modify the "staking line" of the user;
instead, an additional per-user variable is tracked, called al | ocat edLQTY, which simply limits the
maximum LQTY amount that can be unstaked.

As noted, the "YES" and "NO" votes for an initiative increase over time, and it is these vote counts that
decide whether an initiative passes, and how much its payout should be. To keep the outcomes
race-free, and to make the system as a whole more "predictable", the operations are clocked in
sequential epochs of equal one-week duration. The system state is snapshot at epoch boundaries,
providing an unambiguous reference point to decide on initiative results.

Given the full system state at the end of epoch x (total BOLD accrued for payout + number of "YES" and
"NO" votes for every initiative), an initiative can be in one of three "states", during all of epoch x+1:

1. Claimable. The initiative has more "YES" than "NO" votes, and the "YES" votes are above a
threshold, which is the max of

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

1. a fraction of 3% (lowered to 2% in (Version 3)) of the total number of "YES" votes

2. the number of votes required to achieve a minimum payout of 500 BOLD (lowered to 0 in

(Version 3)

The initiative can be "claimed" permissionlessly, which causes the appropriate fraction of the total
BOLD accrued to be transferred to it, and a hook (onCl ai nFor I ni ti ati ve()) to be called. The
fraction of the total BOLD to be awarded is computed as the proportion of "YES" votes among all
Claimable initiatives: this means that "NO" votes only decide whether an initiative passes, but are
then inconsequential for the payout in case it does.

2. Deregisterable. The initiative has more "NO" than "YES" votes, and the "NO" votes are above a
threshold, equal to the "YES" threshold. Alternatively, the initiative can also just be "stale" (see next
point). The initiative can be de-registered permissionlessly, requiring re-registration to be voted on
again.

3. "Limbo". The winning option ("YES" or "NO") does not reach the threshold. If an initiative stays in
this state for 4 consecutive epochs then it becomes "Deregisterable".

This "state machine" has been made more explicit and rigorous (and more granular), in Version 2
of the codebase.

Initiatives can be registered permissionlessly. This requires a flat payment of 100 BOLD (raised to 1000
in (Version 3)), and a voting power above 0.1% of the total "YES" votes (lowered to 0.01% in (Version 3)), in
order to avoid spam.

Users can vote freely on initiatives with part of their staked LQTY at any point during an epoch. A
noteworthy observation is that the users' vote allocations are not reset at epoch boundaries; instead, they
persist until they are explicitly de-allocated. In particular, an initiative can be claimed more than once,
across several epochs, if it keeps meeting the abovementioned requirements.

Almost all of the system's functionality is implemented in the Gover nance contract (which also acts as
the User ProxyFact ory); the integration with Liquity V1's staking contract is handled by the
User Pr oxy. Liquity also offers two example initiative implementations - one integrating with CurveV2
and one with UniswapV4 - both deriving from a base Bri bel ni ti ati ve contract.

In what follows, we detail the workings of the main contract functionalities.

2.2.1 UserProxy

The User Pr oxy contract is the address effectively holding a LQTY stake in Liquity V1, in lieu of the user;
all of its state-modifying functions can only be called by the Gover nance contract, which invokes it in
response to user actions.

This will be deployed as a per-user minimal clone of a "master" implementation (see next section). The
clone does not have any state variables, nor immutables of its own: in particular, it does not "know" which
user address it is acting on behalf of, so the Gover nance needs to pass this address every time as a
function argument.

Its functions are:

1. stake(): Pulls LQTY funds from the user and stakes them on Liquity V1. This action causes the
pending Liquity V1 rewards (possibly accrued through a pre-existing stake) to be sent to the
User Proxy. These rewards, denominated in ETH and LUSD, are not relayed to the user
immediately; instead, they are kept in the User Pr oxy contract, and can be later retrieved via a call
to unst ake().

2.stakeVi aPermmit (): Same as the previous one, but the LQTY funds are pulled after a call to
permit() to the LQTY contract; this saves the need for an explicit approval in a separate
transaction.

3. unst ake(): Unstakes the specified LQTY amount from Liquity V1. This action again causes
pending Liquity V1 rewards to be pushed to the UserProxy: in fact, one can decide to

(S: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

unst ake() 0 LQTY in order to simply collect the rewards. The unstaked LQTY amount, together
with the entire ETH and LUSD balance of the User Pr oxy, is pushed to the specified recipients.
This allows to correctly account for the previously-uncollected rewards from calls to st ake() .

4. st aked() : View function (callable by anyone) that returns the current LQTY amount staked by this
User Pr oxy.

2.2.2 UserProxyFactory

The User ProxyFact ory deploys a User Proxy "master" implementation contract only once, in its
constructor; then, when needed, it deploys minimal per-user Clones of it: these clones are compliant with
ERC-1167, and are deployed with the CREATE2 opcode, for deterministic correspondence between user
and User Pr oxy; the salt provided to CREATEZ2 is the user address, left padded with zeros.

There are two functions:

1. deri veUser ProxyAddr ess(): A view function that pre-computes the deterministic address of
the User Pr oxy clone corresponding to the specified user address.

2. depl oyUser Proxy() : Deploys the User Proxy Clone associated to nsg. sender . This can be
called permissionlessly by anyone to pre-deploy their own User Pr oxy. Still, the Gover nance is
the only address that can then interact with that proxy.

2.2.3 Governance

The main contract of the system. Inherits from User ProxyFact ory, therefore it exposes all the
foregoing proxy-deployment functions. It defines functions to interact with the User Pr oxy clones, in
order to intercept the user's staking/unstaking requests, and update its own internal bookkeeping before
relaying them. Finally, it implements the full voting functionality, with methods to propose initiatives, vote
for them (or against them), claim them, and unregister them.

The staking-related functions are:

1. deposi t LQTY() : Deploys the User Proxy associated with msg. sender, if it does not exist
already, then calls st ake() on it, after updating the user's aver ageSt aki ngTi nest anp as
described before. The user's total stake (i.e. the slope of the line) does not need to be tracked into
an explicit per-user variable, as it is readily available by calling User Pr oxy. st aked() .

2. deposi t LQTYVi aPer i t () : Same as before, but calls into User Pr oxy. st akeVi aPerm t ().
This variant removes the need for a separate LQTY approval but, remarkably, it cannot be used for
sponsored transactions: the signer of the Permit struct is checked to be nsg. sender, who
therefore has to pay for the gas fees.

3.wi t hdrawlLQrY() : Forwards the call to User Pr oxy. unst ake() , specifying msg. sender as the
recipient of the unstaked LQTY and the accrued ETH and LUSD. As was mentioned, a per-user
variable al | ocat edLQTY is kept that counts how many LQTY the user has allocated in total: this
variable is read here to assert that the user does not unstake too much, touching the LQTY that
have been allocated to initiatives.

4. cl ai nFrontt aki ngV1(): Calls User Proxy. unst ake() with a 0 amount, in order to simply
collect the rewards. A caller-supplied _r ewar dReci pi ent, instead of nsg. sender, is specified
as the recipient of ETH and LUSD rewards.

The voting system is more complex. Before diving into its functions, we briefly describe the most
important accounting-related state variables that are tracked, and their intended semantics.

As was noted, each initiative has two "stakes" (slope + intercept) associated with it, one for the "YES"
and one for the "NO". These are tracked into dedicated per-initiative variables: they are updated every
time someone votes on an initiative, allocating LQTY either for the "YES" or for the "NO". We call these
"running" variables (as opposed to "snapshot") because they are updated at every user vote.

Again as noted before, not all initiatives end up being Claimable in the next epoch; to compute the payout
for those that do, the proportion of "YES" votes should only be taken among Claimable initiatives, in order

(S: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

to properly distribute the accrued BOLD. To this end, a global "counted YES" stake is tracked, combining
all the "YES" stakes of the initiatives that will be Claimable in the next epoch. This is also a running
variable, as it is updated "live" at every user vote. This consideration also motivates the introduction of a
further per-initiative running variable, a count ed flag telling whether that initiative is currently contributing
towards the global "YES" sum. This behavior has changed in Version 2 of the codebase: now all
initiatives (except those that were already deregistered) count towards the global state. The
count ed flag has been removed.

At epoch boundaries (the first time any action is taken in an epoch), the global running "YES" stake gets
snapshot into a separate global state variable, which will remain unchanged as a firm reference point for
all of this new epoch. This state variable actually counts the number of votes (not LQTY) that the global
running "YES" line evaluates to, at the beginning of this new epoch: we call this variable the
vot eSnapshot . This will be used as the denominator in the claiming function, when computing the
fraction of accrued BOLD to be paid out.

The total BOLD balance of the contract is also snapshot into a bol dAccr ued state variable, which will
be the total payout available for repartition among initiatives, in this new epoch. Should a Claimable
initiative not be claimed, this mechanism allows the unclaimed funds to simply be carried over to the next
epoch.

The procedure is similarly repeated for the per-initiative stakes. The first time in an epoch any action is
taken on an initiative, its "YES" staking line is evaluated at the epoch's initial timestamp, and gets
snapshot into a separate per-initiative variable. If the initiative is not count ed, though, this
initiativeVoteSnapshot is instead set to O (starting from Version 2, this is no longer
applicable).

Note that no "iteration over all initiatives" is ever performed in the snapshotting logic: an initiative's
snapshot is only taken the first time in an epoch that that initiative is touched.

All of this having been clarified, we can now describe the four main voting-related functions.

l.registerlnitiative(): Allows anyone with sufficient voting power to register an arbitrary
address as an initiative. First, it updates the global snapshot, in case it is stale. Then, it asserts that
the initiative does not exist already, and that the caller's voting power is large enough. After pulling
a flat BOLD payment from nsg. sender, the initiative is registered in the system, and an optional
onRegi sterlnitiative() hookis called on it.

2.unregisterlnitiative(): Allows anyone to de-register an existing initiative that is in the
Deregisterable state. First, it updates the global snapshot, and the initiative's snapshot, in case they
are stale. Then, it asserts that the initiative indeed exists and is Deregisterable; as a special case
not mentioned before, no initiative can be unregistered if it is younger than 4 epochs. Once these
checks pass, it is erased from the system, and an optional onUnr egi sterl niti ati ve() hook is
called on it.

3.all ocat eLQTY(): Allows LQTY stakers to batch-vote on several initiatives at once. First, it
updates the global snapshot, and the initiatives' snapshots, in case they are stale. Then, for every
specified initiative, it adjusts the user's "YES" and "NO" allocation: this modifies the initiative's
running "YES" and "NO" stakes, and, depending on the count ed flag, the global running "YES"
stake (this is now done unconditionally, starting from Version 2). Through an additional,
per-user per-initiative data structure, the function asserts that the user never ends up with positive
"YES" and "NO" stakes for the same initiative. Also, an additional check is performed, not specified
before: additional votes can only be allocated during the first 6 days of an epoch, so only
withdrawals are possible past this cutoff. Finally, the per-user al | ocat edLQTY is updated, and an
optional onAf t er Al | ocat eLQTY() hook is called on the affected initiatives.

