PUBLIC

Code Assessment

of the Bold
Smart Contracts

14 May, 2025

(Liquity

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Liquity - Bold - ChainSecurity - © Decentralized Security AG

15
16
17
19
42
48

https://chainsecurity.com

1 Executive Summary

Dear Liquity team,

Thank you for trusting us to help you with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Bold according to Scope to
support you in forming an opinion on their security risks.

Liquity implements Liquity V2, a decentralized stablecoin system with user set interest rates, iterating on
Liquity V1.

The most critical subjects covered in our audit are functional correctness, rounding issues, and
correctness of external integrations. The security regarding functional correctness is high, after issues in
prior versions were resolved: Zappers can lose user funds. Security regarding rounding issues has been
improved after the amount of share inflation was restricted, see Rounding in debt shares calculation can
mint unbacked tokens. Security regarding external integrations is high, as issues with Balancer and
Leverage Zapper have been resolved: BalancerFlashLoan missing access control and Leverage zappers
do not return swap excess.

The general subjects covered are documentation, trustworthiness and code complexity. The project has
very extensive documentation. The trustworthiness is high, as the system is designed to be immutable
with limited trust assumptions. The system's contracts are very complex, which carries increased risk
compared to simpler code.

In summary, we find that the core contracts provide a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

(EIED-Severity Findings 1
W Code Corrected) 1
(CL:0)-Severity Findings 3
N Code Corrected 3
(Medium)-Severity Findings 1
o) 1
(Low)-Severity Findings 16
N Code Corrected 12
W'Sbecitication Changed) 3
A cknowedged 1
I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Bold repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note

1 | 30 Aug 2024 | 7d9c8e68104cd4493f8b7da7e28e6951a2f84304 Initial Version

2 | 08 Nov 2024 | d72dcblbb2c8cbefd5ea37350d921d1bb7736dal Version with fixes
3 | 09 Dec 2024 | 26ff5h24a83978801fa561af27dd9fcbh228ed9af Version with fixes
4 | 13 Jan 2025 | ce0128a31922b4f7f5d79efb57cabd1lcfe6616d0 First Launch

5 | 03 Mar 2025 | f87639de70369555073e00664bc8f7ealfb9f000 Bug fixes

6 | 06 May 2025 | 2e901c785ba5c6d9lalfd55a358ead638961442a Version with fixes
7 | 14 May 2025 | abe7cbfbd465fba3812282¢c51773455766a70e96 Final Version

For the solidity smart contracts, the compiler version 0. 8. 24 was chosen.

This review assumes that the contracts will be deployed only to Ethereum mainnet. Prior to deploying to
another chain, an additional in-depth assessment of the differences between that particular chain and
Ethereum mainnet, and its effects on the contracts, must be done.

The following contracts in the folder cont r act s/ sr c are in the scope of the review:

Acti vePool . sol
Addr essesRegi stry. sol
Bol dToken. sol
Bor r ower Oper ati ons. sol
Col | ateral Regi stry. sol
Col | Sur pl usPool . sol
Def aul t Pool . sol
Sort edTroves. sol
GasPool . sol
St abi l'i tyPool . sol
Tr oveManager . sol
Tr oveNFT. sol
Dependenci es:
AddRenpoveManager s. sol
Aggr egat or V3I nterf ace. sol
Const ant s. sol
| RETHToken. sol
Li qui t yBase. sol
Li qui t yMat h. sol
Ownabl e. sol
Interfaces:
| AddRenmoveManager s. sol

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 5

https://github.com/liquity/bold/tree/7d9c8e68104cd4493f8b7da7e28e6951a2f84304
https://github.com/liquity/bold/tree/d72dcb1bb2c8cbefd5ea37350d921d1bb7736da1
https://github.com/liquity/bold/tree/26ff5b24a83978801fa561af27dd9fcb228ed9af
https://github.com/liquity/bold/tree/ce0128a31922b4f7f5d79efb57ca6d1cfe6616d0
https://github.com/liquity/bold/tree/f87639de70369555073e00664bc8f7ea1fb9f000
https://github.com/liquity/bold/tree/2e901c785ba5c6d91a1fd55a358ead638961442a
https://github.com/liquity/bold/tree/abe7cbfbd465fba3812282c51773455766a70e96
https://chainsecurity.com

| Addr essesRegi stry. sol
| Bol dRewar dsRecei ver. sol
| Bol dToken. sol
| Col | at eral Regi stry. sol
| Col | Sur pl usPool . sol
| Bor r ower Qper at i ons. sol
| Communi t yl ssuance. sol
| Conposi t ePri ceFeed. sol
| Def aul t Pool . sol
| Hi nt Hel pers. sol
I I nt er est Rout er. sol
| Li qui t yBase. sol
| LQTYSt aki ng. sol
| LQTYToken. sol
I Mul ti TroveGetter. sol
| Pri ceFeed. sol
| Sort edTr oves. sol
| St abi l'i tyPool . sol
| St abi |i t yPool Event s. sol
| TroveEvent s. sol
| TroveManager . sol
| Tr oveNFT. sol
| WETHPr i ceFeed. sol
| VETH. sol
| WETETH. sol
| WBTETHPr i ceFeed. sol
Pri ceFeeds:
Conmposi t ePri ceFeed. sol
Mai nnet Pri ceFeedBase. sol
RETHPr i ceFeed. sol
WETHPr i ceFeed. sol
WSTETHPr i ceFeed. sol
Types:
Bat chl d. sol
Lat est Bat chDat a. sol
Lat est Tr oveDat a. sol
Trovel d. sol
Tr oveChange. sol
Zappers:
Lever ageWETHZapper . sol
WETHZapper . sol
Lever ageLSTZapper . sol
GasConpZapper . sol
I nterfaces:
| Lever ageZapper . sol
| Fl ashLoanRecei ver. sol
| Fl ashLoanPr ovi der. sol
| Exchange. sol
Modul es/ Exchanges:
Cur veExchange. sol
Uni V3Exchange. sol
Modul es/ Fl ashLoans:
Bal ancer Fl ashLoan. sol

In (Version 2), the scope was modified as follows:

(S: Liquity - Bold - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

« The files and contracts BaseZapper, Lef t over sSweep and Hybr i dCur veUni V3Exchange have
been added.

2.1.1 Excluded from scope

Any contracts that are not explicitly listed above are out of the scope of this review. Third-party libraries,
like openzeppelin libraries, are out of the scope of this review.

The soundness of the financial model was not evaluated.
The repository is a monorepo: only the smart contracts listed above were the scope of the review.

Any known issues at the time of the report, (such as those mentioned in the docs, GitHub issues on the
public Bold repo, or on the Security Advisory page of the Liquity V1 repo) are considered out of scope
and have generally not been duplicated in this report.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Liquity V2 is a decentralized borrowing protocol, which issues the BOLD stablecoin. The codebase is a
fork of the Liquity V1 codebase, using the same core architecture.

This system overview focuses on the parts that are new in Liquity V2 compared to V1. A detailed
description of the entire system can be found in the ReadMe of the Bold repo (archived version here).

2.2.1 Major changes from Liquity V1

1. Multi-collateral system: The system includes a CollateralRegistry and multiple collateral
branches, each with its own parameters and TroveManager, where liquidations and gains are
handled within the same branch.

2. Collateral choices: The system supports collateral branches for ERC-20 tokens (WETH, rETH,
and wstETH), but not native ETH.

3. User-set interest rates: Borrowers can set and change their annual interest rates, with interest
accruing continuously and compounded discretely, and aggregate debt periodically minted as
BOLD.

4. Yield from interest paid to SP and LPs: Interest from Troves is split between the Stability Pool
and a router for DEX LP incentives, with each branch's interest paid to its own SP.

5. Redemption routing: BOLD redemptions are managed by the CollateralRegistry, aiming to restore
the BOLD peg and reduce unbackedness in the most unbacked branches.

6. Redemption ordering: Redemptions now prioritize Troves with the lowest annual interest rates,
ignoring collateral ratios.

7. Unredeemable Troves: Troves with very small BOLD debt after redemptions are tagged as
unredeemable to prevent griefing attacks, becoming redeemable again when debt exceeds
M N_DEBT.

8. Troves represented by NFTs: Troves are transferable as NFTs, allowing multiple Troves per
Ethereum address.

9. Individual delegation: Trove owners can appoint managers to set interest rates and control debt
and collateral adjustments.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 7

https://web.archive.org/web/20240905124114/https://github.com/liquity/BOLD?tab=readme-ov-file
https://chainsecurity.com

10. Batch delegation: Trove owners can appoint batch managers to adjust interest rates for multiple
Troves within a predefined range.

11. Collateral branch shutdown: In extreme conditions, a collateral branch can be shut down,
freezing operations and enabling urgent redemptions to clear debt quickly.

12. Removal of Recovery Mode: Recovery Mode is removed, with liquidations only occurring below
the minimum collateral ratio. Borrowing restrictions still apply below the critical threshold.

13. Liquidation penalties: Liquidated borrowers below the minimum collateral ratio may now reclaim
some collateral depending on the branch and liquidation type.

14. Gas compensation: Liquidators receive gas compensation in a mix of collateral and WETH, with a
cap on variable compensation.

15. More flexibility for SP reward claiming: SP depositors can claim or stash LST gains and either
claim BOLD yield gains or add them to their deposit.

2.2.2 CollateralRegistry

Liquity V2 supports multiple collateral tokens. The CollateralRegistry contract stores a list of all the valid
collateral branches. Each collateral token has its own set of independent contracts, including a
TroveManager, StabilityPool, BorrowerOperations, ActivePool, DefaultPool, SortedTroves, GasPool, and
CollSurplusPool.

Collaterals can only be defined in the constructor. Once the system is deployed, it is impossible to add
any new collateral.

The CollateralRegistry is now the entry point into redemptions (rather than the TroveManager as in
Liquity V1). The redeentol | at eral function will redeem BOLD from all active collateral branches
simultaneously. The amount redeemed from each branch is weighted by their "unbackedness". The
unbackedness is defined as the difference between the total BOLD debt of the branch, and the BOLD in
the branch’s StabilityPool (SP).

Example: Two active collateral branches, branch 1 has 1000 debt and 500 BOLD in the SP. Branch 2 has
2000 debt and 500 BOLD in the SP. If a redemption of 400 BOLD is requested, 100 will be redeemed
from branch 1 and 300 will be redeemed from branch 2. This is because the unbackedness of branch 2 is
three times as large as that of branch 1.

Redemptions in each branch still work the same as in Liquity V1, except that troves are not closed if they
are fully redeemed. Instead, they just stay open with no debt. Also, redemptions start with the lowest
interest rate trove, not the lowest collateral ratio trove.

2.2.3 Trove interest rates

In Liquity V2, trove owners pay an interest rate on their borrowed BOLD. The interest rate is set when
opening the position and can later be adjusted by the owner or can be delegated. The interest rate
chosen must be in the valid range (currently between 0.5 - 100% APR). Troves are now redeemed in
order of interest rate, starting with the lowest one. This incentivizes users to choose higher interest rates,
as they will generally want to avoid redemption. However, users are also incentivized to choose a rate
that is not too high, as otherwise, they will pay more interest than necessary. This should result in the
market converging to a fair interest rate.

The contract stores the total interest rate paid by the system as the weighted sum of trove debt multiplied
by trove interest rate:

SUM trove. debt trove.interestRate)

This expression is then used to mint the interest on every call modifying the debt. It is minted in a fixed
split rate of SP_YI ELD SPLI T (currently set to 75%) to the Stability Pool (SP), and the rest to the
Interest Router. The Stability Pool liquidity providers receive interest based on their share of the provided

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

liquidity remaining in the pool (similar to how collateral gains are calculated). The yield is not
automatically added to the user's BOLD deposit, it requires user action to compound.

The system uses the weighted sum to calculate the "approximate" average interest in the branch as:

SUM trove. debt (exl. interest f ees) trove.interestRate)
SUM trove. debt (incl. interest fees))

Whenever a user borrows BOLD, they pay an upfront fee equivalent to 1 week of average interest on the
amount borrowed. Further, any time they adjust their interest rate before
| NTEREST RATE_ADJ COCOLDOWN (currently 3 days) has passed, they will be charged a fee equivalent
to UPFRONT _| NTEREST_PERI OD (currently 1 week) of the average interest rate. This is to discourage
users from changing their interest rate often to avoid redemptions.

2.2.4 Individual delegation

Trove owners can delegate certain rights to other addresses (for example to facilitate a hot/cold wallet
setup). There are four delegations that can be set:

1. addManager: This role can execute trove actions that improve a trove's collateralization, such
as paying back debt or adding collateral. If this role is set to the zero address, anyone is
allowed to.

2. removeManager: This role can execute trove actions that make a trove's collateralization
worse, such as taking on debt or removing collateral.

3. receiver: This is the address that will receive minted tokens or collateral requested by the
remove manager. If it is set to zero, the owner will receive the tokens. When the owner makes
a withdrawal, the tokens are always sent to the owner.

4. interestindividualDelegate: This role can adjust the interest rate of the trove within a certain
range.

2.2.5 Batch delegation

Trove owners who do not want to manage their interest rate themselves can join a batch. A batch is a
group of troves that all have the same interest rate, set by the batch manager. The manager can adjust
the batch's interest rate at a specified maximum frequency and within a predefined range. In return, the
manager can set a management fee, which is minted to the manager as new BOLD tokens, while the
corresponding debt is added to the troves in the batch (pro rata).