4.clainfForlnitiative(): Allows anyone to claim BOLD for an initiative that is in the Claimable
state. First, it updates the global snapshot, and the initiative's snapshot, in case they are stale.
These snapshots are used to compute the payout: O if the initiative is not Claimable, the
appropriate fraction of the total BOLD accrued otherwise. The sum is transferred to the initiative,
and an optional onCl ai nFor I nitiative() hook is called on it.

(S: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

2.2.4 Bribelnitiative

An example implementation for a basic bribe-based initiative, provided to developers to be inherited and
extended.

Bribes are denominated in two tokens, BOLD and a different, arbitrary ERC20. Anyone with an interest in
the initiative can deposit any amount of the two tokens, as bribes for the voters. The bribes are
proportionally shared among the users who vote for it: this signal is intercepted by implementing the
onAfter Al l ocat eLQTY() hook, which allows to have a full picture of everyone's "YES" votes across
the epochs.

Bribes are strictly linked to an epoch, to be shared among those who voted for the initiative in that epoch;
they never expire, nor are they carried over: a user can come at any point and claim his fair share of the
bribes for an epoch arbitrarily far back in the past.

Since the voting platform is such that a user's vote persists without any user action, the initiative's internal
data structures should allow to detect the most recent epoch at which the user voted. To suit sparse
allocations (across epochs), the initiative stores a per-user linked list, with each item containing an epoch
number and a user's final allocation in that epoch. When a user claims for a past epoch x, the initiative
must determine what is the largest epoch y <= x that is present in the list. Instead of computing it, it
explicitly asks y as a hint from the user, which is then verified.

A similar, global linked list is stored to keep track of the total "YES" allocation, across the epochs. As for
the per-user list, retrieving the most recent epoch y <= x for a given epoch x requires an explicit hint by
the user.

The contract's main functions are:

1. deposi t Bri be() : Allows anyone to deposit any amount of BOLD and the second bri beToken,
to be aggregated to the bribes for an arbitrary future epoch.

2.cl ai mBri bes(): Allows a user to batch-claim for several epochs at once. For every individual
claim, the user provides the epoch x and the aforementioned hints y1 <= x and y2 <= x, for its own
list and for the global list. After verifying the hints (checking that they are indeed the largest y <= x
present in the respective list), the contract simply computes the relevant proportion of the bribes,
marks the epoch as claimed by the user, and transfers the bribes.

3.0nAfter Al l ocat eLQTY() Hook called by (and only callable by) the Gover nance, upon user
votes. Updates the user's and the global allocation linked lists.

This implementation does not specify what to do with the BOLD awarded as claims by the Gover nance,
and leaves the onCl ai nfFor I niti ati ve() hook to be implemented by derived contracts.

2.2.5 Changes in Version 2

» The snapshotting logic has been revised and is now cleaner: the functions snapshot Vot es() and
snapshot Vot esForlnitiatives() now simply carry the running state into the relevant
shapshot variable, in case it is outdated, without recomputing anything. In particular, the function
snapshot Vot esForlnitiatives() no longer computes whether an initiative should be
count ed; the count ed flag has actually been completely suppressed: all initiatives now contribute
to the running A obal St at e, whether or not they are CLAI MABLE.

« An explicit I ni ti ati veSt at us has been introduced as an enum to represent the 7 states in which
an initiative can be, across its lifetime. This effectively models initiatives as finite-state machines;
state transitions mostly happen at epoch boundaries, because most of the states are only dependent
on snapshot values: the only two exceptions are the transition from CLAI MABLE to CLAI MED (when
an initiative is claimed for, it goes into the CLAI MED state for the rest of the epoch) and from
UNREG STERABLE to DI SABLED (when an initiative is unregistered, it goes into the DI SABLED state
permanently). These states are now used as a firm reference point to decide on outcomes of user
actions (register/unregister/vote/claim).

» The function al | ocat eLQTY() now requires users to reset their allocations before setting the new
ones.

(S: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

» The function User Pr oxy. unst ake() now sends all tokens to a single recipient address.

«The Bri bel nitiative contract now distributes bribes based on the user's voting power, rather
than their allocated LQTY.

2.2.6 Changes in Version 3

* A new role owner with limited privileges is introduced in Governance: owner can register at any
point after deployment initiatives for epoch 1. This function can be called only once as the owner
role is immediately renounced in regi sterlnitiallnitiatives(). If the initial initiatives are
passed as _initiatives in constructor, then owner should be the deployer and the role is
automaticalle renounced.

» The internal representation of staking lines has been modified: instead of tracking slope (LQTY
amount) and x-intercept (average timestamp), the code now tracks slope and y-intercept (called
of f set). The previous representation was inconvenient, as the x-intercept (which is ideally a
fractional number) was rounded to an integer: this rounding error applied every time two lines were
added or subtracted, leading to severe accounting issues. The new representation is more precise,
as now no precision is lost upon line arithmetic operations: some minor rounding errors are still
present upon allocation and unstaking, but they do not impair the coherence of the system by
violating its core invariants.

» The bookkeeping has been made more granular: the per-user, per-initiative allocation struct now
tracks all of the line (slope and offset) that was allocated by the user to the initiative. This allows the
allocation to be perfectly undone upon resets. Furthermore, the user's state now consists of an
"allocated line" and an "unallocated line". Together, they sum to the user's total line, which is no
longer tracked explicitly (although the slope can be retrieved by a call to st aki ngV1). The sum over
all initiatives of a user's allocations equals his allocated line.

« Unstaking now requires the user to have no allocation on initiatives. This is because there is no easy
way to proportionally scale down all of his allocations.

* The functions to stake/stakeViaPermit/unstake now all accept optional parameters signalling
whether the pending LiquityV1 rewards should be paid out, and to which address.

« An initiative is considered now in the WARM UP state only during the epoch that it is registered.

2.2.7 Changes in Version 4
» The requirement imposed on users, to have a zero allocation when staking or unstaking, has been
lifted.

» The Governance no longer calls an initiative's onAl | ocat eLQTY() hook upon NO votes.

2.3 Roles and Trust Model

The following roles can be identified in the system:

1. Deployer. Expected to parametrise the system meaningfully and correctly upon deployment, but
otherwise untrusted for the ordinary operations of the system.

2. Users. Completely untrusted.

3. Initiatives. Trusted by the users who vote for them or interact with them in any way. Untrusted by
the rest of the system.

4. BribeToken. Trusted by the voters of a Bri bel niti ative. Tokens that transfer less than the
specified amount (such as cUSDCv3) are not supported. Should the BribeToken be malicious, it
could arbitrarily re-interpret the transf er functionality to block the claiming of bribes. Still, it

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

cannot steal the BOLD bribes, alter the recorded allocations, or tamper with the Gover nance in
any way.

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings E
(C)-Severity Findings 0
(Medium)-Severity Findings 1

» Vetoes Can Be Removed Past the Epoch Voting Cutoff

(Low)-Severity Findings 2
« Excessive Gas Buffer in safeCallwWithMinGas() (.)
« Function safeCallWithMinGas() Always Forwards MIN_GAS TO HOOK()
« Hard Requirements on claimBribes Might Harm User Experience ()
» Inconsistent Timestamp Used for Registration Threshold (I Risk Accepted)
« Possible Stuck Tokens in Bribelnitiative () ()

5.1 Vetoes Can Be Removed Past the Epoch
Voting Cutoff
(Correctness TSI\ IZuBY] Risk Accepted)

The function Gover nance. al | ocat eLQTI'Y() asserts that no "YES" votes can be cast past the six-day
cutoff. However, the implemented check is not sufficient to cover the case where someone de-allocates
some "NO" votes at the last moment.

This effectively nullifies the intended protection for users, who should be given the last 24 hours to block
"malicious" proposals. The proposer can allocate some "NO" votes on his own initiative, lulling the users
into a false sense of security that the initiative will not pass, only to de-allocate them at the last moment.

CS-V2Gov-012

Risk accepted:

Liquity is aware of this behavior and replied as follows:

W believe that the Veto is a first class citizen, so much so that renoving a
vote is a necessary functionality to make Vetos work. In lack of the ability to

renove votes, Vetos would lose their first class position and would nmake it +EV
to vote on something instead of Veto.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

5.2 EXxcessive Gas Buffer in
safeCal | Wt hM nGas()
(D (Low) (Version 2))

The function saf eCal | Wt hM nGas() calls hasM nGas(), which deducts a gas buffer from the total
gas left, before verifying whether that is enough to forward the specified amount of gas to a call. The
buffer is computed to account for the worst-case cost of the CALL opcode itself; however, the
Governance always triggers this call with value set to 0, so positive_val ue_cost and
val ue_t o_enpty_account _cost are zero.

Acknowledged:
Liquity acknowledged the issue and decided not to fix it

5.3 Function safeCal |l Wt hM nGas() Always
Forwards M N _GAS TO HOOK
[Low] [Version 2](]

The low-level call () in the function safeCall WthM nGas() always forwards _gas (set to
M N_GAS_TO HOXX by the Governance) to the hook, regardless of whether the user supplied more gas
in the tx, in case some complex operations need to be performed in the initiative.

CS-V2Gov-038

Acknowledged:

Liquity is aware of this behavior and has decided to keep the code unchanged.

5.4 Hard Requirements on claimBribes Might

Harm User Experience
[Low] [Version 1][]

The function cl ai nBri bes() takes as input an array of epochs, with the respective hints, and iterates
through them to claim the respective bribes for a user. The internal function _cl ai nBri be()
implements a set of checks that cause reverts in case the claimable bribe for a user in an epoch is zero.
This might harm the user experience, as passing one epoch in which the user has zero bribes causes the
whole transaction to revert.

CS-V2Gov-013

Acknowledged:

Liquity has acknowledged the issue but has decided to keep the code unchanged.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

5.5 Inconsistent Timestamp Used for Registration
Threshold
D (Low) (Version 1) | Risk Accepted

CS-V2Gov-019

The function Gover nance. regi sterlnitiative() requires that the proposer has a sufficient voting
power, measured in terms of the snapshot total number of "YES" votes. However, the user's current
voting power is gauged at the current timestamp, rather than the start of the epoch.

Code partially corrected:

The threshold check for user voting power compared to the overall YES voting power has been changed
to use epochSt art as a reference for user's voting power.