The debts of all troves in a batch are accounted together, in a single debt variable. Each trove in turn
receives debt Shar es, which represent their share of the debt. A trove's debt (ignoring pending debt
redistributions) is calculated as:

bat ch. debt trove. bat chDebt Shar es bat ch. t ot al Debt Shar es;

2.2.6 Collateral Branch shutdown

A branch can shut down under two conditions:
1. The TCR (Total collateral ratio) of the branch falls below the SCR (shutdown collateral ratio)
2. The Chainlink oracle fails by reverting, returning a non-positive price, or becoming stale

An oracle failure will trigger a shutdown when a user attempts to close a trove (either by closing or
liquidating) or when the oracle is called directly to fetch the price. Other actions, such as opening a trove,
will simply revert and not trigger a shutdown.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The condition TCR < SCR will trigger a shutdown when the shutdown function is called. A shutdown will
perform the following steps:

1. Mint any pending interest to the Stability Pool (SP). No more interest will be minted after this point.
2. Set the branch's isShutdown flag in the BorrowerOperations.

3. Set the shutdown time in the active pool and trove manager.

The isShutdown flag in the BorrowerOperations will prevent users from performing any operations with
the contract except for closing troves. The shutdown time is used to calculate the pending interest owed
by trove owners up until shutdown and to mint any pending management fee to the batch manager. After
a shutdown, the collateral registry will not route any redemptions through the branch. Instead, redeemers
are expected to call urgentRedemption on the TroveManager to redeem collateral from the shut-down
branch. These urgent redemptions are allowed for all troves, regardless of their collateral ratio and
interest rate. They generally behave like regular redemptions, except that there is no redemption fee, and
the redeemer receives a bonus of URGENT_ REDEMPTI ON BONUS (e.g. 1%) on the collateral they
redeem, paid by the trove owner. Urgent redemptions can lower the collateralization ratio of the system,
prioritizing speed. The shutdown allows liquidations to continue, so the following actions are still allowed:

ecl oseTrove()

e bat chLi qui dat eTr oves()
eclai nCol | ateral ()

e urgent Redenpti on()

In case an urgently redeemed trove has an ICR under 101%, the redeemer will receive all the collateral,
and the trove will be left with some debt. This debt can then be liquidated against the stability pool or
redistributed to other troves. In case the TCR of the branch is below 101% and the stability pool is empty,
the end-state will be a single remaining trove with no collateral and some bad debt. This could lead the
BOLD token to depeg, which could in turn affect the other branches.

2.2.7 Gas compensation

For every trove opened, a gas compensation for a potential liquidation must be deposited. The fixed gas
compensation (currently set to 0.0375 WETH) is always paid upfront, in WETH, regardless of the
collateral token used.

The second part of the gas compensation is determined at the time of liquidation. It is taken as a
percentage of the trove's collateral (currently set to 0.5%), with a maximum cap (currently set to 2 (2e18)
of the collateral token).

This ensures that the gas compensation for large troves is higher than for small troves. This makes
sense, as an unliguidated large trove is a bigger risk to the system's health than a small one.

2.2.8 PriceFeeds (Oracles)

Liquity V2 uses price feeds based on Chainlink oracles.

If a call to the Chainlink aggregator fails during a «call to fetchPrice(), the
di sabl ePri ceFeedAndShut Down function will be called, which initiates the Collateral Branch
Shutdown. The branch will continue using the price feed's last valid price. This price may be significantly
different from the real market price.

For some collateral tokens, a CompositePriceFeed is used. Here, the LST/USD price is calculated as the
product of the LST/ETH and the ETH/USD price. The LST/ETH price is queried in two ways: once by
calling the Chainlink oracle, and once using the LST's contract to get the "canonical rate" of how many
ETH are backing each of the LST tokens. Out of these two, the minimum price is used. In (Version 1) if the
canonical rate call reverts, the oracle will not trigger a branch shutdown. (This changed in Changes In
Version 2.)

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

2.2.9 Zappers

Liquity V2 introduces zappers, which can be used to wrap ETH into WETH (required for the gas
compensation) and make a deposit to Liquity V2 in the same transaction. They can also be used to take
on leverage using flashloans.

The zapper will set the addManager, removeManager, and receiver to itself in BorrowerOperations. This
allows the zapper to adjust the trove on behalf of the user later. The zapper implements its own access
control, which also supports delegating the same roles.

There are currently two supported zappers: GasCompZapper allows depositing ERC20 collateral and
wrapping ETH for the gas compensation at the same time. WETHZapper allows wrapping ETH and using
it for the gas compensation and as collateral simultaneously.

The zappers contain the following functions:

e openTroveW t hRawkTH() : Allows opening a Trove using raw ETH as the gas compensation
(and raw ETH as collateral for WETHZapper).

e addCol | Wt hRawkTH() : Allows adding collateral to a trove. For WETHZapper, raw ETH is first
wrapped. The user must be the trove owner or be set as add manager in the zapper.

*w t hdrawCol | ToRawETH() : Allows withdrawing collateral from a Trove. For WETHZapper,
WETH is unwrapped to ETH before being sent to the user. The user must be the trove owner or
be set as remove manager in the zapper.

eadj ust TroveWt hRawkTH() : Allows adjusting a Trove's collateral and debt. For
WETHZapper, raw ETH can be wrapped and used as collateral or unwrapped when
withdrawing. The user must be the trove owner or have the required permissions for the
adjustment in the zapper.

*cl oseTroveW t hRawETH() : Allows closing a Trove. The gas compensation is unwrapped and
sent to the user as raw ETH. For WETHZapper, withdrawn collateral is also unwrapped to ETH.
The user must be the trove owner or be set as remove manager in the zapper.

The basic zappers are extended by LeverageLSTZapper and LeverageWETHZapper. These allow taking
a flashloan to create or unwind a levered BOLD position. Currently, only Balancer is implemented as a
flashloan source.

The leverage zappers contain the following functions:

e openLever agedTroveW t hRawETH() : Allows opening a Trove using raw ETH as the gas
compensation (and raw ETH as collateral for WETHZapper). Some of the collateral is provided
by the user, the rest is taken from a flashloan. After opening, the minted BOLD are sold on a
DEX to repay the flashloan. This creates a levered long position on the collateral token.

ol ever UpTrove() : Uses a flashloan to increase the leverage of a trove. The user must be the
trove owner or be set as remove manager in the zapper and the zapper must be set as add
manager, remove manager and receiver in the trove manager.

| ever DownTr ove() : Uses a flashloan to decrease the leverage of a trove. The user must be
the trove owner or be set as remove manager in the zapper and the zapper must be set as add
manager, remove manager and receiver in the trove manager.

When swapping, the minimum swap price is defined implicitly. With the passed par ans, the user must
define the amounts correctly. The swap will always happen such that the exact amount of collateral taken
as flashloan is swapped (to). For example, if the user calls | ever UpTrove() with af | ashLoanAnount
of 1 WETH and a BOLDAnount of 2000 BOLD, 2000 BOLD will be taken as additional debt, and at most
this amount will be swapped for 1 WETH (any excess will not be swapped). If the price on the chosen
market is worse than 2000 BOLD per WETH, the transaction will revert. This is the minimum swap price.
If the user does not set the par ans correctly, they may incur significant slippage through MEV Sandwich

(S: Liquity - Bold - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

attacks. Note that the removeManager set in the zapper has the power to perform these swap
parameters, so they must be fully trusted.

2.2.10 Trust Model

The system's contracts are designed to be immutable, with limited trust assumptions. There are no admin
roles (after deployment is complete) or upgradeability mechanisms (except for those in the oracles used).

The AddressesRegistry, BoldToken, and MainnetPriceFeedBase contracts assign an owner role. These
owners are expected to correctly configure the system and relinquish their ownership afterwards.

The trust model for removeManager and receiver depends on their configuration. When both addresses
are set, the receiver gets all funds withdrawn: removeManager and receiver are fully trusted to manage
the user funds. If both addresses are compromised, they could withdraw all the funds from the Trove. If
the receiver is set to address 0, the funds are transferred to the Trove owner instead. In this case, the
removeManager is only trusted to maintain the collateralization ratio to avoid causing losses to the owner
(e.g., by lowering the ICR close to the liquidation threshold). Additionally, the receiver configured in the
Zapper must be trusted not to revert transactions. Otherwise, they could cause a denial of service (DoS)
by exhausting all available gas when receiving ETH via raw call.

The interestindividualDelegate and batchManager are trusted to adjust the interest rate in the best
interest of the Trove owner. They are expected not to modify the interest rate more frequently than
necessary, as the owner will incur upfront fees for each adjustment. Furthermore, they are trusted to set
the interest rate at an optimal level, balancing the risk of redemptions with the cost of interest.

The Chainlink Oracle is trusted to provide price updates within the expected threshold and return prices
in the expected format, not changing the return data size or the decimals used to report prices.
Additionally, they are trusted not to revert any calls.

The addManager can only improve the collateralization ratio of a trove. The addManager is mostly
untrusted, but can perform some special actions described in the Notes.

We have specifically investigated the use of WETH, wstETH and rETH as collateral tokens (i.e. their
respective Ethereum mainnet deployments). Any token that does not use 18 decimals of precision or has
other non-standard behavior is not supported by the protocol.
https://web.archive.org/web/20240930034220/https://github.com/d-xo/weird-erc20

2.2.11 Changes in Version 2
of the codebase introduces the following changes:

* The cl oseTroveFronCol | at eral function has been added to the GasCompZapper and
WETHZapper contracts. This function allows the zapper to close a trove by selling its collateral,
instead of repaying with BOLD from the user. It accomplishes this by taking a flashloan of
collateral tokens, swapping them to BOLD on an exchange, then using the received BOLD to
repay the trove debt. The collateral that was in the trove is used to repay the loan, with excess
going to the user.

» Unredeemable troves have been renamed to zombie troves. When a trove becomes a zombie
trove but still has some debt (through a partial redemption), a pointer to it is stored. When the
next redemptions on the branch happen, that trove will be redeemed first (until it has no more
debt). Usually, there should only be one zombie trove with more than zero debt at a time.
However, if there are troves with collateral and no debt when a redistribution happens, they can
receive debt. This debt will not be redeemable.

 Similar how batch manager can only update the interest rates in a maximum frequency, users
can now set a minimum period between interest rate adjustments for their
interestindividualDelegate. This can lower the trust required in the delegate.

» Borrowing is now allowed if the system is below the critical threshold, as long as the new trove
brings the system back above the critical threshold.

(S: Liquity - Bold - ChainSecurity - © Decentralized Security AG 12

https://web.archive.org/web/20240930034220/https://github.com/d-xo/weird-erc20
https://chainsecurity.com

» The CompositePriceFeeds has been updated. They now continue to report prices if the LST
Chainlink Oracle fails. The collateral branch is still shutdown, however the LST price will then be
calculated using the ETH oracle price and the canonical exchange rate returned by the LST
contract. The price is only allowed to be reduced, it can never increase when calculated this
way. According to Liquity, this design incentivizes redeemers to quickly repay all outstanding
debt on a shutdown branch by offering them the "lowest available price" on (urgent)
redemptions.

Redemption of LSTs uses the f et chRedenpti onPri ce function to get the collateral token
price, taking the maximum of the LST price and the canonical price, as long as the prices are not
at least 2% (for rETH) or 1% (for wstETH) apart. This reduces the risk of redemption arbitrage
due to oracle price deviations. In previous versions, redeemers could exploit (downward) price
deviations to redeem collateral at a lower price to cause losses to trove owner.

In case the price difference exceeds the threshold, it is assumed to be a legitimate price
difference, with the canonical exchange rate lagging behind (updated once per day). In these
cases, redemptions (like all other price-relevant operations) return the minimum price for rETH,
as the rETH/ETH oracle price is considered by Liquity to be more susceptible to upward
manipulation that would otherwise make redemptions unprofitable. The stETH/USD oracle price
feed is considered to be more resistant, so the redemption price for wstETH in case of a > 1%
price difference is calculated with Chainlink's stETH price multiplied by the canonical exchange
rate.

» The LST price feeds now trigger a shutdown if the canonical price call to the LST contract
reverts.

2.2.12 Changes in Version 4
of the codebase introduces the following changes:

* The | NTEREST_RATE_ADJ COOLDOMN has been increased from 3 to 7 days.
» The URGENT_REDEMPTI ON_BONUS changed from 1% to 2%.
e The MAX_LI QUI DATI ON_PENALTY_REDI STRI BUTI ONS increased from 10% to 20%.

2.2.13 Changes in Version 5
of the codebase introduces the following updates:
» Parameter Adjustments:
» The Critical Collateral Ratio (CCR) is increased from 150% to 160% for staked ETH

branches (sETH / rETH).

» The Minimum Collateral Ratio (MCR) is increased from 110% to 120% for staked ETH
branches (sETH / rETH).

» The Liquidation Penalty Redistribution is increased from 10% to 20% for staked ETH
branches (sETH / rETH).

* The maximum annual interest rate is increased from 100% to 250%.

» The minimum interest rate adjustment period is increased from 1 minute to 1 hour.

* A 10% buffer collateral ratio is introduced on top of the MCR for modifying troves in batches. For
staked ETH branches, this results in an effective collateralization ratio of 130% (120% MCR +
10% buffer). The increased collateralization requirement applies only when opening a new trove,
modifying an existing one, or joining/switching to a batch. Liquidations remain unaffected and
continue to use the MCR of 120% for staked ETH branches.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

* A minimum deposit of 1e18 BOLD tokens is now required in the Stability Pool. Only amounts
exceeding this minimum can be used to offset debt during liquidations. Users cannot withdraw
the last 118 BOLD from the Stability Pool, but they can initially deposit less than 1e18 BOLD.

» The Stability Pool can no longer be fully emptied via liquidation due to the minimum deposit
requirement. As such the the pool no longer stores epochs to keep account of pool-emptying
events. The precision of the running variable P, which tracks the remaining deposits in the pool,
is increased from 1e18 to 1e36. Further, the error correction mechanisms for calculating running
variables P, S, and B are removed as part of this change.

2.2.14 Changes in Version 6
of the codebase introduced the following changes:

* Liquidators now receive only a portion of the trove collateral offset by the Stability Pool instead
of the total collateral. If the total debt of the trove is redistributed, they only receive the WETH
gas compensation.

* The owner of the last trove in a branch can now close the trove if the branch is shutdown.

* Allow anyone to remove a trove from a batch with inflated batch shares (ki ck). The trove from
the batch is assigned the same interest rate as the batch it was previously in.

e The RenpbveManager role now inherits AddManager permissions, allowing any
RenoveManager to add collateral or repay debt for a trove.

2.2.15 Changes in Version 7
of the codebase introduced the following changes:

» The MainnetPriceFeedBase contract no longer has an owner and is now configured during
deployment.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

« CIEED): Architectural shortcomings and design inefficiencies
o (ENTITED: Mismatches between specification and implementation

« @D: Violations to the least privilege principle

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings E

(C)-Severity Findings 0

(Medium)-Severity Findings 1
 Unredeemable Troves Can Pay Minimum Interest Rate ()

(Low)-Severity Findings 1

« Discrepancy in swapFromBold Behavior(__)

5.1 Unredeemable Troves Can Pay Minimum

Interest Rate
(Mediumj [Version 1] (j

A trove that has less than M N_DEBT is marked as unredeemable (also referred to as a zombie trove).
Unredeemable troves are not part of the sorted list of troves that can be redeemed, to prevent clogging of
the list with tiny troves.

CS-BOLD-005

As unredeemable troves have no risk of being redeemed, they are not incentivized to pay more than the
minimum interest rate. A trove can intentionally be made unredeemable by opening it with M N_DEBT,
then self-redeeming a small amount of debt to bring it below M N_DEBT.

As such, it could be profitable to open many small troves and make them unredeemable, rather than
creating a single large trove that must pay a higher interest rate to avoid redemption.

However, there are a few mitigating factors that make this strategy unattaractive:

1. For each trove opened, the ETH _GAS COVPENSATI ON amount of WETH must be locked up.
This is a fixed cost per trove. However, this amount is returned when closing the trove, so the
cost is mainly the cost of capital/opportunity cost on this amount.

2. The Ethereum gas fee must be paid for the opening, redeeming, and closing of each trove.
This is a fixed cost per trove, but changes over time depending on the gas price.

3. Unredeemable troves cannot be adjusted, except if they are made redeemable. This means
any collateralization adjustment (e.g. to avoid liquidation) to the troves must be done in 2 steps:
First adjust the trove, then self-redeem again to make it unredeemable. These steps must be
repeated for every trove, so the cost of adjusting the trove is 2n times the cost of adjusting a
single trove, where n is the number of troves.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

4. Interest accrual will eventually increase the debt of the trove above M N_DEBT, making it
redeemable. This means the trove must start with a debt significantly below M N_DEBT.

Ultimately, the strategy's profitability will depend on the balance between the additional costs (which
heavily depend on gas price) and the interest rate savings.

Code partially corrected:

Unredeemable troves have been renamed to zombie troves. When a trove becomes a zombie trove but
still has some debt (through a partial redemption), a pointer to it is stored. When the next redemptions on
the branch happen, that trove will be redeemed first (until it has no more debt).

This resolves the attack described in the issue, as small troves can now be redeemed.

Note that there is still an edge case where the issue persists: Usually, there should only be one zombie
trove with more than zero debt at a time. However, if there are troves with collateral and no debt when a
liquidation through redistribution happens, they can receive debt. This debt will not be redeemable and
those troves can still pay only the minimum interest rate, as long their debt stays below M N_DEBT.

Intentionally creating troves like this is difficult, as it requires liquidations to take place when the stability
pool is completely empty, which should only happen in extreme circumstances. It should be significantly
easier to do this when the system is first deployed and there are no other users on the same branch yet,
or when a branch's collateral token becomes very unpopular.

Note on the audit process: This issue was reported to ChainSecurity by Liquity while the audit was in
progress. It had also been discovered internally already, though the severity had not been fully assessed
yet.

The GitHub issue related to Liquity's report can be found here.

5.2 Discrepancy in swapFromBold Behavior
(Low](Version 1)[)

The UniV3Exchange and CurveExchange both implement the swapFronBol d function. As the
exchanges can be used interchangeably, it is expected that they behave the same.

CS-BOLD-006

However, the UniV3Exchange uses an Exact Qut put swap, which swaps the exact amount of collateral
tokens requested, and may leave excess BOLD tokens. CurveExchange on the other hand uses Curve's
exchange function, which is equivalent to an Exact | nput swap, and may leave excess collateral
tokens.

Acknowledged:

Liquity acknowledged that Exact Qut put is more natural but stated that they may add more exchanges
in the future and cannot guarantee that every exchange implements the version they choose.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 18

https://web.archive.org/web/20241003090539/https://github.com/liquity/bold/issues/425
https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 1
y g

« Rounding in Debt Shares Calculation Can Mint Unbacked Tokens

(C)-Severity Findings 3
« BalancerFlashLoan Missing Access Control

* Leverage Zappers Do Not Return Swap Excess (SRS L)
« Zappers Can Lose User Funds (LR IiE= L)

(Medium)-Severity Findings 0
(Low)-Severity Findings 13
ty g

* Incorrect Scaling of P (LRSIl

* Pool Deposit Are Compared to Precision

» Total Deposit Are Compared to Wrong Constant

» Batches Can Be Used to Make Two Free Adjustments in a Row
- Delegation Specification

« Incorrect Code Comments

» Interest Delegates Are More Trusted Than Needed
» Missing Payable Modifier

« Missing Validation of Troves in Urgent Redemptions
» Opening Troves Can Be Blocked

» Out-of-gas May Lead to Shutdown

« Price Limit in UniV3Exchange Is Too Strict

» Shutdown Can Be Triggered Twice

» User-provided transferFrom Source Address

« Zapper Delegation Is Not Reset When a Trove Is Closed @il NS ETT-l

Informational Findings 12

+ Gas Optimizations in StabilityPool

» Receiver Address in Balancer Flashloan Is Reset Late
» Backed Tokens Can Be Redeemed Unproportionally

« CEl Pattern Violated in Adjust Trove

« Comments From Development

» Core Debt Invariant Incorrectly Documented

* Floating Pragma (&R IEE L

@ Liquity - Bold - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

« Inconsistent Input Validation by Zappers

» Indexed Parameters of Events

+ Minting Unbacked Tokens via Redistributions
» Misleading Function Names in Zapper

 Missing Events (LERSIEET

6.1 Rounding in Debt Shares Calculation Can Mint
Unbacked Tokens

The function Tr oveManager . _updat eBat chShar es() rounds down the debt shares of the trove:
batchDebtSharesDelta = currentBatchDebtShares * debtincrease/batchDebt

The rounding error increases with the amount of debt per debt share of the batch. Initially, one debt share
is minted per unit of debt, but this ratio decreases over time as the batch debt grows due to rounding,
interest, and management fees.

CS-BOLD-001

An adversary can exploit this by making the ratio very small, i.e.,
batchDebt > 2000e18 * currentBatchDebtShares

At a ratio of 2000e18, an attacker can mint Bold tokens for free. The amount of debt shares they receive
for creating a trove of minimum debt is rounded to zero, allowing them to offload the debt to other users
in the batch.

There are two ways to increase the ratio of debt to shares:

1. High Management Fees and Frequent Compounding: Charging a high management fee of
100% and compounding frequently can increase the debt-to-shares ratio to 2000el8 after
approximately 50 years (In(2000e18) / 100%).

2. Donating Dust Amounts of Debt: Donating small amounts of debt to the batch and increasing the
impact of off-by-one rounding errors by creating a tiny trove.

The steps to exploit the second method are as follows:
1. Open Trove A with 2000e18 debt in the batch and 2000e18 shares.
2. Redeem Trove A down to 1 debt and 1 share.
3. Open another Trove B with 2000e18 debt in the same batch.
4. Wait to earn some interest, e.g., 1 wei.

« Total shares = 2000e18 + 1, Total debt = 2000e18 + 2 (assuming zero fee for simplicity)

5. Donate 1 wei by calling adjustTrove with increaseDebt = 1. No shares will be minted since
(2000e18 + 1) * 1 // (2000e18 + 2) = 0.

* Total shares = 2000e18 + 1, Total debt = 2000e18 + 3
6. Close Trove B and pay back (2000e18 + 3) * 2000e18 / (2000e18 + 1) = 2000e18 + 1 debt.

» Total shares = 1, Total debt =2

7. Open another trove with 2000e18 debt in the same batch.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

» Total shares = 2000e18 + 1, Total debt = 2000e18 + 2

An attacker can repeat steps 5. - 7. in a loop, increasing the amount of debt per share in each iteration. It
can be shown that the ratio can be increased by a factor of at least 3/2 in each iteration. Thus, an
attacker can inflate the ratio to 2000e18 in fewer than 120 iterations:

120 = log; 52000e18

Once the ratio is inflated, the attacker can mint Bold tokens for free by offloading the debt to Trove A.
Multiple mints can be performed in one transaction, creating bad debt as Trove A cannot be liquidated in
between. The bad mint will further inflate the batchDebtShares ratio, allowing the next mint to be twice
the size.

In this way, the attacker can mint a large number of unbacked BOLD, at most until the TCR of the branch
reaches the CCR.

There are also two other ways in which the manipulated batchDebtShares ratio can be exploited:

An attacker can exploit the redemption mechanism with an inflated exchange rate. During redemption,
the redeemer specifies the amount of debt to be redeemed and then burns the corresponding number of
shares:

batchDebtSharesDelta = currentBatchDebtShares * debtDecrease/patchDebt

An attacker can create a trove and join a redeemable batch. When paying back debt, the shares burned
are rounded down. For example, if currentDebtShares = 10 and batchDebt = 20_000e18, any redemption
of less than 200e18 Bold will not burn any shares:

0=10*199e18//20.000e18

Thus, an attacker can repeatedly redeem a victim's trove in that batch, buying up all their collateral while
paying back the batch's debt without burning any of the victim's debt shares. The attacker receives
attackerShares / totalShares * redeemBold of Bold paid by the victim.

Finally, an attacker can also access dirty memory by creating a redeemable trove in a batch with no debt
shares. This is done by creating a trove with the minimum debt of 2000e18 and no shares in a batch,
exploiting the rounding issue discussed above. All other troves in the batch must be closed to make the
number of total number of shares in the batch zero.

The redeemcCollateral function overwrites the singleRedemption structure during each loop iteration.
When the trove is in a batch, the function _redeemCollateralFromTrove computes the latest trove data
from batch data. The function _getLatestTroveDataFromBatch does not write anything to
_latestTroveData if totalDebtShares are zero. In this case, the attribute singleRedemptionValues.batch
will contain values from the previous loop iteration.

i f (total Debt Shares 0) {
_latest TroveDat a. r ecor dedDebt _l atest Bat chDat a. r ecor dedDebt bat chDebt Shares / total Debt Shares;

}

The attack will mint unbacked interest and management fee and lead to insolvency of the protocol.

Code corrected:

The function _r equi r eBel owivaxShar esRat i o has been added to the TroveManager to prevent the
ratio of debt shares to debt to increase by too much. The function takes the boolean
_checkBatchSharesRatio and reverts when the boolean is true and the ratio of debt to shares exceeds a
threshold of MAX_BATCH SHARES RATI O(1E9).

function _requireBel owmvaxShar esRat i o(
ui nt 256 _current Bat chDebt Shar es,

(S: Liquity - Bold - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

ui nt 256 _bat chDebt ,
bool _checkBat chSharesRati o
) internal pure {

i f (_current Bat chDebt Shar es MAX_BATCH_SHARES RATI O < _bat chDebt _checkBat chSharesRati o) {
revert BatchSharesRati oTooH gh();

}
}

The boolean is set to true for all operations that call into _updat eBat chShar es, except redemptions.
Hence, for troves in a batch with inflated shares, the following operations cannot be performed:

* opening troves

* adjusting troves (i.e. increasing debt, withdrawing collateral, etc...)

* applying pending debt
In addition to redemptions, the following operations that burn shares by calling into
_renoveTroveShar esFr onBat ch are still allowed:

* redeeming troves

« liquidating troves

« closing troves

e removing the trove from the batch

In case a user ends up being part of a batch with inflated shares for some reason, they should change to
a different batch to unlock full functionality again.

The issue described 2 root causes: Inflating via high interest rate and inflation via donation attacks.
Inflation with high interest rate is still possible, however inflation via donation attack is only possible until
the ratio of debt shares to debt reaches 1e9. In theory, an attacker can exploit the ratio up to 1e9 and
then wait 25 years more to inflate the ratio to 100e18.

The issue described 3 attacks vectors:
1. Minting unbacked tokens by inflating the ratio of debt shares to debt
2. Redeeming a victim's trove without burning any of the victim's debt shares

3. Accessing dirty memory by creating a redeemable trove in a batch with no debt shares

The first and third attack vectors are prevented by restricting the opening of positions. The second attack
vector is still theoretically possible but progresses very slowly. With 100% inflation compounded weekly,
the debt shares to debt ratio would reach 100e18 after 25 years. The victim trove would need to stay in
the batch for the entire time to be at-risk.