Risk Accepted:

Computing user's voting power at epochSt ar t is not always correct as user's staking line may change
(due to deposits or withdrawals) between the epochSt art and the time regi sterlnitiative() is
executed, leading to an underevaluation of the user's voting power. Liquity is aware of this inconsistency
and accepts the associated risks.

5.6 Possible Stuck Tokens in Bribelnitiative
CED (Low)(Version 1)()()

The contract Bri bel nitiative implements the function depositBri be() that allows anyone to
deposit BOLD and another ERC20 token as bribes. These tokens are transferred out only when there are
eligible user to claim bribes. However, it is possible that an initiative might not receive any YES vote in an
epoch although there is a bribe. In such scenarios, the deposited tokens for that epoch would be stuck
and cannot be recovered.

CS-V2Gov-018

Furthermore, _cl ai nBri be() rounds down the bribe amounts, therefore there is some dust that
accumulates over time and is not recovered.

Code partially corrected:

As of (Version 4), there is no more dust left behind after everyone has claimed: the accounting now keeps
track of the "remaining" amounts to be paid out, and the votes "already" used to claim.

Acknowledged:

The possibility of the stuck token if no YES votes are recorded is still present. Liquity replied:

W believe the change could create nore issues.
In such a scenario it would be in the briber's interest to vote with 1 wei and
get all the bribes back.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 1
y g

« Initiative Votes Can Be Manipulated

CI1)-Severity Findings 6
» Deallocating From DISABLED Initiatives Makes GlobalState Incorrect
» Votes in Bribelnitiative Are Evaluated at Current Timestamp
+ Initiative Hooks Are Susceptible to Low Gas Attacks
» Typo in the Code Causes Incorrect Calculation

e User's Average Timestamp Can Change Between Allocation and Deallocation of LQTY

Specification Changed
« Vote Tallying Is Incorrect (eI =l
(Medium)-Severity Findings 11
* Bribes Are Capped at Total Balance (SN

« Conflicting Functionalities for ForwardBribe Gl EN-C)

» Governance Does Not Enforce Warm-Up Period for Initiatives @Sl NS N
« Initiative's Timestamp Can Be Manipulated

» Bribe Accounting Is Based on LQTY Amounts Instead of Votes

» EOAs Are Not Supported as Initiatives

« Initiative Deregisterability Is Inconsistent

« Initiative Is Deregisterable Right After Claiming

« Possible Frontrun in CurveV2GaugeRewards

« Stuck Allocations (Sl
» Unsafe Casting on Math Functions (lEReLI{EN

(Low)-Severity Findings 19
» Possible Underflow in withdrawLQTY
« Rounding Error on Offset Calculation
» Allocation of Zero LQTY Triggers State Updates and Emit Events
» CurveV2GaugeRewards Does Not Check remainder
« Incomplete Events
+ Meaningless Checks in Bribelnitiative._claimBribe()
» Mismatch of Code With the Error Message
+ Remaining ToDos in the Codebase
» Unsafe Casting in IqtyToVotes

@ Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

» Inconsistent Behavior for Retrieval of Tokens From Staking V1
« Incorrect Specifications

« Initiative Snapshot Is Never Deleted

« Initiatives Can Be Registered With No Staking in First Weeks
» Possible Simplification of onAfterAllocateLQTY

« Return Value of Ether Transfer

» Special Check in onAfterAllocateLQTY

« Unnecessary Approval Given to LQTYStaking

» Votes for UNREGISTERABLE Initiatives

» _calculateAverageTimestamp() Could Be off by One Second

Informational Findings 7

« Confusing Name for Initiative Status
« Encoding Functionalities Are Unused
« Governance Interface Is Incomplete

« Inconsistent Use of safeTransfer

« Misleading Function Name

« Signed Integers Are Needlessly Wide
« Unused Function in Math

6.1 Initiative Votes Can Be Manipulated

Code Correcte

The Governance contract uses the type ui nt 88 for accounting the LQTY tokens allocated to an
initiative:

CS-V2Gov-001

struct InitiativeState {
ui nt 88 vot eLQTY;
ui nt 88 vet oLQTY;

}

The total supply of LQTY token is capped at 100 million (18 decimals), hence it fits in ui nt 88. The
function al | ocat eLQTY() uses the type i nt 176 when a user changes its vote regarding an initiative:

function all ocateLQrIY(
address[] calldata _initiatives,
int176[] calldata _deltalLQTIYVotes,
int176[] calldata _deltalLQrYVetos
) external;

A positive value signifies an additional allocation of either votes or vetoes to an initiative, while a negative
value signifies a removal of previously allocated LQTY either as votes, or vetoes.

The function al | ocat eLQTY() passes mostly the user input values in _del t aLQTYVot es and
_del taLQT'YVet os to function add() which performs an unsafe casting from i nt 192 to ui nt 88, see

@ Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

Unsafe casting on Math functions. Due to unsafe casting in add() any value larger than 2*88-1 or
smaller than - 2788- 1 would be truncated, hence having higher bits ignored. For instance, both 2*88
and - 2788 would be casted to 0.

The only occurrence where the function al | ocat eLQT'Y() accesses the full value of the input is in the
following code snippet:

user State. al | ocat edLQTY = add(user State. al | ocat edLQTY, deltalLQIYVotes del taLQTYVet 0s) ;

Note that both del t aLQTYVot es and del t aLQTYVet os are of type i nt 176, hence the addition is
performed on the full width of the input parameters. Having a value of 2788 or - 288 in either of the
inputs, would break the accounting as it would be treated as 0 by the rest of the function.

To exploit the vulnerability, an attacker can perform the following steps:
* Allocate X LQTY asvotestoinitiative A
e Allocate 1 LQTY as vetoestoinitiative B.

e Allocate 2788 - X - 1 LQTY as votestoinitiative C, and simultaneously allocate - 2" 88
LQTY as vetoestoinitiative C.

Attacker can choose the value of X depending on its preference forinitiative Aorinitiative C.
After the steps above, the allocation of the user would be accounted as being zero.

Although the attack works by allocating 2288 LQTY tokens, which is larger than the market cap of LQTY,
the attack is feasible because the checks on attacker's balance are enforced after all the allocations are
settled, by which point the attacker has already manipulated its allocation to be zero. Therefore, the
following check passes as the first condition is satisfied:

require(
user State. al | ocat edLQTY 0
user State. al | ocat edLQTY ui nt 88(st aki ngV1. st akes(deri veUser ProxyAddress(nsg. sender))),
"CGovernance: insufficient-or-unallocated-Iqty"

DE

Attacker gets the maximum voting power if it does not have any staked LQTY, hence its
aver ageSt aki ngTi nest anp is 0, which is treated by the function as having staked since the genesis
time.

Code corrected:

The codebase has been revised to avoid the possibility of the unsafe casting which was the root cause
for enabling the issue. The following improvements were implemented:

1. The input type of function al | ocat eLQTY() for LQTY amounts is changed to i nt 88 from
intl176.

2. The functions in Mat h. sol are refactored to avoid performing unsafe casting.

6.2 Deallocating From DISABLED Initiatives
Makes GlobalState Incorrect

D (7D (Version 2) XTI

The G obal St at e is now the sum of all active initiative lines, whether they are CLAI MABLE or not; an
initiative is only removed from the A obal St at e upon a call to unregi sterlnitiative(). At that

CS-V2Gov-030

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

point, however, users might still have LQTY allocated on that initiative: the function al | ocat eLQTY(),
therefore, allows users to deallocate LQTY from a DI SABLED initiative.

However, the function still updates the d obal State in this case, even though the whole
initiativeState was already discounted when the initiative was unregistered. Specifically, the
subtraction of the previnitiativeState does not happen, but the addition of the new
initiativeState does. This effectively adds the other users' voting lines back into the
d obal St at e, making it incorrect.

Code corrected:

The vulnerability has been mitigated in (Version 3). When an initiative is unregistered, the global state is
updated to discount the initiative that is removed:

function unregisterlnitiative(address _initiative) external nonReentrant ({

st at e. count edVot eLQTY initiativeState.votelLQrTY;
st at e. count edVot eX f set initiativeState.voteOffset;

}

The internal function _all ocatelLQIY() has been updated to avoid updates of state when
deallocating from a disabled initiative:

function _allocateLQIY(...) internal {

i f (status InitiativeStatus. DI SABLED) {
vars. st at e. count edVot eLQTY vars.prevlnitiativeState. votelLQTY;
vars. st at e. count edVot eOf f set vars. previnitiativeState. voteOfset;
vars. st at e. count edVot eLQTY vars.initiativeState. votelLQTY;
vars. st at e. count edVot e f set vars.initiativeState. voteOfset;

6.3 Votes in Bribelnitiative Are Evaluated at
Current Timestamp

(Security | HighCZEEA Code Corrected

The Bribelnitiative contract now tracks both the allocated LQTY and the user's timestamp, to distribute
bribes according to the effective voting power. However, the voting power is evaluated at
bl ock. ti nest anp, instead of the start of the reference epoch, which leads to a wrong proportion being
calculated for the user. This can lead to stuck bribes (if the proportions sum to less than 1), or
insolvency/stolen funds (if the proportions sum to more than 1).

If, for example, a user has an average age lower than the average age of an initiative that he votes for,
he can wait a long time to claim for that epoch, so as to "inflate" his voting power compared to the other
voters, and thus his proportion. This could lead to insolvency; however, the (flawed) mitigation described
in Bribes are capped at total balance could make things worse: since the total payout is capped at the

CS-V2Gov-031

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

BOLD balance of the contract, rather than the total bribe for that epoch, the user could effectively steal
BOLD from the contract that were allocated for other purposes (e.g. bribes for other epochs).

Code corrected:
In the voting power is now evaluated at the end of the reference epoch.

6.4 Initiative Hooks Are Susceptible to Low Gas
Attacks
(Security JIHiEh WEETTB Code Corrected

The Governance contract triggers calls into an initiative when a user action changes state that is relevant
for an initiative. An initiative can implement the following callback hooks:

CS-V2Gov-002

function onRegisterlnitiative(uintl6 _atEpoch) external;
function onUnregisterlnitiative(uintl6 _atEpoch) external;
function onAfterAl |l ocatelLQTY(uintl6 _currentEpoch, address _user,
uint 88 _voteLQrY, uint88 _vetolLQrY) external;
function onC ainForlnitiative(uintl6 _clai nEpoch, uint256 _bold) external;

The initiative can implement custom logic on these callback functions to update its internal accounting for
important state updates on Governance, such as vote trackingon Bri bel niti ati ve.

The Governance contract always triggers the callback hooks inside a try/ cat ch block, therefore a
failure in the initiative's functions does not bubble up to revert the whole transaction. Given that the
external functionalities in Governance are permissionless, an attacker can initiate a call to Governance
and pass a low amount of gas which is not sufficient to execute the code in the initiative's callback hooks.
After the failed call, 1/64 of the gas will still be available, which will be sufficient to return from the
Governance function.