6.2 BalancerFlashLoan Missing Access Control

(Correctness JHIEN\ZETBY Code Corrected

The leverage zapper contracts use Balancer flashloans to make trove adjustments. For example, the
recei veFl ashLoanOnLever UpTrove function can only be called by the flashloanProvider.
fl ashLoanProvi der. nakeFl ashLoan() is in turn supposed to be called through the
| ever UpTr ove function, which checks that the caller has rights to adjust the trove.

CS-BOLD-002

However, fl ashLoanProvi der. makeFl ashLoan() does not have any access control. It can be
called by any address, and any par ans can be passed. In this way, the access control of the zapper can
be circumvented. The flashLoanProvider will call back into the zapper and adjust any trove (that the
Zapper has rights to remove from) passed in the par anms, even though the user does not have the

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

required rights. Additionally, an attacker could call the Balancer vault directly, specifying the
BalancerFlashLoan as callback recipient, without using the makeFl ashLoan function at all. The
r ecei veFl ashLoan function would accept the callback, as it only checks that the call comes from the
Balancer vault.

An attacker could use |everUpTrove() to bring a trove very close to liquidation, or
| ever DownTr ove() to reduce the trove's leverage. The attacker could make a profit by sandwiching
trades on the exchange used, which may cause slippage if the trove is large compared to the market's
liquidity. The attacker can set the slippage limits that will be used in the trade (by choosing the
parameters), so the execution price can become arbitrarily bad.

Code corrected:

In (Version 2), the BalancerFlashLoan contract no longer takes the zapper parameter as input. Instead,
whenever the makeFl ashl oan function is called, the storage variable r ecei ver will be set to the
nmsg. sender of the call (expected to be a zapper). After the flashloan returns, the r ecei ver is reset to
the zero address.

The r ecei veFl ashLoan function calls the r ecei ver, which is now read from storage rather than the
input params. This way, the contract can only call a zapper if the zapper previously called
makeFl ashLoan(). The zapper's access control is enforced before making the call to
makeFl ashl oan() .

If recei veFl ashLoan is called while the r ecei ver is set to zero, the function will revert. This ensures
that the r ecei veFl ash function cannot be entered by calling the Balancer vault directly.

In (Version 4), the receiver address is now reset at the beginning of the function r ecei veFl ashLoan.

6.3 Leverage Zappers Do Not Return Swap
Excess

D D (Version 1) TN

The leverage zappers use swaps and flashloans to create leveraged positions. However, they do not
handle excess tokens returned from the swaps. Excess tokens should be expected to be present often,
as market prices can change between submitting a transaction and its execution.

CS-BOLD-003

In Uni V3Exchange. swapFr onBol d(), the zapper swaps BOLD for collateral tokens using an
Exact Qut put swap. Any excess BOLD tokens will be left in the UniV3Exchange contract. The tokens
will not be returned to the user.

In Cur veExchange. swapFronBol d(), Uni V3Exchange. swapToBol d(), and
Cur veExchange. swapToBol d() the zapper swaps tokens using an Exact | nput swap. Any excess
output tokens will be sent to the zapper but will not be returned to the user.

Tokens stuck in the zapper can be claimed by anyone (see Zappers can lose user funds).

Code corrected:

In (Version 2), the exchange contract Uni V3Exchange returns excess tokens to the Zapper contract.
Further, the zapper functions calling Curve or Uniswap (i.e. openLever agedTroveW t hRawETH,
| ever UpTrove, and | ever DownTr ove) have been updated to send excess tokens back to the caller.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

For this, initial token balances in the Zapper and the Caller address are stored before the swap with
_setlnitial Bal ancesAndRecei ver. After the swap, _returnLeftovers checks the Zapper's
balance and returns the difference of initial balance and current balance to the caller.

ui nt 256 current Col | Bal ance = _col | Token. bal anceO (address(this));
if (currentCollBalance > _initialBal ances. col | Bal ance) {
_coll Token. transfer(_initial Bal ances.receiver, currentCollBalance - _initialBal ances. col | Bal ance) ;
ui nt 256 current Bol dBal ance = _bol dToken. bal anceO (address(this));
i f (currentBol dBal ance > _initial Bal ances. bol dBal ance) {
_bol dToken. transfer(_initial Bal ances. receiver, currentBol dBal ance - _initial Bal ances. bol dBal ance) ;

}

6.4 Zappers Can Lose User Funds
(Correctness [HgH JWZETSB] Code Corrected

The adjust, leverdown, and repay functions in the zappers can reduce the debt of a user's trove. To do
this, they transfer the specified amount to repay from the user and then trigger the repayment in the
BorrowerOperations.

CS-BOLD-004

However, if the specified debt repayment amount would bring a trove below M N_DEBT, only the amount
that would bring the trove to M N_DEBT is repaid. The rest of the funds will remain stuck in the zapper.

This is due to the following code in _adj ust Tr ove():

i f (_troveChange. debt Decr ease 0) {
ui nt 256 nmaxRepaynent vars.trove. entireDebt M N_DEBT ? vars.trove. entireDebt M N_DEBT : 0;
i f (_troveChange. debt Decr ease maxRepaynment) {
_troveChange. debt Decr ease maxRepaynent ;

_requireSufficient Bol dBal ance(vars. bol dToken, nsg. sender, _troveChange. debt Decrease);

}
Consider the following example:

1. A user has a trove with a debt of 3000 BOLD.
2. The user calls the adjust function in the zapper with a debt repayment amount of 2000 BOLD.
3. The zapper transfers 2000 BOLD from the user to the zapper.

4. The zapper triggers the repayment in the BorrowerOperations. This will repay 1000 BOLD to
the trove, bringing the debt to 2000 BOLD (the M N_DEBT).

5. The remaining 1000 BOLD will remain stuck in the zapper.

The worst case is the following: When there is a debt repayment to one of the lowest interest rate troves
in a branch, the repayment can be frontrun by a redemption that brings the trove just above M N_DEBT.
This will result in the entire intended repayment amount being stuck in the zapper. A malicious batch
manager could intentionally reduce the interest rate of the trove's batch to make the redemption possible.

The worst-case attack would look as follows:

1. A user has a trove with a debt of 1'000'000 BOLD.

2. The user calls the adjust function in the zapper with a debt repayment amount of 500'000
BOLD.

3. The trove's batch manager frontruns the call and changes the interest rate to make the trove
low in the redemption order (or it already had a low interest rate).

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

4. The attacker redeems the trove until it has only 2001 BOLD debt left.

#. The zapper transfers 500'000 BOLD from the user to the zapper. 4. The zapper triggers the
repayment in the BorrowerOperations. This will repay 1 BOLD to the trove, bringing the debt to 2000
BOLD (the M N_DEBT). 5. The remaining 499'999 BOLD will remain stuck in the zapper. 6. The
attacker can collect the stuck funds by backrunning using the method below

Anyone can collect the stuck funds from the zapper by creating a trove in the zapper, setting the
recei ver role in BorrowerOperations to an address other than the zapper, then creating additional
BOLD tokens through the zapper. The newly created BOLD will go to the r ecei ver, and the zapper will
send the stuck funds to the caller.

Code corrected:

The Zappers now inherit from the new LeftoversSweep contract. It provides functionality to track the
contract's balances at the start of a call, then return any extra amount that is added during the call using
the returnLeftovers function.

In all instances where there could be leftovers, they are now returned to the caller.

6.5 Incorrect Scaling of P

(Correctness ORI Code Corrected)

In the function St abi | i t yPool . of f set, P can be scaled up. The code assumes that P is in the value
range of (1e27, 1e36]. However, this is not always true. Instead, P can get scaled to a higher value.

CS-BOLD-042

For example for the following values:
eP=2el7+1
« totalBoldDeposits = 1e20
e debtToOffset = 5e19

The while loop in of f set () is entered, since in the calculation of newP the new value is rounded down
to 1e27. But after scaling up again the final computed P is 27000000000000000000000000000500000000
which is bigger than 1e36.

ui nt 256 nuner at or P * (total Bol dDeposits _debt ToO f set) ;
ui nt 256 newP = nuner at or t ot al Bol dDeposi ts;

whil e (newP P_PRECI SI ON / SCALE_FACTOR) {
numer at or SCALE_FACTOR;
newP = numer at or t ot al Bol dDeposi ts;
current Scal e 1,
emt Scal eUpdat ed(currentScal e);

}

As a result, multiple computations in the code, e.g. in get Deposi t or Col | Gai n, will be incorrect. This is
because for a scale period that begins with a P > 1e36, the P can drop by more than 1e9, even though
the code assumes it drops by 1e9.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

Code corrected:

In the function St abi | i t yPool . of f set has been modified to ensure that the value of P is
always in the range [1e27, 1e36].

while (newP < P_PRECI SION / SCALE_FACTOR) {
nunmer at or SCALE _FACTOR;
newP nurer at or t ot al Bol dDeposi ts;
current Scal e 1;
emt Scal eUpdat ed(current Scal e) ;

6.6 Pool Deposit Are Compared to Precision

[Low] [Version 5] Code Corrected
CS-BOLD-039

The function _updat eYi el dRewar dsSumn() compares the total deposits to DECI MAL_PRECI SI ON
when verifying that the minimum threshold for yield distribution is reached. However, other parts of the
code use M N_BCOLD | N_SP to check that the stability pool has enough funds. Note that both constants
are set to 10** 18 so the generated bytecode is the same.

Code corrected:

The function has been updated to compare the Stability Pool deposits against M N BOLD I N _SP in

(Version 6),

6.7 Total Deposit Are Compared to Wrong
Constant

[Low] (Version 5) (@& g
CS-BOLD-040

The function _updat eYi el dRewar dsSun{) compares the total deposits to DECI MAL_PRECI SI ON
when verifying that the minimum threshold for yield distribution is reached. However, other parts of the
code use M N_BCOLD | N_SP to check that the total deposits are large enough. Both constants have the
same value 1e18 so the bug has no impact.

Code corrected:
The function has been updated to compare the total deposits to M N_BOLD | N_SP in (Version 6).

6.8 Batches Can Be Used to Make Two Free
Adjustments in a Row

(D (Cow) (Version 1) IR

CS-BOLD-021

@ Liquity - Bold - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

Whenever a trove's interest rate is adjusted, it is checked when the trove's last adjustment took place. If it
is less than | NTEREST_RATE_ADJ_COOLDOWN ago, the upfrontfee for an early adjustment is charged.

However, the set Bat chManager Annual I nt er est Rat e function only takes into account the last
adjustment of the batch, not of the individual troves.

This means a user can do the following repeatedly:

1. Wait until their trove's last adjustment was more than | NTEREST_RATE_ADJ_COCOLDOMN ago.

2. Join a batch controlled by them with a different interest rate, that was adjusted more than
| NTEREST_RATE_ADJ_COOLDOWN ago.

3. Adjust the interest rate of the new batch.
4. Wait until the batch adjustment was more than | NTEREST_RATE_ADJ_COOLDOMN ago.
5. Leave the batch.

In this way, the user is able to adjust their interest rate twice in a row (steps 2./3.) without paying the
upfront fee. Leaving the batch in step 5 does not trigger any upfront fee either as long as the interest rate
of the trove is equal to the interest rate of the batch.

In summary, a user can perform two adjustments in a row every 2 * | NTEREST _RATE_ADJ _COOLDOMWN
(or 6 days). One way to exploit is by starting with a market interest rate of 5% in step 1 and then join a
batch with a lower interest, such as 0.5%, in step 2.

Without the free adjustment, maintaining a low interest rate would be risky, since the user would risk
redemptions and changing the interest later would require them to pay 7 days' worth of interest. However,
since the second update is free, the user can wait until they face the risk of redemptions and only then
update the interest rate back to 5% in step 3.

The profitability of this strategy depends on the frequency of redemptions and, consequently, the duration
for which the user can continue paying the low interest rate.

Code corrected:

The function Borr ower Qper ati ons. set | nt er est Bat chiManager has been updated to charge an
upfront fee whenever a user joins a batch. Previously, the fee was only charged if the interest rate was
adjusted less than | NTEREST_RATE_ADJ COOLDOWN ago. Now, users pay the upfront fee when joining
the batch (in step 2) and cannot profit from a free adjustment in step 3.

6.9 Delegation Specification
CITEED (Low) (Version 1) (CIIILITED)

The documentation states that a r ecei ver address can be chosen, who receives the collateral drawn
by the Remove Manager. It does not mention that the r ecei ver also receives the tokens when the
owner makes a withdrawal.

In of the code, the recei ver receives the tokens no matter who initiates a withdrawal,
whenever it is set.

CS-BOLD-034

Code corrected:

The code has been corrected to match the documentation. The r ecei ver only receives the collateral
when a withdrawal is initiated by the Remove Manager. When the owner makes a withdrawal, the tokens
are sent to the owner.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 27

https://web.archive.org/web/20240905124114/https://github.com/liquity/BOLD?tab=readme-ov-file#remove-managers
https://chainsecurity.com

6.10 Incorrect Code Comments

[Low] [Version lj Specification Changed

1.

CS-BOLD-007

The code comments of the function
Act i vePool . _m nt Bat chManagenent FeeAndAccount For Change() state that the arithmetic
is done in two steps to avoid overflow. However, the arithmetic could only underflow from the
decrease.

. The natspec in the function Borr ower Operati ons._openTrove() mentions a so-called

composite debt that includes bold gas compensation. The concept of composite debt was used in
Liquity V1, but is not present in Liquity V2, where the gas compensation is charged in WETH
instead.

. Similar to 2., code comments in Borr ower Oper ati ons. _appl yUpfront Fee() mention the

same deprecated concept of composite debt.

. The code comments in TroveManager . redeentCol | ateral () write the word "proportinally”

instead of "proportionally".

. The code comments in Tr oveManager . r edeentCol | at er al () state that troves are redeemed

based on their collateral ratio. However, redemption order is now actually based on the interest
rate.