For example, an attacker can trigger Governance.clainfForlnitiative() and pass a limited
amount of gas such that the call to onCl ai nfForlniti ati ve() reverts due to out-of-gas exception,
hence no state gets updated in the initiative.

Code corrected:

In (Version 2), hooks are called via the helper function saf eCal | Wt hM nGas(), which ensures that a
minimum gas stipend (fixed to a constant of 350'000) is forwarded to the hook.

6.5 Typo in the Code Causes Incorrect
Calculation

(Correctness {HE \ETZZTRY] Code Corrected)

The function al | ocat eLQTY(), when discounting the previnitiativeState from the running
d obal State (in case it is count ed), computes the new timestamp based on that of the new
initiativeState,ratherthanthe previnitiativeState:

CS-V2Gov-003

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

if (prevlinitiativeState. counted 1) {
st at e. count edVot eLQTYAver ageTi mest anp = _cal cul at eAver ageTi nest anp(
st at e. count edVot eLQTYAver ageTi nmest anp,
initiativeState. averageSt aki ngTi nest anpVot eLQTY,
st at e. count edVot eLQTY,
state. count edVoteLQTY - previnitiativeState.votelLQTY
);
st at e. count edVot eLQTY previnitiativeState. votelLQrTY;
}

This leads to st ate. count edVot eLQTYAver ageTi nest anp being calculated incorrectly, hence
breaking the accounting of the global votes.

Code corrected:

Function al | ocat eLQTY() has been refactored in and the code snipped shown above has
been moved to the internal function _al |l ocatelLQTY(). The issue has been fixed by passing
previnitiativeState. averageSt aki ngTi nest anpVot eLQTY as second argument to function
_cal cul at eAver ageTi nest anp() :

i f (status InitiativeStatus. Dl SABLED)
st at e. count edVot eLQTYAver ageTi mest anp = _cal cul at eAver ageTi nest anmp(

previnitiativeState. averageSt aki ngTi nest anpVot eLQTY,

6.6 User's Average Timestamp Can Change
Between Allocation and Deallocation of LOQTY

(Security | High \CZEETBY Specification Changed)

The Governance only tracks one aver ageSt aki ngTi mest anp at any given time, for each user. This is
used for all of the user's allocations and deallocations of LQTY to/from initiatives. However, this
timestamp can change (move forward) when the users adds stake. If this happens before the user
deallocates from an initiative, the function al | ocat eLQT'Y() subtracts fromtheinitiati veState a
different line (same slope, different offset) from the one that was added to it when the user allocated
LQTY to that initiative.

The subtracted line has a more recent timestamp (and thus a lower voting power), so this bug can be
exploited. For example, a user who already intends to leave the system could allocate all his LQTY on his
favourite initiative, then flash-loan a large amount of LQTY and add them to his stake (moving his
timestamp very close to the present), then deallocate the LQTY from the initiative, unstake everything
and repay the flash-loan. The deallocation will leave a constant offset "on top" of the previous
initiativeStat e, roughly equal to his current voting power.

CS-V2Gov-032

Specification changed:

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

The accounting of voting power for users have changed in (Version 3). Instead of tracking
aver ageSt aki ngTi nest anp for a user, the updated codebase uses the following struct:

struct UserState {
ui nt 256 unal | ocat edLQTY;
ui nt 256 unal | ocat edO f set ;
ui nt 256 al | ocat edLQTY;
ui nt 256 al | ocat edO f set ;

}

Furthermore, for each allocation of a user towards an initiative, the following data are stored:

struct Allocation {
ui nt 256 vot elLQrTY;
ui nt 256 vot e f set ;
ui nt 256 vet oLQTY;
ui nt 256 vet oO f set ;
ui nt 256 at Epoch;

}

This information allows the accounting to reset correctly when deallocating LQTY from an initiative.

6.7 Vote Tallying Is Incorrect

(Correctness JHEN\EZZTR] Code Corrected)

The global vot esSnapshot is taken at the beginning of the epoch, and it stays the same for the whole
epoch. It counts the number of "YES" votes, and will be used as the denominator in
clainfForlnitiative(), to calculate the payout; it is therefore crucial that the contract's operations
preserve the following invariant: the sum of the numerators used by all initiatives that can be claimed
during an epoch must equal vot esSnapshot . vot es. This invariant is not maintained: it can happen
that the sum of the numerators is smaller than the denominator (in which case not all the bol dAccr ued
can be claimed), or worse, it can be larger (in which case the system is insolvent).

There are several individual snippets across the code that concur to this issue, but the root cause can be
pinpointed as follows: the function _snapshot VotesForlnitiative() recomputes whether the
initiative is Claimable or not, but in a way such that the result is unrelated to the count ed flag; it can
happen that an initiative is count ed but it is then not Claimable in the epoch, or worse, it can be not
count ed but still Claimable. The following mock scenario exemplifies this latter case:

CS-V2Gov-004

Epoch x ends, x+1 begins. Global snapshot: YES vote count = 101
3 votes for initiative 1 -> not counted

98 votes for initiative 2 -> counted

Running global state is only counting initiative 2
Epoch x+1 ends, x+2 begins. Global snapshot: YES vote count = 98
No new votes, just re-snapshot both initiatives

Claim initiative 1. Re-snapshot, nhow above threshold -> claim 3/98 of the BOLD
Claim initiative 2: Re-snapshot -> claim 98/98 of the BOLD -> insolvency
Here is a list of places in the code that concur in breaking the invariant:

1. The function _snapshot Vot esFor I ni ti ati ve() recomputes whether an initiative is Claimable,
using a newer voti ngThreshol d, different from the one used in the previous epoch by
al | ocat eLQTY() to decide whether the initiative should be count ed.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

2. The function al | ocat eLQTY() computes the vot esFor I niti ati ve evaluating the staking line
at bl ock. ti mest anp, rather than the beginning of the next epoch. This leads to a different result
from the line evaluation performed in _snapshot Vot esFor I niti ati ve() inthe next epoch.

3. The function al | ocat eLQTY() does not take into account whether the "YES" has a relative
majority, to decide whether the initiative should be count ed, instead only this check is performed:
votesForlnitiative >= votingThreshol d.

Code corrected:

In (Version 2), the code has been refactored and redesigned. What fixes this issue is a simplification of the
logic: all initiatives are now counted, whether or not they will end up being CLAIMABLE. This prevents
insolvency as described above; note, however, that it can still happen that the denominator is larger than
the sum of the numerators (this will happen every time there is a non-claimable initiative), which leads to
part of the rewards being not redeemable in the current epoch and getting carried over to the next one.
Liquity is aware of this limitation.

6.8 Bribes Are Capped at Total Balance
(Correctness | ITHT)WEETTI) Code Corrected)

The function Bri bel ni ti ati ve. cl ai nBri bes() caps the payout at the total balance of the contract
(in BOLD and br i beToken, respectively), rather than the total bribe allocated for that epoch. This means
that potential cases of insolvency are mitigated by giving out tokens that were allocated for other
purposes: this can be exploited, in conjunction with the accounting bug described in Votes in
Bribelnitiative are evaluated at current timestamp.

CS-V2Gov-033

Code corrected:

The abovementioned accounting bug has been fixed in (Version 3), thus removing the possibility for an
exploit.

6.9 Conflicting Functionalities for ForwardBribe

(Design LT TDZITR)] Specification Changed)

The contract Forwar dBri be inherits from Bribelnitiative, and therefore includes all its
bribe-payout logic. This conflicts with its additional logic that forwards all funds (including bribes) to an
immutable r ecei ver.

CS-V2Gov-034

Specification changed:
The contract For war dBr i be has been removed from the codebase in (Version 3),

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

6.10 Governance Does Not Enforce Warm-Up
Period for Initiatives

(Design {CT DI Specifcation Changed

The function Gover nance. getlnitiativeState() does not have a specific return value in case an
initiative is at most REG STRATI ON_WARM_UP_PERI OD epochs old; in fact, this variable is unused in the
codebase (Version 2). This enables a griefing attack against initiatives that do not receive enough votes in
the firts week after they are registered. An attacker can allocate veto power to such initiatives and then
unregister them.

CS-V2Gov-035

Specification changed:

In (Version 4), the parameter REG STRATI ON_WARM UP_PERI OD has been removed altogether: new
initiatives can be vetoed and unregistered the next epoch. Furthermore (already starting form (Version 3))
the | ast EpochC ai m of a newly-registered initiative is set to the previous epoch, so that the
UNREG STRATI ON_AFTER_EPQOCHS period also applies to new initiatives.

6.11 Initiative's Timestamp Can Be Manipulated

(Security WD IIETE) Specification Changed

The choice of representing a line using the x-intercept inherently leads to rounding errors, as explained in
_calculateAverageTimestamp() could be off by one second, since the x-intercept (the
aver ageSt aki ngTi nest anp) of a staking line is potentially a fractional number, which the function
_cal cul at eAver ageTi nest anp() rounds up to an integer. A peculiar consequence of this is that a
user allocating some LQTY on an initiative, and then de-allocating them in the same transaction, does
not necessarily leave the initiative's line untouched overall: its timestamp could end up being strictly
higher (more recent) than its previous value. This can be exploited by an attacker flash-loaning a large
amount of LQTY and doing this repeatedly to all of his competitor initiatives, so as to bring their
timestamp as close to the present as possible: this would reduce their voting power (evaluated at the
epoch boundary), compared to the attacker's, granting him an unfair share of the total bol dAccr ued.
Here follow the details of the attacks. Suppose an initiative has a staking line vqo(t) = m(t — ty), and an
attacker has a staking line v,(t) = m,(t — t,).

Allocating m, LQTY on the initiative brings the initiative line to v, (t) = m(t — [t;]) where

CS-V2Gov-046

t _ Mty + mat,
1= "m+m,

and [-] is the ceiling function. | When the attacker deallocates the same LQTY amount, that brings the
initiative line to v5(t) = m(t —[t,]) where

t _ (m+my)lti] —mat,
T (m+my)—-m,

Let us compare tp (the initial timestamp of the initiative) with [t,] (its final timestamp of the initiative's
line). To simplify the analysis, let us actually focus on t;: applying the ceiling function to it will only make
the impact worse.