. The natspec above the function LiquityMath. _decPow() mentions two functions

TroveManager. _cal cDecayedBaseRat e and
Communi t yl ssuance. _get Cunul ati vel ssuanceFr act i on that are not part of the repository.

. The natspec above the public variable in the St abi | i t yPool . sort edTr oves mentions that the

state variable is used for liquidations, but it is not used anywhere.

. The code comments above the struct Tr oveManager . Bat ch state that the collateral is shared

between troves in a batch, but collateral is kept separately.

. The code comments above the state variable Mai nnet Pri ceFeedBase. pri ceFeedDi sabl ed

state that it should be removed after shutdown logic is implemented, but the code relies on it to
return the fallback price.

#. The comments in Tr oveManager . _ur gent RedeentCol | at er al FromTr ove() state that collateral
has to be capped as the CR can be below 100% for urgent redemptions. However, due to the bonus
multiplier, CR < 101% already requires capping the reward.

Additionally, there is a typo in the code:

* In BorrowerOperations.adjustUnredeemableTrove, batchAnnuallinterestRate is written as
batchAnnualinteresRate.

Specification changed:

The code comments have been updated.

6.11 Interest Delegates Are More Trusted Than
Needed
D (Low) (Version 1) YD)

S

Liquity - Bold - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

CS-BOLD-022

Interest individual delegates have some restrictions on the interest rate they can set, indicating they are
not fully trusted.

However, they are not restricted in how frequently they can update the interest rate, allowing them to
grief users by adjusting the interest rate multiple times and incurring the upfront fee each time.

In contrast, users are able to set a minimum interest rate adjustment period for batch managers. This
allows the user to limit how often a batch manager may incur the upfront fee (if at all).

Code corrected:

The parameter m nl nt er est Rat eChangePeri od has been added for interest rate delegatees.
Delegatees must now wait for this period to pass after the last update before they can adjust the interest
rate.

6.12 Missing Payable Modifier
7D (Low) (Version 1) CXNSIZRT)
CS-BOLD-037

The function WETHZapper . adj ust Zonbi eTroveWt hRawETH calls the internal function
_adj ust TrovePr e, which expects an ether amount to be sent for conversion to WETH. However,
adj ust Zonbi eTr oveW t hRawETH lacks the payable modifier, causing any transaction that sends
ether to revert.

The function is used to adjust zombie troves that were previously redeemed below the minimum debt of
2000e18 to adjust debt and collateral so that the trove is no longer considered a zombie. Zombie troves
are the first in line for redemptions taking place.

If a trove’s current collateral is insufficient to cover the minimum debt required to exit zombie status, the
trove cannot be adjusted and will face full redemption in the next call.

Trove owners can still adjust their troves manually by calling Bor r ower Oper at i ons directly. However,
calls to the zapper function will continue to fail until it is redeployed with the necessary payable modifier.

Code corrected:

In (Version 2), a payable modifier has been added to the function adj ust Zonbi eTr oveW t hRawETH to
allow the function to receive ether.

6.13 Missing Validation of Troves in Urgent
Redemptions

(Correctness YR Code Corrected)

The function Tr oveManager . ur gent Redenpt i on does not validate if a trove ID exists or if the trove
has any debt to redeem. This can lead to unnecessary gas consumption when a trove has no debt or has
been previously redeemed.

CS-BOLD-023

Further it accepts Troves that have been closed or never existed, causing writes to the following storage
locations by _appl ySi ngl eRedenpt i on:

« rewardSnapshots|_troveld].coll = L_coll

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

« rewardSnapshots|_troveld].boldDebt = L_boldDebt
 Troves|_troveld].lastDebtUpdateTime = uint64(block.timestamp)”

The dirty memory locations cannot cause invalid state modifications within the protocol, but they are
returned by getter functions and can be read by external applications.

Code corrected:

Troves are now skipped if their status is not act i ve or zonbi e, or if they have no debt.

6.14 Opening Troves Can Be Blocked
7D (Low) (Version 1) (CXSIZET)

The function Bor r ower Oper at i ons. _openTr ove computes the trove ID from the owner address and
a trove index chosen by the caller. Anyone can open a trove on behalf of another _owner by providing
the necessary collateral. Note that there cannot be two troves with the same trove ID:

CS-BOLD-008

vars.troveld ui nt 256(keccak256(abi . encode(_owner, _ownerl ndex)));
_requi reTrovel sNot Open(vars.troveManager, vars.troveld);

An attacker can grief other users by frontrunning them and opening a trove with the same ID on behalf of
the same account, setting themselves as the manager and receiver of the collateral. They could then
backrun the failing transaction by withdrawing the collateral from the trove. This attack is not free, as the
attacker must pay the upfront fee for the trove. However, the fee can be relatively small. At an average
interest rate of 5%, they would pay 0.05 * 2000 / 52 = 1.92 BOLD, plus the gas costs for the operation.
The owner of the trove can remove the attacker as manager and claim their collateral if they are able to
make a transaction before the attacker.

This griefing is most problematic for multisigs or governance proposals that are executed after a time
lock. Here, an attacker can potentially permanently DOS a contract from opening troves.

Code corrected:
In (Version 6), the caller of the function Bor r ower Oper at i ons. _openTr ove is hashed into the trove ID:

vars.troveld ui nt 256(keccak256(abi . encode(nsg. sender, _owner, _ownerlndex)));
_requi reTroveDoesNot Exi st s(vars. troveManager, vars.troveld);

This ensures that trove IDs are unique to the caller, preventing an attacker from frontrunning troves
created by calling Bor r ower Qper at i ons directly.

All troves opened via a Zapper contract share the same nsg. sender (the Zapper). As such the Zapper
hashes the nsg. sender into the owner | ndex, which is then later hashed into the trove ID:

functi on _get Trovel ndex(ui nt 256 _ownerlndex) internal view returns (uint256) {
return _getTrovel ndex(nsg. sender, _ownerl ndex);

}

This mechanism ensures that troves created through a Zapper contract are also protected from
frontrunning attacks.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

6.15 Out-of-gas May Lead to Shutdown
7D (Low) (Version 1) (XL

The MainnetPriceFeedBase shuts down the collateral branch when the static call to
| at est RoundDat a() reverts. The fallback uses a try-catch block as follows in
_get Current Chai nl i nkResponse:

CS-BOLD-030

try _aggregator.latestRoundData() returns (
ui nt 80 roundld, int256 answer, uint256, ui nt 256 updat edAt, uint80

) A

chai nl i nkResponse. roundl d roundl d;
chai nl i nkResponse. answer answer ;

chai nl i nkResponse. ti nest anp updat edAt ;
chai nl i nkResponse. success true;

return chainlinkResponse;
} catch {

return chainlinkResponse;

}

There are two cases in which the external call to Chainlink reverts: Either Chainlink explicitly reverts, or
the call runs out of gas. As such, the catch statement (which triggers branch shutdown) can be executed
if the call to Chainlink runs out of gas. However, this will only have an effect if there is enough gas left to
execute the shutdown logic. The call to Chainlink will receive 63/64 of all available gas. After reverting
due to out of gas, 1/64 will be left. This means that if the shutdown logic consumes 64 times less gas
than the Chainlink's | at est RoundDat a() , the branch can unintentionally be shutdown even though the
Chainlink oracle has not failed. The code has no access-control, so anyone can call f et chPri ce() with
any amount of gas.

At the time of writing, a call to latestRoundData appears to use approximately 11000 gas units.
1/64 * 11000 = 172, which is by far not enough to execute the branch shutdown. Given these
conditions, the attack is currently not feasible.

Note that an attacker can prewarm storage slots and addresses to reduce the cost of the remainder of
the execution. Further, note that the gas consumption of Chainlink might increase in the future (as the
contracts are upgradeable). Additionally, the gas cost of Ethereum opcodes could change in the future.

In (Version 2), the function _get Canoni cal Rat e was added, that retrieves the internal accounting rate of
the LST tokens (fETH / ETH or stETH / ETH) and uses a similar try-catch block to handle reverting calls.
Further, the oracle has been changed to return the canonical price (eth price x LST rate) when the
Chainlink LST oracle has failed. This code change would allow the attack on the call to
wst ETH. st Et hPer Token() even with the current gas cost of opcodes. The function
wstETH.stEthPerToken() consumes approximately 37000 gas. To continue the execution,
1/64 * 37000 = 578 would be needed.

In case the system is already shutdown, an attacker could call f et chPri ce, which falls back to
_fetchPri ceETHUSDxCanoni cal . Here, the call to retrieve the canonical rate could be provided with
e.g. 35000 gas units to make it run out of gas. Note that afterwards the only "expensive" operations are
writing Pri ceSour ce. | ast GoodPri ce to storage and reading and returning | ast GoodPri ce. The
attacker could prewarm the storage slots and addresses to reduce the cost of the remainder of the
execution.

(uint 256 | stRate, bool exchangeRat el sDown) _get Canoni cal Rat e() ;

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

I T (exchangeRat el sDown) {
pri ceSource Pri ceSource. | ast GoodPri ce;
return | ast GoodPri ce;

}

Code corrected:

The code has been updated to check the gas left before and after the call in
WSTETHPr i ceFeed. _get Canoni cal Rat e and
Mai nnet Pri ceFeedBase. _get Current Chai nl i nkResponse.

function _getCurrent Chainli nkResponse(Aggr egat or V3l nt er face _aggregator)
i nternal
Vi ew
returns (ChainlinkResponse nenory chainlinkResponse)

ui nt 256 gasBefore gasleft();

try _aggregator.|atestRoundData() returns (
ui nt 80 roundl d, int256 answer, uint256, ui nt 256 updat edAt, uint80

) |
chai nl i nkResponse. roundl d roundl d;
chai nl i nkResponse. answer answer ;

chai nl i nkResponse. ti nest anp updat edAt ;
chai nl i nkResponse. success true;

return chainlinkResponse;
} catch {

if (gasleft() gasBefore 64) revert InsufficientGsForExternal Call();

return chainlinkResponse;
}
Note that the check is conservative, as it does not include the gas used in the check itself and the gas
cost for setting up the call. In practice that can lead to some calls reverting that should not, but the user
can just provide a higher gas limit in that case, i.e. right before the call we only have gasBeforeCall =

gasleft() - gasUsedUntilExternalCAIl and after the call we only have gasAfterCall = gasleft() -
gasUsedAfterExternalCall. Note that now the following condiition holds here:

gasAfter > gasAfterCall > gasBeforeCall > gasBefore

6.16 Price Limit in UniV3Exchange Is Too Strict
D) (Low) (Version 1) CEE TN

The function Uni V3Exchange. get Bol dAnount ToSwap calculates the amount of BOLD to swap for a
given amount of collateral tokens. It uses the user provided-specified _mnmaxBol dAnount and
_m nCol | Anmount to set a price limit, which is then passed to the Quoter.

CS-BOLD-009

function getBol dAnobunt ToSwap(ui nt 256, ui nt 256 _maxBol dAmount, ui nt 256 _m nCol | Anount)
ext ernal
returns (uint256)

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

ui nt 256 maxPrice = _maxBol dAmount DECI MAL_PRECI SION / _mi nCol | Amount ;
ui nt 160 sqrtPriceLim tX96 priceToSqrt Price(bol dToken, col | Token, nmaxPrice);
| Quot er V2. Quot eExact Qut put Si ngl eParans nenory par anms | Quot er V2. Quot eExact Qut put Si ngl ePar ans({
tokenl n: address(bol dToken),
t okenQut: address(col | Token),
anmount : _ni nCol | Amount ,
fee: fee,
sqrtPricelLimtX96: sqrtPriceLimtX96
1)
(uint256 anountln,,,) uni V3Quot er . quot eExact Qut put Si ngl e(par ans) ;
return anmountln;

}

The Quoter reverts if the price limit is exceeded during the swap. However, this does not imply that
swapping _maxBoldAmount BOLD for _minCollAmount of collateral is unachievable —just that the
post-trade price exceeds the limit ratio (_maxBoldAmount / _minCollAmount). What matters for the user
is the average price of the trade.

This overly strict price limit may prompt users to choose looser values for _maxBoldAmount and
_minCollAmount than needed and allow MEV bots to extract more value during large swaps.

Specification changed:
The function Uni V3Exchange. get Bol dAnpunt ToSwap has been removed in (Version 2).

6.17 Shutdown Can Be Triggered Twice
D (Low) (Version 1) (YD)

The shut down function in BorrowerOperations is used to shut down the branch when the TCR falls
below the SCR. If the branch is already shut down, the function will revert.

CS-BOLD-010

However, the function calls pri ceFeed. fet chPri ce(), which can also shut down the branch if the
price feed is failing.

This means that if the oracle fails at the same time that the branch's TCR falls below the SCR, the branch
can be shut down twice. This will emit both the Shut Down and Shut DownFr onOr acl eFai | ur e events,
which should be mutually exclusive and may not be handled correctly by off-chain infrastructure. There
don't seem to be any other side effects, as the _appl yShut down will have no additional effect if it is
called twice in the same block.

Code corrected:

In (Version 2), the shut down function returns early if the oracle failure causes a shutdown. The event
Shut down is not emitted.

function shutdown() external {
i f (hasBeenShut Down) revert | sShut Down();

ui nt 256 t ot al Col | get EntireSystenCol | ();
ui nt 256 t ot al Debt get EntireSyst enDebt () ;
(uint256 price, bool newOracl eFail ureDetected) priceFeed. fetchPrice();

I (newOracl eFai | ureDetected) return;

uint 256 TCR = LiquityMath. _conputeCR(total Coll, total Debt, price);

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

if (TCR SCR) revert TCRNot Bel owSCR() ;
_appl yShut down() ;

em t Shut Down(TCR) ;

6.18 User-provided transferFrom Source Address

(D (Low) (Version 1) IR

In UniV3Exchange and CurveExchange, the swapFr onBol d and SwapToBol d function take a _zapper
argument. This is used in a transferFrom call.

CS-BOLD-011

bol dTokenCached. transf er From _zapper, address(this), _bol dAnmount);

As the _zapper address is provided by the user, this can be used to pull tokens from any address that
has given approval to the Exchange contract. For example, the zappers give unlimited approval. If a
misinformed user gives approval to the Exchange contract accidentally, they could also be drained.

The zappers are not intended to ever have a balance, so the impact is limited. However, it is considered
bad practice to use t r ansf er Fr omwith a user-provided address.

The msg. sender address could be used instead.

Code corrected:

The code has been updated to use nsg. sender as the f romargumentintransf er From

6.19 Zapper Delegation Is Not Reset When a

Trove Is Closed
[Low] [Version 1] Specification Changed

CS-BOLD-012

When a trove is created through a zapper, the zapper will be set as the addManager , r enoveManager
and r ecei ver of the trove in the core system. However, a user can also create a trove without using a
zapper, then set these roles to the zapper later to use its functionality.

This must be done with extreme care, as there might be delegations set in the zapper that the user is not
aware of. Either the user could have had a trove with the same trovel d earlier, that they had set
delegation for in the zapper and then closed (closing a trove does not reset zapper delegation). Or the
user could have gotten frontrun on trove creation, with an attacker creating a trove with the same troveld
in the zapper, then immediately closing it but leaving the delegation in place on the zapper.

Zapper roles are always written to when a trove is created in the zapper, so the issue can only appear
when a user opens a trove without using a zapper, then sets the zapper as the manager.

Specification changed:

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

In of the protocol, each trove must have a unique trovel d, preventing the reuse of
delegations from closed troves.

6.20 Gas Optimizations in St abi |it yPool
[Informational] [Version 5]

The code in the St abi | i t yPool could be made more gas efficient. The following optimizations were
identified:

1.In get Deposi tor Yi el dGi nWt hPendi ng(), the condition
t ot al Bol dDeposits >= DECI MAL_PRECI SI ON should be checked at the very start of the
function, since no yield is distributed when t ot al Bol dDeposi t s is less than 10** 18.

CS-BOLD-041

2. In the same function, yi el dGai nsPendi ng is always zero when added to newYi el dGai nsOwed,
so the addition has no effect.

3. The wi t hdrawFr onSP() function attempts to move pending yield to depositors by calling
_updat eYi el dRewar dsSun(0) in case the sum of pending yield and deposit exceed the
threshold. However, since yield is only distributed when total deposits exceed the threshold (and
withdrawals cannot increase the deposit amount) this call has no effect.

Code corrected:
All aforementioned optimizations have been implemented in (Version 6),

6.21 Recelver Address in Balancer Flashloan Is
Reset Late

(Informational] [Version 2]

The function Bal ancer Fl ashLoan. makeF|l ashLoan fixed the access control issue by setting the
receiver address to the caller's address and then resetting it to the zero address after the flashloan is
executed (see BalancerFlashLoan missing access control).

CS-BOLD-043

receiver | Fl ashLoanRecei ver (nsg. sender) ;

vault.flashLoan(this, tokens, ampunts, userData);

receiver | Fl ashLoanRecei ver (address(0));

The r ecei veFl ashLoan function only checks the receiver address and the function does not reset the
receiver address. In the current contract design, this is not a problem. However, to lower the risk of
mistakes in future versions or forks of the code, the receiver could be reset in the r ecei veFl ashLoan
function.

Code corrected:

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

In (Version 4) the code has been updated to reset the receiver at the beginning of the
r ecei veFl ashl oan.

6.22 Backed Tokens Can Be Redeemed
Unproportionally

[Informational] [Version 1]

In CollateralRegistry, the r edeentCol | at er al function has a special case for when all active branches
are fully "backed". In this case the function will redeem from all active branches proportionally to the
branch debt.

However, an edge case that is not explicitly handled is when there is a branch with more than zero
unbacked debt, but less than the requested _bol dAnount (and the other branches are fully backed). In
this case, the function will redeem only from this branch, even though the branch will also become fully
backed during the redemption process. This means that "fully backed" branches can be redeemed
disproportionately.

CS-BOLD-013

It is not clearly specified if this is expected behavior or not.

Code corrected:

In (Version 6), the redeemable amount gets capped by the total amount of unbacked debt if not all
branches are fully backed.

if (_bol dAnount total s. unbacked) {
_bol dAnpunt total s. unbacked;

}
As a result, an attacker cannot redeem disproportionately from a backed branch, as they will only redeem

until the branch becomes fully backed. The redeemer is expected to invoke the function again to redeem
the remaining amount. That second redemption is proportionally between all backed branches.

6.23 CEIl Pattern Violated in Adjust Trove
(Informational) (Version 1)

The function WETHZapper . _adj ust Tr ovePost sends tokens after adjusting a trove. It first sends ETH
via a call to the receiver and then sends BOLD tokens.

CS-BOLD-024

function _adj ust TrovePost (
) internal {
if (! _isColllncrease) {
VWETH. wi t hdraw(_col | Change) ;

(bool success,) _receiver.call{value: _coll Change}("");
requi re(success, "WZ: Sending ETH fail ed");

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

if (_isDebtlncrease) {
bol dToken. transfer(_receiver, _bol dChange);

}
}

The BOLD token is not reentrant, but the recipient could reenter the contract if it receives Ether.

Therefore, it is considered best practice to first send the bold tokens, and call the recipient last, following
the Checks-effects-interactions (CEIl) pattern.

Code corrected:
In (Version 2), the ETH call has been moved to the end of the function.

6.24 Comments From Development

(Informational] [Version 1]

We have identified the following remaining code comments that should be removed before deployment:

CS-BOLD-025

1. Several functions in the code have open TODOs.

2. Code for batch redistributions in function
TroveManager. get Lat est Tr oveDat aFr onBat ch() is commented out.

3. The TroveManager contract has imports for testing
imports // inport "forge-std/console2.sol";

Code corrected:
The remaining TODOs have been removed in (Version 7).

6.25 Core Debt Invariant Incorrectly Documented

[Informational] [Version 1]

The core debt invariant in the docs is described as:

CS-BOLD-015

SUMi=1 n(trove.entireDebt) = ActivePool .aggRecordedDebt + ActivePool.cal cPen
di ngAggl nterest ()

for all n troves in the branch.
However, this is incorrect as pending debt from redistributions is not included in aggRecor dedDebt .
The correct invariant must include the def aul t Pool . Bol dDebt :

SUMi =1 n(trove.entireDebt) = ActivePool .aggRecordedDebt + ActivePool.cal cPen
di ngAggl nterest () + defaul t Pool . Bol dDebt

Code corrected:

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

The core debt invariant in the docs has been correct in (Version 2),

6.26 Floating Pragma
[Informational] [Version 1]

Liquity uses a floating pragma in some of the contract files (i.e. AddressesRegi stry.sol). It is
considered best practice to lock the Solidity version, to ensure the contracts are tested with the same
compiler version as they are deployed.

CS-BOLD-026

Code corrected:

The floating pragmas have been removed. Additionally, the solidity version was upgraded from 0.8.18 to
0.8.24.

6.27 Inconsistent Input Validation by Zappers
[Informational] [Version 1]

Liquity uses separate Zapper contracts for WETH collateral and other LST collateral tokens. The
contracts are inconsistent.

CS-BOLD-028

The WETHZapper enforces, in _adj ust Tr ovePr e(), that debt must decrease by a positive amount:

requi re(! _i sDebtIncrease _bol dChange 0, "WZ: Increase bold ambunt shoul d not be zero");

However, GasConpZapper._adj ust TrovePre() is missing that check, allowing calls with
debt I ncr ease set to true and bol dChange equal to zero:

if (_isColllncrease (! _isDebtlncrease _bol dChange 0) {
_requi reSender | sOwmer Or AddManager (_trovel d, owner);

}

If no add manager is assigned (set to address 0), anyone can call this function, but it has no effect on
Bor r ower Oper ati ons. adj ust Trove(), as _adj ust Trove() debt increases only have an effect if
they are larger than O.

Code corrected:

All zappers now inherit from the new BaseZapper contract, which contains the
_checkAdj ust Tr oveManager s function.

This function enforces the following checks:

if ((!_isColllncrease _col I Change 0) _i sDebt I ncrease) {

receiver _requi reSender | sOmer O RenoveManager AndGet Recei ver (_trovel d, owner);
}
if (_isColllncrease (! _isDebtlncrease _bol dChange 0)) {

_requi reSender | sOmer O Addvanager (_trovel d, owner);
}

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

6.28 Indexed Parameters of Events

[Informational] [Version 1]

The event Col | Sent used by the CollSurplusPool could denote the parameter _t o with the keyword
i ndexed, to make it easier for external applications to query pending collateral withdrawals.

CS-BOLD-035

Code corrected:
The event Col | Sent in CollSurplusPool has been updated to index the parameter _t o.

6.29 Minting Unbacked Tokens via
Redistributions

[Informational] [Version 1] Code Corrected
CS-BOLD-036

of the protocol had a critical rounding issue that allowed an attacker to mint unbacked tokens by
manipulating the debt share exchange rate of batches via donations. In (Version 2), the issue was fixed by
banning all batch operations that increase debt, once a certain exchange rate limit is reached. The
exception is redemptions, as explained in Rounding in debt shares calculation can mint unbacked tokens.

Under normal circumstances, redemptions decrease the debt of the user, hence one cannot mint
unbacked tokens even with the exchange rate being manipulated. However, an exception to this are
redemptions that trigger redistribution of debt to Troves where the amount of debt redeemed is smaller
than the amount of debt redistributed. In this case, the debt of the user will go up with the redemption,
and they can mint unbacked tokens.

From experience with the previous iterations of the protocol, the probability of redistributions is
considered low, as liquidations typically use the StabilityPool first, falling back to redistributions only if the
StabilityPool is empty. As liquidations are profitable for the StabilityPool (they are given up to a 10%
discount) the StabilityPool should attract deposits when liquidations take place.

However, if one branch has no users (i.e. as the LST chosen is not very popular), or if the contract has
just been deployed, then an attacker could be the only user of the protocol and could create
redistributions to themselves to inflate the shares price. For this they could run a slightly modified version
of the attack as described previously:

1. Manipulate the exchange rate of a Batch up to 1e8 (or any other value below 1e9) as described
in Rounding in debt shares calculation can mint unbacked tokens.

2. Open Trove A ("Debt Trove") with minimum debt & collateral (= stake) AND Trove B ("Collateral
Trove") with minimum debt and large amount of collateral (= stake).

3. Fully redeem Troves A and (partially) redeem B. Trove A maintains some shares in the Batch
(due to rounding), but is not in the sorted troves anymore, and hence unredeemable. Trove B is
lastZombieTroveld.

Example: Trove A - 1 debt shares, Trove B - 1 debt share, Batch A - 2 debt shares, 4e9 debt.

Note that both Trove A and Trove B have debt shares. So, any debt given to the batch (without minting
shares) will be allocated by 1/2 to Trove A and 1/2 to Trove B. To exploits this, an attacker creates many
redistributions: One reliable way to create a redistribution is to open a trove in a batch with a
collateralization ratio just a little above the MCR. Troves in a batch can be be reliably lowered below by

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

triggering an upfront fee update (i.e. by changing the interest rate). The attacker can then liquidate the
trove in the same transaction.

4. Trigger a liquidation with redistribution, i.e. redistribution allocates 1e18 new debt to Trove B.

5. Redeem Trove B (lastZombieTroveld) with boldAmount, so that the debt is increased by a
small amount, i.e. with 1e18 pending redistributions you can redeem 1e18 - 1e9 - 1 debt. In that
case, no

debt shares are minted as the expression rounds down: (1e18 - (1e18 - 1e9-1) // 1e9 = 0.
Now repeat Step 4. - 5. until hitting an economically relevant size (i.e. 1 debt share = 2000e18 debt).

An attacker could then trigger a redistribution that transfers 1500e18 Bold and 0.5 WETH to Trove B.
Trove B receives all the collateral, but all debt is given to the Batch as 1500e18 debt will be rounded to 0
debt shares. As a result, 1/2 of the debt will be owed by Trove A instead.

A sophisticated attacker could create multiple of these redemptions in a row and redeem trove A, until
trove B gets liquidated. The impact is twofold:

1. The attacker can inflate the share price despite borrowing restrictions.

2. The attacker can exploit the inflated shares by creating troves and liquidating them via
redistribution. One trove with a large stake receives the majority of the collateral, but the debt is
given to the Batch they are in.

If the Trove has few shares in the Batch, redistributions become highly profitable as it receives collateral
but no debt. This is very costly for the trove holding the majority of the debt shares. Repeatedly doing this
creates "bad debt" (unbacked tokens) as the trove with the majority of the debt shares cannot be
liquidated quickly enough.

This attack requires the StabilityPool of the branch to be empty and is only profitable if there is very little
collateral on the branch that does not belong to the attacker. This is most likely to happen in 2 cases:

1. The system is freshly deployed and one of the branches does not have any troves yet.

2. One branch's collateral token becomes so unpopular that all users close their positions and
withdraw their collateral from the branch.

In case 1., there is likely not much collateral in the system yet, so the impact is limited. In case 2., there
may be another branch with high value that could lose a large amount of money through unbacked
minting.