Noticing that [x] = x Vx, and applying this to the formula for t,, quickly yields

t2 > (Mm+my)ty —maty _ mto+ maty —maty, _ mty _ to

(m+my)—m, (m+m;)—m, m

so the final timestamp will always be at least as high as the initial one. | Let us now use the other
inequality of the ceiling function, [x]<x+ 1 Vx; notice that this inequality can be arbitrarily tight: it

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

suffices that the mantissa of x be very small (e.g. 0.0001) for [x] to be very close to x + 1. | Applying this
to the formula for t; yields:
(m+mjy)(ty + 1) — mat, mto + mat; + m+my; — mat, — mto+m+m,

tz < (m+m;)—m;, = (m+m;)—m;, m

Mma
=t0+1+ﬁ

This means, for example, that an attacker having a stake equal to roughly 30 times that of a "victim"
initiative can push forward its timestamp by 30 seconds. He just needs to choose m, and t; just right so
that the mantissa of t; is small.

This procedure can be iterated, multiple times over the same initiative, and over several initiatives
(possibly choosing different m, and t; every time), all in one transaction, with only one flash loan. This
can be repeated at every epoch; the attack does not become more expensive over time, because the
victim initiatives never get to age properly if the attacker "brings forward" their timestamp every time, so it
will always be ~1 week old every time the attack is performed.

Specification changed:

The accounting has changed in (Version 3). The timestamp is not used anymore for the voting line of an
initiative, hence the issue is not applicable anymore.

6.12 Bribe Accounting Is Based on LQTY
Amounts Instead of Votes

(Medium] [Version 1] Code Corrected

The accounting on Bri bel niti ati ve is based on the LQTY amounts allocated for an initiative:

CS-V2Gov-005

function onAfterAll ocatelLQTY(..., uint88 _votelLQrY, uint88 _vetoLQIY) ... {
ui nt 88 newot eLQTY = (_vetoLQTY 0) _voteLQTY : O;

_set LQTYAI | ocati onByUser At Epoch(_user, _current Epoch, newVot eLQTY, true);
}

Therefore, a user A staking 1 LQTY for one year and allocating all its voting power to the initiative, would
receive the same bribe as a user B staking 1 LQTY for one month and allocating all its voting power to
the initiative. This contradicts the intended behavior is to distribute bribes to users according to their
voting power. In the scenario described above, user A should receive a bribe that is roughly 12x of the
bribe received by user B.

This design enables an attacker to manipulate the bribe accounting by taking short term loans. The
attacker executes the following steps:

« At the last block of epoch x, take a loan of LQTY tokens from a 3rd party protocol.

» On the same transaction, stake all LQTY and allocate all voting power to one or more initiatives that
pay bribes.

« At the first block of epoch x+1, unstake all LQTY and repay the loan and any interest for 12
seconds.

 Claim the bribe.

» Repeat the process for each epoch boundary.

This allows the attacker to receive large amount of bribes that are not proportional to its voting power.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

Code corrected:

The function hook Bri bel nitiative. onAfterAl | ocatelLQTY() has been revised in to
take additional input arguments that enable the calculation of vote contributions per user:

function onAfterAl |l ocat eLQTY(

uint16 _current Epoch,

address _user,

| Gover nance. User State call data _user State,

| Gover nance. Al |l ocation calldata _all ocati on,

| Governance. I nitiativeState calldata _initiativeState
) external virtual onlyGovernance

Therefore, the bribes are now calculated based on user's votes and the initiative's total votes at a given
epoch:

ui nt 240 total Votes governance. | qtyToVotes(...);
i f (total Votes 0) {
ui nt 240 votes governance. | qtyToVotes(...);

bol dAnount ui nt 256(bri be. bol dAnmount) ui nt 256(vot es) ui nt 256(t ot al Vot es) ;
bri beTokenAnount ui nt 256(bri be. bri beTokenAnount) ui nt 256(vot es) ui nt 256(total Votes) ;

}

However, this fix has introduced another vulnerability as described in Votes in Bribelnitiative are
evaluated at current timestamp

6.13 EOAs Are Not Supported as Initiatives
(Correctness [TZITWCETTRY Code Corrected)

The specifications of Governance state that an initiative can be any Ethereum address, including
externally-owned accounts (EOAS):

CS-V2Gov-006

As Initiatives are assigned to arbitrary addresses, they can be used for any purpose
i ncluding EQAs, Multisigs, or smart contracts designed for targetted purposes.

The implementation of the function onRegi sterlnitiative() triggers inside a try/ cat ch block a
hook in the initiative address:

try Ilnitiative(_initiative).onRegisterlnitiative(currentEpoch) {} catch {}

Because the call into initiative is not expected to return any data, Solidity compiler adds checks to ensure
that the called address has non-empty code. This check is executed before the t r y/ cat ch block, which
means that if the check fails, the revert is not caught by the t r y/ cat ch logic. Hence, the registration of
any EOA as an initiative would revert when triggering onRegi sterlniti ative().

Code corrected:

In (Version 2), hooks are called via the helper function saf eCal | Wt hM nGas(), which supports EOAs,
since it performs a simple low-level call without checking its boolean return value.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

6.14 Initiative Deregisterability Is Inconsistent

(D) (Miedium) (Version 1) SRR

The vetoes for an initiative are not snapshot at epoch boundaries. The function
unregi sterlnitiative() instead decides whether an initiative is Deregisterable by recomputing the
"NO" votes, evaluating the corresponding staking line at bl ock. ti nest anp, thus "inflating" the "NO"
votes compared to the "YES", which are taken from the snapshot. In fact, it is possible for an initiative to
be at the same time Claimable (because the "YES" had a majority at the epoch start) and Deregisterable
(because the "NO" were later recomputed and found to be higher than the snapshot "YES"): the outcome
will then depend on the result of a race condition, which the use of epochs is meant to eliminate.
Considering that an epoch is 7 days, the inflation in the voting power for 1 LQTY that has been staked for
a year is roughly 2% during one epoch (7/365).

On the same note, based on the reasoning exposed in Vote tallying is incorrect, it should never happen
that a count ed initiative is Deregisterable, therefore the final update to the G obal St at e should never
take place.

CS-V2Gov-007

Code corrected:

A new function getlnitiativeState() has been added in that returns the state of an
initiative. This ensures that initiatives are treated consistently by the codebase. An initiative can be in one
of the following states:

enum lnitiativeStatus {
NONEXI STENT,
WARM _UP,
SKI P,
CLAI MABLE,
CLAI MED,
UNREG STERABLE,
Dl SABLED

6.15 Initiative Is Deregisterable Right After
Claiming

[Medium] \ZEEEN Code Corrected

The function clainforlnitiative() resets the number of "YES" votes to 0, to prevent double
claiming in the same epoch. However, this has the unintended side effect of giving the "NO" a relative
majority, thus possibly making the initiative deregisterable immediately afterwards (if other conditions,
like the warmup period, are satisfied).

Additionally, this breaks the assumptions from external callers of the public view function
votesForlnitiati veSnapshot () on the semantics of its result.

CS-v2Gov-008

Code corrected:

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

The number of "YES" votes is no longer reset to 0. Instead, an explicit field has been added that stores
the last epoch at which the initiative has been claimed: this is now enough to prevent double claiming,
and does not give the "NO" a relative majority.

6.16 Possible Frontrun in CurveV2GaugeRewards

(Security WD EZZTEY Specification Changed

The function deposi t | nt oGauge() in Cur veV2GaugeRewar ds should be called once in an epoch to
move the claimable BOLD tokens from the Governance to a Curve gauge:

CS-V2Gov-009

function depositlntoGauge() external returns (uint256) {
ui nt 256 anount governance. clai nfForlnitiative(address(this));

gauge. deposit _reward_t oken(address(bold), amount, duration);

}

However, one can frontrun this call and trigger the execution of cl ai nForlnitiative() in the
Governance contract. In this case the funds will be moved to Cur veV2GaugeRewar ds but get stuck.
Any subsequent call to deposi t | nt oGauge() in the same epoch would deposit zero tokens into the
gauge.

Specification changed:

The specifications for the contract Cur veV2GaugeRewar ds have changed in (Version 2). The external
function deposi t | nt oGauge() has been removed and the initiative hook
onC ainfForlnitiative() automatically forwards the rewards to the Curve gauge.

6.17 Stuck Allocations
D (Viedium) (Version 1) (XTSI

After an initiative is unregistered, its variables are erased (i.e. reset to 0). These variables (in particular
the registration epoch) are checked in al | ocat eLQTY() to be non-zero. Therefore, it is impossible to
reclaim votes from an initiative once it has been deregistered, without registering it again, which costs
100 BOLD, and is only effective starting from the next epoch.

An attacker may exploit this to temporarily DOS competitors and effectively reduce the total voting power
for this epoch.

CS-V2Gov-010

Code corrected:

It is now possible to reclaim LQTY from a deregistered initiative.

6.18 Unsafe Casting on Math Functions

(D (Vdium) (Version 1) (XD

CS-V2Gov-011

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

Functions add() and sub() in Mat h. sol perform unsafe casting when converting a value of a larger
type to a smaller type. The function add() casts an input value of type i nt 192 into ui nt 88 without any
range check, hence ignoring the high-order bits of the input value b:

function add(uint88 a, intl192 b) ... {

if (...) {
return uint88(a ui nt 88(ui nt 192(-b)));
}

return uint88(a ui nt 88(ui nt 192(b)));
}

Similarly, the function sub() performs unsafe casting when converting a value of type ui nt 256 into a
ui nt 128.

The unsafe casting in function add() enables a severe vulnerability in the accounting of the votes, see
Initiative votes can be manipulated.

Code corrected:

The functions have been revised to use a new function abs() that avoids the unsafe casting. All the
operations are performed on 256-bit integers as of

6.19 Possible Underflow in withdrawLQTY
D) (Low) (Version 3) (XL

Function wi t hdr awLQTY() updates user's state with the new offset and unallocated LQTY as follows:

CS-V2Gov-050

it (_IqtyAmount user St at e. unal | ocat edLQTY) {
} else {

user St at e. unal | ocat edO f set 0;

user St at e. unal | ocat edLQTY _ |l gt yAnount ;

The function doesn't perform any check that amount of LQTY being withdrawn is less than the user's
stake. Furthermore, LQTYSt aki ng. unst ake() caps the amount to the user's stake. Therefore, if one
calls wi t hdr awLQTY() with a larger LQTY amount than staked, the subtraction above reverts with an
underflow error.

Code corrected:

A sanity check on _| gt yAnount has been added in (Version 4), with a custom error message in case of
too large a value.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

6.20 Rounding Error on Offset Calculation
(Correctness JETNZIITI)] Code Corrected

Users can allocate their voting power to different initiatives. For each allocation two values are stored:
allocated LQTY and the user's offset. Function al | ocat eLQTY() rounds down when computing the
offset that should be added to an initiative:

CS-V2Gov-051

for (...) {

absol ut e f set Vot es| x|

_absol ut eLQTYVot es| x] i nt 256(user St ate. unal | ocat edOf f set) i nt 256(user St at e. unal | ocat edLQTY) ;
absol ut e f set Vet os| x|
_absol ut eLQTYVet os| x] i nt 256(user St ate. unal | ocat edOf f set) i nt 256(user St ate. unal | ocat edLQTY) ;

This means that, in particular, when the user allocates all of his LQTY to many initiatives, he could be left
with O unal | ocat edLQTY and non-zero unal | ocat edf f set .

The rounding error is accounted in favor of an initiative if user allocates YES votes (against initiative if
user allocates NO votes).

Code corrected:

In (Version 4), the in-memory copy of the user's vote trackers are updated (decreased) at each iteration of
the loop. This removes the abovementioned edge case: in case of a complete allocation, the
unal | ocat edOf f set will be 0. We highlight that the rounding error is now path dependent, i.e., user
can influence for which initiatives the rounding error is in favor.

6.21 Allocation of Zero LQTY Triggers State
Updates and Emit Events

D) (Cow) (Version 2) RN

Function al | ocat eLQTY() executes fully and updates the initiative and global state even if both
_absol ut eLQTYVot es and _absol ut eLQTYVet os are zeros. Furthermore, the respective events are
emitted. Therefore, the function can also be triggered by users that do not have any staking in the
governance contract.

CS-V2Gov-047

Code corrected:

In (Version 3), checks are added to require that _absol ut eLQTYVot es and _absol ut eLQTYVet os be
not all-zeros, as well as that the user have a stake in the system (positive unal | ocat edLQTY).

6.22 CurveV2GaugeRewards Does Not Check
r emal nder

(Corvectness YRR Code Corrected)

CS-V2Gov-036

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

The function CurveV2GaugeRewar ds. _depositlntoGauge() only checks the newly-accrued
anount , rather than the total = remai nder + anpunt, to decide whether to queue or deposit the
rewards into the gauge.

Code corrected:

The internal function _deposi t | nt oGauge() has been revised to consider both new Bold tokens and
the remainder when deciding whether to queue or deposit the rewards into the gauge:

function _depositlntoGuge(uint256 amount) internal {
ui nt 256 tot al anount r emai nder ;

if (total duration 1000) {
remai nder anount ;
return;

6.23 Incomplete Events

(Design {(ETO V)] Code Corrected

The internal function _snapshot Vot es() emits the snapshotted votes and the respective epoch, but it
does not include the bol dAccr ued. Similarly, the function _snapshot Vot esForlniti ative() emits
the votes recorded for an initiative, but it does not include vetos.

CS-V2Gov-040

Furthermore, governance does not emit an event with the success flag returned from
saf eCal | Wt hM nGas() when an initiative hook is triggered.

Code corrected:
The abovementioned fields have been added to the events in

6.24 Meaningless Checks in
Bribelnitiative. clainBribe()
D) (Low) (Version 2) @RISR

The checks require(l qtyAl |l ocati on. val ue I = 0 cal) and
require(total LQTYAl | ocati on. val ue I = 0...), present in
Bribelnitiative. clainBribe(), are not meaningful, since the val ue now encodes the
timestamp as well, and therefore will never be 0.

CS-V2Gov-039

Specification changed:

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

The struct | t emin the library DoubleLinkedList has been changed in to store in separate fields
| gty and of f set instead of a single field (val ue in (Version 2)):

struct Item/{

ui nt 256 | qty;
ui nt 256 of f set;

6.25 Mismatch of Code With the Error Message
D (Low) (Version 2) (CIIITITED)

The function Bri bel niti ati ve. deposi t Bri be() performs the following check:

CS-V2Gov-048

function depositBribe(..., uintl6 _epoch) external ({

ui nt 16 epoch gover nance. epoch();

requi re(_epoch epoch, "Bribelnitiative: only-future-epochs");
}

The code accepts an input _epoch that is same as the ongoing epoch, while the error message
highlights that _epoch should only be in the future.

Code corrected:
The error string has been changed in to"Bribelnitiative: nowor-future-epochs"

6.26 Remaining ToDos in the Codebase
CIETD) (Low) (Version 2) (CXIESIEED)

There are remaining TODO and @udi t comments in the codebase. Addressing remaining notes help
improve the quality and readability of the code.

CS-V2Gov-041

Code corrected:

The previous comments have been removed from the contracts in scope.

6.27 Unsafe Casting in IgtyToVotes
CIETD) (Low) (Version 2) (CXISIED)

The function | gt yToVot es() has publ i c visibility and takes as one of the inputs the variable
_current Ti mest anp which is of type ui nt 256. The function is called with a timestamp variable of type

CS-V2Gov-049

@ Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

ui nt 32 whenever called internally, however if the function is called externally and a value greater than
t ype(ui nt 32) . max is passed, the function performs an unsafe casting and returns an incorrect result.

Code corrected:

The unsafe casting has been removed, and the variable _cur r ent Ti mest anp is now used at full width
in the multiplication

6.28 Inconsistent Behavior for Retrieval of Tokens
From Staking V1
D (Low) (Version 1) (YRR

When unstaking or realizing the gains accrued in Staking V1, functions wi t hdrawLQTY() and
cl ai nFr ontt aki ngV1() in Governance, exhibit different practices:

CS-V2Gov-014

* Function cl ai nfrontt aki ngV1() allows the caller to specify any address as the recipient of
funds, while wi t hdr awLQTY() hard-codes the recipient to nsg. sender .

e Function wi t hdrawLQT'Y() emits an event which includes the unstaked LQTY amounts and the
respective gains, while cl ai nFr ontt aki ngV1() does not emit any event.

Code corrected:

Both functions have been revised in to be aligned. Both withdrawlQTY() and
cl ai nFr ont aki ngV1() allow users to specify a recipient, and emit the same event.

6.29 Incorrect Specifications

(Correctness JICTINZEERBY Code Corrected)

We provide a non-exhaustive list of incorrect natspec comments in the codebase:

(Version 1)

1. The documentation comment for the function Gover nance. snapshot Vot es() says that it
"accrues funds for the current epoch", whereas it "snapshots votes for the previous epoch". This
could be misinterpreted: the number of votes are snapshot at the end of the past epoch, while
BOLD are accrued until the first activity in the current epoch. The accrued BOLD are valid
throughout all of the current epoch.

2. The natspec of function Doubl eLi nkedLi st. get Next () states that the head of the list is
returned if i d is zero, however next pointer stores the tail of the list.

CS-V2Gov-015

3. Similarly, the function get Pr ev() state that the tail of the list is returned if i d is zero, however the
pr ev pointer stores the head of the list.

(Version 3]

4. Function cl ai nBri bes() includes a note from previous versions of the codebase which is
outdated.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

5. Function unregisterlnitiative() has an inline comment that is outdated:
weeks * 2716 > u32. Registration epoch for disabled initiatives is now set to
type(ui nt 256) . max.

6. Function getlnitiativeState() has an incorrect inline comment for
Unregi ster Condi ti on as an initiative is unregistable at 5th epoch that would result in SKIP.

Code corrected:
The abovementioned natspec comments have been fixed in

6.30 Initiative Snapshot Is Never Deleted
D (Low) (Version 1) (XTSRS

The function unregi sterlnitiative() doesnotdel ete initiativeSnapshot[_initiative]
which stores outdated values in case the initiative is registered again.

CS-V2Gov-016

Code corrected:

It is no longer possible to re-register an initiative that was previously unregistered

6.31 Initiatives Can Be Registered With No
Staking in First Weeks
7D (Low) (Version 1) CXESIZET)

The deployer of the Governance contract can pre-register a set of initiatives which will be voted from
epoch 2 and onwards. This means that the total votes for the first two weeks will be zero, hence anyone
can register initiatives, bypassing the staking threshold check, however the registration fee must be paid.

CS-V2Gov-056

Code corrected:

A new check has been added in that ensures regi sterlnitiative() can only be called
after the second epoch:

requi re(current Epoch 2, "CGovernance: registration-not-yet-enabled");

6.32 Possible Simplification of
onAfterAllocateLQTY
D) (Low) (Version 1) (XTI

CS-V2Gov-017

@ Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

The function Bri belnitiative.onAfterA |l ocateLQrY() is triggered whenever a user changes
their vote allocation in Governance, and it implements the logic to update user snapshots and global
snapshots per an initiative. The implementation handles possibilities for scenario that both _vot eLQTY
and _vet oLQTY are non-zero.

However, the Governance ensures that a user either votes, or vetoes an initiative, it cannot do both in the
same epoch. Taking this into consideration, the logic in onAf t er Al | ocat eLQTY() could be simplified.
For instance, the following branches could be combined to achieve the same behavior:

i (_vetolLQrY 0) {

_set Tot al LQTYAI | ocati onByEpoch(_current Epoch,
total LQTYAI | ocati onByEpoch. itens[_current Epoch] . val ue _votelLQTY - prevVotelLQTY,
fal se
)
_set LQTYAI | ocati onByUser At Epoch(_user, _current Epoch, _votelLQrTY, false);
} else {

_set Tot al LQTYAI | ocati onByEpoch(_current Epoch,
total LQTYAI | ocati onByEpoch. itens[_current Epoch] . val ue prevVot eLQTY,
fal se

)

et LQTYAI | ocati onByUser At Epoch(_user, _current Epoch, 0, false);

Code corrected:

The function onAf t er Al | ocat eLQTY() has been revised and its logic has been simplified.

6.33 Return Value of Ether Transfer
CIETD) (Low) (Version 1) (CXISIEED)

The following code does not check the return value of the Ether transfer via low-level call:

CS-V2Gov-045

i (ethAnmount 0) {
(bool success,) payabl e(_l usdEt hReci pi ent). cal | {val ue: et hAmount}("");
success;

Code corrected:
A check on success has been added in (Version 2),

6.34 Special Check in onAfterAllocateLQTY
(Design [(CIYIVEETTBY] Code Corrected

The function Bri bel niti ative. onAfter Al | ocat eLQTY() performs this check:

CS-V2Gov-054

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

i f (_current Epoch 0) return;

However, the condition can never be satisfied as the epoch number starts at 1.

Code corrected:

The check has been removed in (Version 3),

6.35 Unnecessary Approval Given to
LQTYStaking
CIETD) (Low) (Version 1) (CXISIEED)

The function User Pr oxy. st ake() provides an approval to LQTYSt aki ng before triggering the staking
in Liquity V1:

CS-V2Gov-020

| gty. approve(address(stakingVl), _anount);
st aki ngV1. st ake(_anount) ;

The approval is unnecessary as the staking contract has a privileged role in the LQTYToken and does
not require an approval to pull funds.

Code corrected:

The unnecessary approval has been removed.