Note that the attacker cannot close the position if the total collateralization ratio is not above the CCR
after their Trove is closed. This can only be achieved if other users add more collateral to the system,
making the probability of this attack being exploited very low.

Code corrected:

In (Version 2), the issue was resolved by burning all shares from a trove when all its debt is getting repaid.
This prevents the attacker from redeeming the "Debt Trove" while retaining some shares in step 2.

6.30 Misleading Function Names in Zapper

(Informational] [Version 1]

In GasCompZapper and LeverageLSTZapper, the same function names are used as in their counterparts
WETHZapper and LeverageWETHZapper.

CS-BOLD-017

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

For example, adj ust TroveW t hRawETH() : In WETHZapper the function name is accurate, as raw
ETH can be wrapped or unwrapped to be used in the function. However, in GasCompZapper the function
never operates with raw ETH.

Code corrected:

The relevant function names in the GasCompZapper have been adjusted to no longer reference raw
ETH.

6.31 Missing Events
[Informational] [Version 1]

The functions AddRenoveManager . _set AddManager () and
AddRenmpoveManager . _set RenoveManager () do not emit events when the manager is set. This can
make it difficult to track changes to the manager.

CS-BOLD-029

Since Trove NFTs can be sent to other addresses, the missing events make it hard for the owner to track
the current add and remove manager addresses and could lead to users receiving Trove NFTs without
knowing the current manager addresses.

Code corrected:

In (Version 2) the events AddManager Updat ed and RenpveManager AndRecei ver Updat ed are
emitted whenever managers are set, changed, or removed.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Unimplemented Function Can Be Called
(Informational] [Version 2]

CS-BOLD-038

The contracts GasCompZapper and WETHZapper are not marked as abstract and can be used as base
contracts.

They define the functions recei veFl ashLoanOnQpenLever agedTr ove,
recei veFl ashLoanOnLever UpTrove and recei veFl ashLoanOnLever DownTr ove with empty
bodies, performing no operations. This means these functions can be called, but they will not perform any
actions. If these functions are not intended to be called, a caller might expect them revert on the call to
prevent misuse.

7.2 Bypassing Collateral Adjustment Check
(Informational] [Version 1](]

CS-BOLD-014

The check Bor r ower Oper ati ons. _requi reVal i dAdj ust nent | nCur r ent Mode prevents reducing
collateral in undercollateralized troves (ICR < MCR).

It can be bypassed through self-redemptions, by first adjusting the interest rate of the trove to be the
lowest in the branch, then redeeming from it.

Acknowledged:
Liquity responded:

That wor kar ound woul d:

Reduce the size of an undercollateralized trove

| mprove the I CR of an undercoll ateralized trove

So it's not bad for the system

That condition prevents the final state to be undercoll ateralized.

So the only way to use that workaround and still end up with ICR < MCR

is the trove was al ready undercol |l ateralized.

It doesn’t allow to convert a healthy trove into an undercoll ateralized one.

Therefore, we accept it for sinplicity of the code.

7.3 Gas Optimizations
(Informational] [Version 1][]

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

CS-BOLD-027

. The function Act i vePool . m nt Bat chManagenent FeeAndAccount For Change() is protected

by the _requireCallerlsBQCorTroveM) maodifier but is only called by the TroveManager
contract and never the BorrowOperations.

. The interest calculation in Acti vePool . cal cPendi ngAggl nt erest () could short-escape and

return O if the last update has been at the current timestamp. Similarly, the function
Act i vePool . cal cPendi ngAggBat chManagenent Fee() could short-escape early.

. The function Tr oveManager . _get Lat est Tr oveDat aFr onBat ch() reads the entire structure

bat ch from storage, but only uses one value from it.

. The modifier Col | ateral Regi stry. requireBol dBal anceCover sRedenpti on() asserts

that the user's balance is smaller than the total supply, but this invariant is already enforced by OZ's
token implementation.

. The function TroveManager. _redi stri but eDebt AndCol | can skip the call

sendCol | ToDef aul t Pool when the collateral to redistribute is zero.

. The modifier Uni V3Exchange. _requireCal | erl sUni V3Rout er () is never used.

7. The function Uni V3Exchange. uni swapV3SwapCal | back() is never used.

12.

13.

. The Bor r ower Oper at i ons. adj ust Tr ovel nt er est Rat e function only charges an upfront fee

when the new interest rate is not equal to the previous rate, but this is not possible due to the check
in _requireAnnualinterestRatelsNew.

. The immutable St abi | i t yPool . sort edTr oves is never used.
10.
11.

The madifier Bor r ower Qper at i ons. _requi r el sShut Down() is never used.

The function WSTETHPr i ceFeed. _fetchPrice() calls wst ETH. st Et hPer Token(), which in
turn calls st ETH. get Pool edEt hBy Shar es. It would be cheaper to call sStETH directly.

The TroveManager contract could define state variables only set once in the constructor as
immutable: collateralRegistry, sortedTroves, boldToken, collSurplusPool, gasPoolAddress,
stabilityPool, borrowerOperations, troveNFT.

The BorrowerOperations contract could define state variables only set once in the constructor as
immutable: troveManager, gasPoolAddress, collSurplusPool, sortedTroves, boldToken.

14. The ActivePool contract could define state variables only set once in the constructor as immutable:
interestRouter, boldToken.
(Version 2)
15. The function priceToSqrtPrice and _zeroFor(One in Uni V3Exchange are not used

16.

anywhere.

The function Tr oveManager. _requi r eBel owMaxShar esRat i o could first check the condition
_checkBat chSharesRati o before computing the product
_current Bat chDebt Shares * MAX BATCH SHARES RATI Oto short-circuit the evaluation.

Code partially corrected:
The optimization points 6, 7 and 14 have been implemented in (Version 2),

Liquity - Bold - ChainSecurity - © Decentralized Security AG 43

https://chainsecurity.com

7.4 Insufficient Gas Compensation Could Mint
Bad Debt
[Informational] [Version 1]

The system relies on the gas compensation to be sufficient to cover the gas costs of the liquidation. If the
gas cost of a liquidation is higher than the gas compensation, the system can end up with bad debt. This
can happen due to falling collateral prices, in which case no new debt can be directly minted to
insufficiently collateralized troves. However, bad debt can still be newly minted through interest and batch
fee accrual, if the gas is expensive for extended periods of time.

CS-BOLD-016

An attacker could join their own batch and set the batch management fee to the maximum amount
(currently 100%) to mint themselves tokens. If liquidations stay expensive for months, this could be
profitable. A user could also create a batch with ICR = 1.1 and the maximum interest rate (currently 100%
APR) and join the stability pool to which the interest is minted. If it is unprofitable to liquidate the trove,
after about 4 days unbacked tokens will be minted to the stability pool (as the interest will surpass the
10% overcollateralization).

However, both of these attacks can easily be punished by anyone willing to make an unprofitable
liquidation, so they incur a high risk for the attacker. As timely liquidations are profitable for the stability
pool, anyone who is part of the stability pool also has an additional incentive to liquidate. These factors
make the described attacks unlikely to be profitable.

Note that there is a variable gas compensation dependent on a trove's collateral amount, so liquidations
of larger troves are more likely to be profitable than those of smaller troves.

In conclusion, these attacks are likely not of concern unless the gas prices on Ethereum significantly and
permanently increase in the years to come. However, they illustrate how the debt of the system can
increase (and be minted to an attacker), even when troves fall below the minimum collateralization ratio.

Risk accepted:

Liquity is aware of this issue, but has decided to keep the code unchanged, providing the following
reasoning:

Indeed, we are aware that the |iquidation mechanismis not perfect.

W’ ve had | ong di scussions about it internally.

As nentioned in the issue, big troves are prioritized,

so it’s very unlikely that this becomes a problemfor the system health.

Based al so on Liquity vl experience, we are confident that the mechanismw ||l be robust enough.

7.5 Price Deviation in Composite Price Feed
[Informationalj [Version 1]
CS-BOLD-031

The RETHPr i ceFeed calculates RETH/USD price as the product of the RETH/ETH and ETH/USD price
fees in Conposi tePri ceFeed. fetchPrice().

The Chainlink RETH/ETH price feed has a deviation threshold of 2%, and the ETH/USD price feed has a
deviation threshold of 0.5%. So, the combined price can deviate up to approximately 2.5% from the
actual price before it gets updated.

A branch can shut down for two reasons:

1. Oracle failure.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 44

https://chainsecurity.com

2. Total collateralization ratio (TCR) drops below the Shutdown Collateralization Ratio (SCR).

The second event can occur when the Liquid Staking Token (LST) price de-pegs due to slashing events
or market volatility. In such cases, the protocol provides a 1% bonus on the oracle price in
Tr oveManager . ur gent Redenpti on() .

However, this bonus may not be sufficient, as the oracle price can deviate up to 2.5% from the actual
price before it gets updated.

Additionally, the price feed queries the canonical rate from Rocket Pool that updates every 24 hours and
then takes the minimum of Chainlink Price and canonical rate. In the worst case the urgent redemptions
could be delayed by 24 hours, as it may happen that neither Chainlink nor the canonical rate update
within this period.

Risk accepted:

Liquity is aware of the issue and provided the following response:

This a known issue and accepted risk. W already accept the urgent redenption bonus may be insufficient in branch shutdown, especially if the branch is using |astGoodPrice.
Besi des we have checked the historical deviation of RETHETH and it seemin practice was way nore accurate, so that 2% seens theoretical and unlikely to be hit.
O course no warranty that it cannot happen at all, but, again, we accept the risk.

7.6 Small Redemptions Do Not Increase Base

Rate
(Informational) (Version 1)()

CS-BOLD-018

The function Col | at er al Regi stry. get Updat edBaseRat eFr omRedenpt i on calculates the base
rate from the share of bold tokens that are redeemed.

ui nt 256 redeenedBol dFracti on _redeemAnount DECI MAL_PRECI SI ON / _t ot al Bol dSuppl v;

As the redeemedBoldFraction is rounded down, splitting a redemption into multiple smaller ones can
reduce the fee paid. The most extreme case are redemptions with
redeemAnount < total Bol dSupply [/ 1e18, which will have their fraction rounded to zero,
meaning they will not increase the base rate at all. However, multiple redemptions will incur higher gas
costs.

Acknowledged:
The Liquity team is aware of this behavior and has provided the following description:

For “the npst extreme case”, assunming a total supply of 10B (1el0 * 1el18), the redeem anpunt would be 1el0 wei, i.e. 1le-8 BOLD.
It doesn’t nake sense to redeem such anopunt, as the amobunt paid in gas woul d be nmuch higher.

7.7 Upfront Fee Is Zero for Small Borrows
[Informational] [Version 1][]

CS-BOLD-033
The function Bor r ower Oper at i ons. _cal cUpf r ont Fee calculates the upfront fee as

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 45

https://chainsecurity.com

function _cal clnterest(uint256 _wei ghtedDebt, uint256 _period) internal pure returns (uint256) {
return _wei ght edDebt _period ONE_YEAR / DECI MAL_PRECI SI ON;

}
Note that the period is currently 1 week, and the weighted debt is equal to the trove debt times the
average interest rate in the system.
Hence, the upfront fee is rounded to zero when
debt* averageinterestrate/52e18 <0

When the average the interest rate is 0.5% (5e15), then anyone borrowing less than 10400 (52e18 /
5e15) wei pays ho fees.

Similarily, the interest rate charged on small troves can be rounded to zero. For a trove with 1e8 debt and
an interest rate of 5el5, updating the interest rate every 12 seconds would not result in any interest
owed:

1le8*5e15*12 < 31536000 *1el8

Acknowledged:

Liquity acknowledged the issue and has decided not to make a change, giving the following response:

This is only possible for zonmbie troves.
10k wei (le-14 BOLD) seens a negligible amount, both in at user and system wi de |evel.

7.8 Upfrontfee Can Bring Troves Below MCR

(Informationalj (Version 1] []

CS-BOLD-019

The _appl! yUpf r ont Fee function in BorrowerOperations contains the _requi r el CRi sAboveMCR()
check. This ensures that an upfrontfee from an adjustment cannot bring the trove below the MCR.

However, the set Bat chiManager Annual | nt er est Rat e function, which is used to adjust the interest
rate of a batch, does not contain such a check (as troves in a batch can have different ICRs). As a result,
it is possible for an upfrontfee of a batch interest adjustment to bring a trove below the MCR.

The batch interest rate can only be adjusted at most once per second, so if a trove is pushed below the
MCR, it should be liquidated before the next adjustment can happen. If this limitation was not in place,
batch interest could be adjusted many times in a block and potentially create bad debt when the ICR falls
below 100%.

Other ways of bringing a Trove's ICR below MCR are:

» Batch management fee is charged
* Interest is charged

* Collateral price falls

Code partially corrected:

In (Version 5), a buffer collateralization ratio of 10% has been introduced. This ensures that whenever a
Trove owner adjusts their trove that is part of a batch or joins a batch, their collateralization ratio remains
sufficiently above the Minimum Collateralization Ratio (MCR).

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 46

https://chainsecurity.com

Previously, a user could create a liquidation within a single transaction by following these steps on the
WETH collateral branch (staked ETH branches have a similar exploit):

1. Create a Trove with a collateralization ratio of exactly 110% in Batch A.

2. Charge an upfront fee in Batch A, which immediately lowers the collateralization ratio of the Trove
below 110%, making the Trove liquidatable.

3. Liquidate the Trove.

With the buffer collateralization ratio, it is no longer possible to execute all three steps in a single
transaction. The upfront fee is equivalent to one weeks' worth of interest, with a maximum annual interest
rate of 250%. This caps the maximum upfront fee at:

250

Since the enforced 10% collateral buffer exceeds this maximum upfront fee, a single transaction can no
longer immediately push a Trove into liquidation.