6.36 Votes for UNREG STERABLE Initiatives
D (Low) (Version 1) (YD)

The function Gover nance. _al | ocat eLQTY() forbids placing additional votes on an initiative that's in
the UNREG STERABLE state. However, a comment at the beginning of the for-loop in
_al l ocat eLQTY() says it should be allowed:

CS-V2Gov-055

/'l Can vote positively in SKIP, CLAI MABLE, CLAI MED and UNREG STERABLE st at es
However, a require statements does not allow voting on initiatives in the unregistable state:

require(
st at us InitiativeStatus. SKIP st at us InitiativeStatus. CLAl MABLE
st at us InitiativeStatus. CLAl MED,
"Gover nance: active-vote-fsni

)

Currently, the only way for an initiative to leave unregistable state is if vetoes are removed from it.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

Code corrected:

The inline comment has been revised to reflect the code behavior.

6.37 _calculateAverageTimestamp() Could Be off

by One Second
EIDD (Low) (Version 1) XTI

The function Gover nance. _cal cul at eAver ageTi nest anp() performs an integer division between
the number of votes and the LQTY amount, to obtain the average age. This could be rounded down by
one second, resulting in the final average timestamp to be rounded up by one second. This rounding
error can theoretically be used as a griefing attack to lower an initiative's average timestamp (allocated
voting power), therefore reduce its claimable rewards.

CS-V2Gov-021

Code corrected:

The code in has been refactored to avoid the rounding error decribed above: the representation
of a staking line has been changed to consist of the slope (LQTY amount) and a y-intercept (offset) which
is always an integer, instead of the x-intercept (average timestamp) which could be fractional.

6.38 Confusing Name for Initiative Status

[Informational] [Version 2]

The enum variant I ni ti ati veSt at us. WARM_UP has a misleading name, since it represents initiatives
that were registered in the current epoch; this is a different semantics from the one intended for the
immutable variable REG STRATI ON_WARM UP_PERI CD.

CS-V2Gov-042

Code corrected:
The immutable REG STRATI ON_WARM UP_PERI OD has been removed in

6.39 Encoding Functionalities Are Unused

[Informational] [Version 2]

The following newly functions are not used in the codebase:

CS-V2Gov-043

*Bribelnitiative._encodeLQIYAl | ocation()
e Encodi ngDecodi ngLi b. encodeLQTYAI | ocati on()

Code corrected:
The functions have been removed in

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

6.40 Governance Interface Is Incomplete

[Informational] [Version 2]

The interface | Gover nance does not include all the public and external functions defined in the
Gover nance contract. Here is a list of missing functions.

(Version 2

1. get Tot al Vot esAndSt at e()
2.getlnitiativeSnapshot AndSt at e()

CS-V2Gov-044

3. cal cul at eVoti ngThr eshol d()
(Version 3);

l.reset Al l ocation()

Code corrected:
All the Governance functions are in the interface, as of (Version 4),

6.41 Inconsistent Use of safeTransfer

[Informational] [Version 1]

User Pr oxy uses the safe transfer functionality when sending LQTY and LUSD tokens to the user in
function unst ake(), but uses the token's transfer function when staking. Both LQTY and LUSD are
already deployed and they return t r ue on success, or revert on failure.

CS-V2Gov-024

Code corrected:

Client has chosen to use safe transfer for all transfers in User Pr oxy.

6.42 Misleading Function Name

[Informational] [Version 1]

The internal function Gover nance. _deposi t () has a misleading nhame as does not actually perform
any deposit. The function only deploys the User Pr oxy if not existent, and computes the new average
staking timestamp for the user and updates the state.

CS-V2Gov-025

Code corrected:

The function has been renamed to _i ncr easeUser Vot eTr acker s() in (Version 3). By the new line
representation choice, it now updates the line's y-intercept instead of the x-intercept.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

6.43 Signed Integers Are Needlessly Wide
[Informational] [Version 1]

In al | ocat eLQTY(), signed LQTY quantities are represented as i nt 176. This is unnecessarily wide,
as the range of i nt 88 is approximately -150M to +150M, which is enough given that the hard cap on the
LQTY supply is 100M.

CS-V2Gov-028

Code corrected:

The codebase has been revised in to use types i nt 88 for LQTY amounts. In (Version 3), all
integers are now 256-bit wide.

6.44 Unused Function in Math
[Informational] [Version 1]

The function sub() implemented in Mat h. sol is not used in the current version of the codebase.

CS-V2Gov-029

Code corrected:

The function is used in codebase

@ Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

7

Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Possible Code Simplifications

(Informational) (Version 3)()

CS-V2Gov-052

Some parts of the code may be simplified, to make them more easily understandable and maintainable.
Below is a non-exhaustive list of such snippets:

1.Inwi t hdrawLQTY() there is ani f - el se clause ensuring that the user's unal | ocat edOf f set

goes to 0 in case of a complete withdrawal. However, the fraction formula used in the i f branch
would already yield of f set Decr ease == unal | ocat edOf f set in this case, without the need
for a special case.

.In al | ocat eLQTY(), the FSM check on DI SABLED initiatives is redundant: the requi re will

never fail. This is because the previous check on "active votes" already implies that, for all other
states, both deltas should be non-positive. In fact, this holds not just for the DI SABLED state, but
also UNREG STERABLE.

.In _allocateLQTY(), updating the d obal State is done by subtracting the

previnitiativeState and adding the new initiativeState. However, this could be
simplified by simply adding the relevant user-supplied delta, and suppressing the
prevlnitiativeSt at e altogether.

.All payout snippets (in clainfForlinitiative(), Bribelnitiative.clainBribes(),

CurveV2GaugeRewar ds. _deposi t | nt oGauge()) include some capping logic, to account for
potential errors leading to insolvency. However, the main source of rounding errors that led to
broken accounting (i.e. using the average timestamp to represent lines) has been removed in
(Version 3). Moreover, should some other sources of error be left undiscovered, this mitigation still
does not adequately protect against them: it only makes sure that the "last" payout does not revert,
possibly at the expense of other destinations of those funds, without addressing the root cause that
led to incorrect payout calculations.

Acknowledged:

Liquity has decided to keep the code unchanged (except Bri bel niti ative. cl ai nBri bes())

7.2 Superfluous Calculations in Voting Threshold

(Informational) (Version 3)()

CS-V2Gov-053

As emphasized in note Expected immutable parameters, the parameter M N_CLAI Mwill be set to 0 on
deployment. Therefore, the calculations of payoutPerVote and ninVotes in function
cal cul at eVot i ngThr eshol d are superfluous.

Acknowledged:

S

Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 43

https://chainsecurity.com

Liquity has decided to keep the code unchanged.

7.3 BOLD Could Be Accrued for Previous Epoch
[Informational][Version 1][]

CS-V2Gov-022

The function Gover nance. _snapshot Vot es() gauges the contract's current BOLD balance and
writes it into the snapshot bol dAccr ued variable, the first time any user action is taken in an epoch. Still,
funds might arrive early in an epoch, before any user action is taken: they would then be counted towards
the previous epoch's bol dAccr ued.

Users with a position both in LiquityV2 core and in the Governance might optimise for this, and time their
operations in the core just right so the corresponding fee ends up being counted in an epoch where they
have already a large voting power.

Acknowledged:
Liquity is aware of the inconsistency but has decided to keep the code unchanged.

7.4 Default Values in DoubleLinkedList
[Informational] [Version 1][]

CS-V2Gov-023

The view functions getNext(), getPrev(), getValue(), and getlten() in the library
Doubl eLi nkedLi st do not check if the input i d exists in the list, instead they return the default values
(Os) if i d does not exist. Considering that the node with i d zero has a special meaning, stores the head
and the tail of the list, the default value might be misinterpreted by callers.

7.5 Possible Gas Optimizations
[Informational] [Version 1][]

CS-V2Gov-026

The code could be optimized to reduce the gas consumption. Below, is a non-exhaustive list of potential
optimizations:

1. Functions st akeVi aPer m t () and unst ake() in User Pr oxy can be marked as ext er nal .

2. Function onAfter Al |l ocateLQTY() in Bribelnitiative sets the newwot eLQTY to O if
_vet oLQTY is non-zero, however, this is not necessary as the Governance guarantees that only
one of the two is non-zero.

3. Function _cal cul at eAver ageTi nest anp() returns early if _newlLQI'YBal ance is zero,
however, the check is repeated in both branches of the i f / el se block.

4. The function cl ai nFor I ni ti ati ve() returns early if the total snapshotted "YES" votes are 0, or
if the initiative's snapshot "YES" votes are 0. The first condition implies the second, therefore the
first check is redundant.

(Version 2)

5. Function Mat h. add() performs an unnecessary call to abs() when b is a positive value.

6. Function Uni queArray. requireNoDuplicat es() copies unnecessarely the input array from
cal | dat ato nenory.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 44

https://chainsecurity.com

7. Function Gover nance. getlniti ati veState() performs redundant SLOADs when accessing
registeredinitiatives[_initiative].

8. Function Gover nance. unregi sterlnitiative() performs redundant checks on the initiative
status, e.g.require(status != InitiativeStatus. NONEXI STENT, ...)

9. The function Governance. allocatelLQIY() could skip all the wupdates to the
InitiativeState andthe d obal St at e, in case the initiative is DI SABLED, and short-circuit to
the updates of the user's Al | ocat i on and User St at e.

(Version 3)

10. Function Uni queArray. _requi reNoNegati ves() copies unnecessarily the input array from
cal | dat ato menory.

11. Function wi t hdrawLQTY() unnecessarily overwrites a storage pointer:
user St at es[nsg. sender] = userState;.

12. A redundant variable upscal edSnapshot Vot es is declared inregi sterlnitiative().

13. The function _requi r eNoNOP() could check that only one value (either
_absol uteLQTYVotes[i] or _absol uteLQIYVetos) is non-zero to revert early if user
allocates both votes and vetos to an initiative.

14. Struct Doubl eLi nkedLi st . I t emuses type ui nt 256 for each field, hence occupying 4 storage
slots, although the values require less space.

15. Function regi sterlnitiati ve() gauges the user's total staked LQTY via an external call to
st aki ngV1, whereas it could add up his allocated and unallocated LQTY.

(Version 4)

16. Function Governance. | gt yToVotes() can be marked as external. Other functions in
Governance should use the internal version _| gt yToVot es() instead.

17. Function Gover nance. _requi reNoSi nmul t aneousVot eAndVet o() copies unnecessarily the
input array from cal | dat a to menory.

Code partially corrected:

The optimizations in points 1-9 have been implemented in (Version 3).
Points 11 and 13 have been implemented in

(S: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 45

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Cannot Partially Deallocate From DISABLED
and UNREGISTERABLE Initiatives

Partial deallocations are implemented by first resetting all allocations and then re-allocating part of the
LQTY. This, combined with the strict FSM checks implemented in _al | ocat eLQTY(), implies that
partial deallocations are not possible on DISABLED and UNREGISTERABLE initiatives.

8.2 CurveV2GaugeRewards Functionalities

The contract Cur veV2GaugeRewar ds should have the role di st ri but or in the Curve Gauge in order
to call the function deposi t _rewar d_t oken() .

The di stri butor of the Curve Gauge can also call set _reward_di stri butor(), however no
functionality is implemented in Cur veV2GaugeRewar ds to trigger it. This functionality would be relevant
if a new initiative is deployed to direct funds to a Curve gauge.

Liquity replied:

Fol | owi ng our usual procedures, we won't keep any kind of “adm n” role, neaning
that we won't be able to call “set _reward distribution® nor “add reward . W are
aware that we woul d need to depl oy a new pool and a new gauge if nore rewards
wanted to be added.

8.3 Depositing and Withdrawing LQTY in the
Same Transaction Reduce Voting Power

Assuming a user has staked to 2 weis of LQTY for 60 seconds, their voting power is 120. Depositing 2
more weis of LQTY, trigger the recalculation of the aver ageSt aki ngTi nest anp for the user, which
results in 30 seconds, hence the voting power before and after the deposit remains the same. If the user
withdraws the 2 newly deposited weis, their voting power actually halves to 60 (from 120).

As of (Version 4), this only applies to a user's unallocated staking line, see Unallocated staking line can
have unequal (virtual) average timestamp.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 46

https://chainsecurity.com

8.4 Expected Immutable Parameters

(D) (Version 1)

All of the numeric parameters present in this overview are contract immutables, set at deployment time.
The intended values to be used upon deployment are as follows:

ui nt 256 public i mmutabl e EPOCH DURATI ON,;

ui nt 256 public i mmutabl e EPOCH VOTI NG_CUTCOFF;

ui nt 256 public i mmutable M N CLAI M

ui nt 256 public i mutable M N_ACCRUAL;

ui nt 256 public i mmutabl e REA STRATI ON_FEE;

ui nt 256 public i nmmutabl e REG STRATI ON_THRESHOLD FACTOR,
ui nt 256 public i mutabl e UNREG STRATI ON_THRESHOLD FACTOR;
ui nt 256 public i nmmutabl e UNREG STRATI ON_AFTER_EPQOCHS;

ui nt 256 public i mutabl e VOTI NG_THRESHOLD_ FACTOR;

Any significant deviation from these values can break certain functionalities of the system. For example,
setting EPOCH_DURATI ON to less than the block time, or EPOCH_VOTI NG_CUTOFF to zero, breaks the
contract; setting a low amount as REG STRATI ON_FEE opens opportunity for DoS; or setting
UNREGQ STRATI ON_THRESHOLD FACTCRto a value less than 1 (1e18) breaks the unregistration rules.

8.5 Opportunity Cost of Vetoes
(D) (Version 1)

Users have a finite voting power for an epoch that can be split as YES votes, and NO votes (vetoes) on
different initiatives. Voting YES for an initiative increases the share of the revenues that is claimable by
that initiative. On the other hand, voting NO for an initiative might prevent that initiative from claiming
revenues, however it does not directly increase the share of revenues for a preferred initiative.

8.6 Staking With Permit Restrictions
(D) (Version 1

The function User Pr oxy. st akeVi aPerm t () requires that | gt yFr om matches the owner in the
Per m t Par ans. Given that this function can be called only from the Governance, and _| gt yFr omis set
to msg. sender, the functionality requires that a user issuing the permit needs to also submit the
transaction on-chain.

8.7 Theoretical Overflow in Math Function

(D) (Version 3

Function abs() in file Math.sol takes as input a which is of type i nt 256. If a is negative, then the
following casting is performed: ui nt 256(-i nt 256(a)) . Theoretically, an overflow can happen if a is
- 2** 255 as the intermediary positive value 2* * 255 cannot be stored in a type i nt 256. This means that
the function abs() only returns the correct value for integers in the range [- 2** 255, 2**255-1].

@ Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 47

https://chainsecurity.com

8.8 Unallocated Staking Line Can Have Unequal
(Virtual) Average Timestamp

(D) (Version 4

In of the codebase, staking and unstaking no longer requires a user to completely deallocate
his LQTY, and instead only affects his unallocated staking line. When this requirement was still in force, it
ensured that the ratio between the offset and the LQTY (i.e. the "virtual" average staking timestamp) of
the unallocated line be equal to that of all the allocated lines. Now this no longer holds: while a withdraw
preserves the timestamp, a deposit moves it closer to the present. The timestamp of the unallocated line
can also be moved back by partially deallocating through r eset Al | ocat i ons() . These "throw out of
sync" the unallocated line with respect to the allocated ones. This is however inconsequential, because
the average staking timestamp is no longer used anywhere in the code, and no invariant relies on an
exact proportionality of all staking lines (allocated and unallocated) of a given user.

Notice, however, that the allocated lines still have all the same x-intercept, since they were drawn right
after a complete reset, which merged everything back into the unallocated line. This means that now, for
the allocated lines to be all proportional, resetting before allocating is strictly necessary (unlike a previous
version of the codebase).

8.9 Voting Thresholds and Rewards Depend on
Allocated YES Votes
(D) (Version 3

We emphasize that the voting threholds and rewards do not depend on the sum of potential voting power
(allocated and unallocated) of all users of the system. Instead, the global snapshot of votes tracks only
the allocated YES votes. Therefore, the tresholds might be lower than expected in an epoch if there is
significant amount of unallocated staked LQTY or NO votes (vetos).

8.10 d obal St at e and User St at e Are Stale if
Queried in Hook

(D (Version 1)

The function al | ocat eLQTY() calls the onAfter Al l ocateLQTY() hook on the initiative before
updating the G obal State and User St at e variables, which therefore are stale if queried by the
initiative, in the hook, via the view functions.

Furthermore, 3rd-party protocols querying the view functions of the Governance contract should consider
that the returned data might be incorrect. Such view functions are susceptible to read-only reentrancy
attacks.

I:$: Liquity - Liquity V2 Governance - ChainSecurity - © Decentralized Security AG 48

https://www.chainsecurity.com/blog/curve-lp-oracle-manipulation-post-mortem#toc-read-only-reentrancy
https://www.chainsecurity.com/blog/curve-lp-oracle-manipulation-post-mortem#toc-read-only-reentrancy
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 UserProxy
	2.2.2 UserProxyFactory
	2.2.3 Governance
	2.2.4 BribeInitiative
	2.2.5 Changes in Version 2
	2.2.6 Changes in Version 3
	2.2.7 Changes in Version 4

	2.3 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Vetoes Can Be Removed Past the Epoch Voting Cutoff
	5.2 Excessive Gas Buffer in safeCallWithMinGas()
	5.3 Function safeCallWithMinGas() Always Forwards MIN_GAS_TO_HOOK
	5.4 Hard Requirements on claimBribes Might Harm User Experience
	5.5 Inconsistent Timestamp Used for Registration Threshold
	5.6 Possible Stuck Tokens in BribeInitiative

	6 Resolved Findings
	6.1 Initiative Votes Can Be Manipulated
	6.2 Deallocating From DISABLED Initiatives Makes GlobalState Incorrect
	6.3 Votes in BribeInitiative Are Evaluated at Current Timestamp
	6.4 Initiative Hooks Are Susceptible to Low Gas Attacks
	6.5 Typo in the Code Causes Incorrect Calculation
	6.6 User's Average Timestamp Can Change Between Allocation and Deallocation of LQTY
	6.7 Vote Tallying Is Incorrect
	6.8 Bribes Are Capped at Total Balance
	6.9 Conflicting Functionalities for ForwardBribe
	6.10 Governance Does Not Enforce Warm-Up Period for Initiatives
	6.11 Initiative's Timestamp Can Be Manipulated
	6.12 Bribe Accounting Is Based on LQTY Amounts Instead of Votes
	6.13 EOAs Are Not Supported as Initiatives
	6.14 Initiative Deregisterability Is Inconsistent
	6.15 Initiative Is Deregisterable Right After Claiming
	6.16 Possible Frontrun in CurveV2GaugeRewards
	6.17 Stuck Allocations
	6.18 Unsafe Casting on Math Functions
	6.19 Possible Underflow in withdrawLQTY
	6.20 Rounding Error on Offset Calculation
	6.21 Allocation of Zero LQTY Triggers State Updates and Emit Events
	6.22 CurveV2GaugeRewards Does Not Check remainder
	6.23 Incomplete Events
	6.24 Meaningless Checks in BribeInitiative._claimBribe()
	6.25 Mismatch of Code With the Error Message
	6.26 Remaining ToDos in the Codebase
	6.27 Unsafe Casting in lqtyToVotes
	6.28 Inconsistent Behavior for Retrieval of Tokens From Staking V1
	6.29 Incorrect Specifications
	6.30 Initiative Snapshot Is Never Deleted
	6.31 Initiatives Can Be Registered With No Staking in First Weeks
	6.32 Possible Simplification of onAfterAllocateLQTY
	6.33 Return Value of Ether Transfer
	6.34 Special Check in onAfterAllocateLQTY
	6.35 Unnecessary Approval Given to LQTYStaking
	6.36 Votes for UNREGISTERABLE Initiatives
	6.37 _calculateAverageTimestamp() Could Be off by One Second
	6.38 Confusing Name for Initiative Status
	6.39 Encoding Functionalities Are Unused
	6.40 Governance Interface Is Incomplete
	6.41 Inconsistent Use of safeTransfer
	6.42 Misleading Function Name
	6.43 Signed Integers Are Needlessly Wide
	6.44 Unused Function in Math

	7 Informational
	7.1 Possible Code Simplifications
	7.2 Superfluous Calculations in Voting Threshold
	7.3 BOLD Could Be Accrued for Previous Epoch
	7.4 Default Values in DoubleLinkedList
	7.5 Possible Gas Optimizations

	8 Notes
	8.1 Cannot Partially Deallocate From DISABLED and UNREGISTERABLE Initiatives
	8.2 CurveV2GaugeRewards Functionalities
	8.3 Depositing and Withdrawing LQTY in the Same Transaction Reduce Voting Power
	8.4 Expected Immutable Parameters
	8.5 Opportunity Cost of Vetoes
	8.6 Staking With Permit Restrictions
	8.7 Theoretical Overflow in Math Function
	8.8 Unallocated Staking Line Can Have Unequal (Virtual) Average Timestamp
	8.9 Voting Thresholds and Rewards Depend on Allocated YES Votes
	8.10 GlobalState and UserState Are Stale if Queried in Hook