A user can still achieve the same outcome over time:
1. Create a Trove with a 120% collateralization ratio in Batch A.

2. Wait until the Trove's collateralization ratio naturally declines (due to interest accrual, price
changes, or management fees) until it approaches 110%.

3. Charge an upfront fee in Batch A, reducing the collateralization ratio to below 110%, making the
Trove liquidatable.

4. Liquidate the Trove.

Unlike the previous exploit, steps 3 and 4 can still be performed in the same transaction, but some time
must pass between step 1 (creating the Trove) and step 3 (applying the upfront fee).

However, unlike a trove that is not in a batch, steps 3 and 4 can be carried out in the same transaction so
that the owner of the batch can perform the liquidation with certainty. For a trove that is not in a batch, the
owner of the trove will have to wait for the collateralization rate to fall naturally and generally has no
guarantee that they will able to liquidate their trove. This opportunity could instead be taken by another
user, such as an MEV bot.

7.9 rETH Address Might Change

(Informational) (Version 1)()

CS-BOLD-020

The rocket pool protocol stores addresses in a storage contract. The protocol's codebase indicates that
addresses should not be used directly but be retrieved on-chain. However, the collateral token address is
set once in the Addr essesRegi st ry and cannot be updated.

In practice, it seems unlikely that the rETH token's address will change due to other integrations.
Additionally, it is unspecified how integrators should properly handle such a migration.

Acknowledged:

Liquity has reached out to the Rocketpool team to confirm that, while technically possible, the rETH
address is not expected to ever change.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 47

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Add Manager Can Increase Stake

The addManager is generally not trusted, as it can only improve the collateralization ratio of a trove. If
the manager is set to address 0, anyone can add collateral to a trove.

However, increasing the collateral of a trove also increases its stake. In extreme scenarios where
redistributions give more debt to active positions than collateral, an attacker could send collateral to
another trove owner to increase their share in the bad redistributions.

Users who want to avoid this can set the addManager to the same address as the owner , which will
disallow others from increasing their collateral.

8.2 CCR and SCR Considerations

Note that the CCR and SCR must be set in a way that they are not too close to each other to prevent
intentional triggering of branch shutdown.

In particular, the CCR should be higher than the SCR by an amount that is greater than the largest
expected price change in a single oracle update. Otherwise, an attacker could intentionally trigger
shutdown by frontrunning the oracle update.

This would be similar to the known attacks for triggering recovery mode in Liquity V1.

The currently proposed values of CCR = 1.5 and SCR = 1.1 appear far enough apart that these
attacks are not feasible. Any future deployments that use closer values should consider this attack
vector.

8.3 Delegations Are Deleted on Liquidation

Liguidations return surplus collateral to the trove owner. However, only the owner of the trove can reclaim
the surplus. Delegated accounts cannot. Note that liquidations trigger the
BorrowerOperations.onLiquidateTrove hook, so all delegations for that trove ID are deleted on
liquidation.

If the trove owner is a smart contract, it must implement the function to claim collateral. It cannot rely on
another contract via delegation. Not having the ability to call cl ai mCol | at er al () risks losing access
to the surplus collateral in case of liquidation.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 48

https://web.archive.org/web/20241001090246/https://github.com/liquity/dev/security/advisories/GHSA-64wf-29wj-rpgx
https://chainsecurity.com

8.4 Frontrunning Considerations for Off-Chain
Infrastructure

(D) (Version 1)

Due to the risk of frontrunning, integrators should make sure to consider the following points when writing
off-chain infrastructure:

1. The function Col | at er al Regi stry. redeentCol | at er al calculates the redemption fee based
on the user-provided maximum redeemed amount, rather than the actual amount. If the user sets a
_maxlterationsPerCol | at er al , they may not receive the maximum amount. This will result in
receiving less collateral than expected, while still paying the same percentage fee. Similarily, if all
but one branch is backed, a redemption could redeem all collateral on a branch and then escape.

2. The user can also set a _nmaxFeePer cent age, which will revert the transaction if the actual fee
percentage is higher than expected. If the user is frontrun, the prior redemption will increase the
basefee and reduce the total BOLD supply, so the fee will increase. This can cause their
redemption to revert, as the user's specified _bol dAnount would push the fee above the specified
maximum. The user may want to write a wrapper contract that calculates the _bol dAnmount that
can be redeemed without going above the _nmaxFeePer cent age.

3. The execution order of liquidations can influence subsequent liquidations through redistributions. A
profitable redistribution could restore a previously liquidatable trove, while an unprofitable
redistribution might cause a previously healthy trove to become liquidatable.

8.5 Fully Backed Branches Can Have Low Interest
Rates

Redemptions are distributed between branches according to their "unbackedness". If a branch has more
BOLD in the stability pool than it has outstanding debt, it is considered "fully backed" and no redemptions
are routed to it.

Usually, users are encouraged to pay a high interest rate to avoid redemption. However, in the case of a
fully backed branch, no redemptions can happen in that branch, so there is no longer an incentive to pay
more than the minimum interest rate. As a result, it should be expected that the interest rate on fully
backed branches will be the minimum interest rate.

The troves at the minimum interest rate risk that the branch will become unbacked, as this will re-enable
redemptions. This can happen through withdrawals from the stability pool, liquidations, or through more
debt creation on the branch. However, if this happens gradually, there will still only be a small percentage
of redemptions executed through that branch (affecting the latest troves to adopt the strategy), as its
unbackedness will still be quite low. As soon as the branch becomes unbacked, the trove owners can
react by increasing the interest rate again (or depositing more BOLD to the stability pool). If the owners
need to adjust, they may need to pay an upfrontfee for doing so.

This problem could be self-correcting if stability pool depositors withdraw when the average interest rate
of the branch drops, as this will result in a lower yield paid to the stability pool. It is unclear how this would
play out in practice.

8.6 Inconsistent Use of Receivers in Zappers

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 49

https://chainsecurity.com

The Zappers have ar ecei ver per trove. However, it is not used consistently:

e In adj ust Tr oveW t hRawETH the Zapper sends the WETH and BOLD to the r ecei ver defined in
the Zapper itself and any "extra" BOLD to the nsg. sender .

*In cl oseTroveFronCol | at eral the Zapper sends all funds to the recei ver defined in the
Zapper itself.

e In openTr oveW t hRawETH the Zapper sends all BOLD to the nsg. sender .

Integrators and users should be aware of the when the r ecei ver is used and when it is not used.

8.7 Integration Notes for Smart Contract Devs

The following function behaviors may be unexpected and must be taken into account when writing
contracts that integrate with Liquity V2:

The r epayBol d and adj ust Tr ove functions in BorrowerOperations can be used to repay debt. If the
amount specified to repay would result in the trove falling below M N _DEBT, then only the amount
required to reach M N_DEBT will be repaid. The remaining amount will be left with the caller. Integrators
must not expect a revert if the amount specified is impossible to repay exactly and must return leftover
amounts in the calling contract to the user.

The wi t hdr awFr onSP function in StabilityPool takes an _anount parameter. If the user has a BOLD
deposit that is smaller than _anount, the user's full balance will be withdrawn. Integrators must not
expect a revert if _anount is impossible to withdraw and must account for the actual withdrawal amount.

Any operation on a trove within a batch can influence other troves in the same batch. For instance, if we
retrieve the data for Trove A by calling get Lat est Tr oveDat a, then close another trove within the same
batch, and subsequently call get Lat est Tr oveDat a for Trove A again, the debt of trove A may have
increased due to rounding errors. Integrators must expect that the state of a trove can change between
calls, even if the trove itself is not directly modified.

8.8 Interest Rate Adjustments Below CCR

When the system's TCR falls below the CCR, adjustments to troves that create debt are not allowed. As
a result, paying the upfrontfee for a premature interest rate adjustment is also not allowed. This means
that interest rate adjustments are only allowed after the | NTEREST RATE_ADJ_COCOLDOWN period has
passed since the last adjustment.

Users should be aware of this and take caution when the TCR gets close to the CCR, as they may be
unable to increase their interest rate once the threshold is passed.

8.9 Manipulating Bold Supply With Flashloans

When opening a trove, a user pays an upfront fee equal to the average interest for 7 days. The interest
rate can be as low as 0.5%, thus the upfront fee can be as low as 0.5%/52 = 0.0096%. The interest rate
calculation also takes the interest of the newly opened Trove into account. Hence, a large trove can have
a significant impact on the average interest rate and by extension the upfront fee of opening the trove.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 50

https://chainsecurity.com

A user could be incentivized to inflate the BOLD supply using a flashloan, since the redemption fee
depends on the percentage of the BOLD supply being redeemed.

This can be particularly profitable when large amounts of BOLD are getting redeemed. For example,
when a user attempts to redeem 50'000 BOLD of a total supply of 1 million BOLD, they would pay a fee
of 5% of the redeemed amount. If the supply is doubled to 2 million BOLD, the fee would be halved to
2.5%.

Assuming that the average interest rate is 1% after the big trove is opened, this behavior is profitable:
0.05*50000 < 0.025*50000 + 1e9*0.01/52

Note that the flashloan can be taken out from the smallest branch to have a larger impact on the average
interest rate in that branch, which will make the upfront fee cheaper. If the user wants to avoid
self-redemption, they can add the minted BOLD to the stability pool to reduce the percentage of
redemptions that are routed through that branch.

8.10 No Interest Paid on Pending Redistributions
(D) (Version 1)

When a liquidation causes a redistribution, the redistributed debt is accounted for in the DefaultPool.
Whenever a trove is touched, its pending redistributions are moved from the DefaultPool to the trove.

Note that no interest is paid on pending redistributed debt. Interest will only start accruing once the debt
is moved to the trove.

Also note that the approximate interest rate calculated for the upfrontfee ignores the pending
redistributed debt. As the pending debt has an interest rate of 0%, the average interest rate can therefore
be higher than the effective interest rate paid on all outstanding BOLD.

8.11 Possible Attacks Against Zapper Users
(D) (Version 6)

For Zapper operations that involve a swap, users provide a part of the input data, e.g. for the
cl oseTroveFronCol | at eral function of the WETHZapper the users provide _fl| ashLoanAnount
which is (after fee subtraction) swapped against the entire debt of the trove. As the trove state might
change, after the user has signed and sent the transaction, certain attacks are possible.

Extracting Redistribution Profits:

Preconditions: A user calls a function like cl oseTr oveFr onCol | at er al of the WETHZapper, then a
significant redistribution happens and the user's trove is redeemabile.

Possible Attack: By performing a redemption so that the ni nExpect edCol | at er al just passes, the
attacker can extract the redistribution profits the trove just received, as they are now part of the trading
slippage. Any original trading slippage can additionally be extracted.

Extracting Redemption Fees:

Preconditions: A user calls a function like cl oseTr oveFr onCol | at er al of the WETHZapper, then a
significant redemption with a high fee happens and the user's trove does not have an AddManager in
Bor r owOper at i ons.

Possible Attack: The attacker donates collateral, so that the m nExpect edCol | at er al just passes.
Then, the attacker can extract the redemption fee, that was just received, as it is now part of the trading
slippage. Any original trading slippage can additionally be extracted.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 51

https://chainsecurity.com

8.12 Sending NFTs Does Not Reset Delegation
(D) (Version 1

Troves in Liquity V2 are transferable NFTs. This allows the user to transfer a trove, which means it could
be sold on a marketplace. Users purchasing a trove should be aware that the delegation of the trove is
not reset when the trove is transferred. This means the seller could set themselves as the remove
manager and receiver before the transfer is executed (potentially setting it at the last second,
frontrunning the purchase), then remove collateral from the trove after the transfer is completed.

As a result, purchasers of troves should be cautious and ensure that the purchase transaction includes a
reset of the delegation.

Also note that delegation can be set in the zappers, so users must check this before delegating their
trove to a zapper.

8.13 Trove Shares Exchange Rate Invariant

(D) (Version 1)

The function Tr oveManager . _updat eBat chShar es() rounds down the shares removed from the
batch when debt is decreased. Hence, any operations that decrease the debt level (i.e. redemptions,
lowering the debt level of troves) reduce the amount of debt per debt share due to rounding.

We have not identified any strategy that could reduce the exchange rate below the initial exchange rate
of one debt token per debt share.

If it was possible to bring the value of a debt share below one debt, it may be possible for further rounding
issues to make debt shares very cheap (i.e., totalDebtShares >> totalBatchDebt). This could result in an
overflow of the debt share calculation. For example, when the cur r ent Bat chDebt Shar es is 1e60 and
the debt Decr ease is 1e18, then the calculation to get the trove of a debt recordedDebt would overflow.

function _getLatestTroveDataFronBatch() internal view {
Trove nenory trove Troves|[_troveld];
Bat ch nenory batch bat ches[_bat chAddress] ;
ui nt 256 bat chDebt Shar es trove. bat chDebt Shar es;
ui nt 256 t ot al Debt Shar es bat ch. t ot al Debt Shar es;

it (total Debt Shares 0) {
_latest TroveDat a. r ecor dedDebt _l atest Bat chDat a. r ecor dedDebt bat chDebt Shar es t ot al Debt Shar es;

This could prohibit certain positions from getting liquidated and be exploited to mint unbacked tokens to
managers.

Additionally, full redemptions can leave some debt in the trove. For example, when total batch shares are
4000e18, debt is 4000e18 + 5, and the user has 2000e18 shares, the user debt is calculated as:

user.debt = batch.debt * user.shares / batch.shares = (4000e18 + 5) * 2000e18 / 4000e18 = 2000e18 + 2
However, redeeming that user debt burns:

user.shares = batch.shares * user.debt / batch.debt = 4000e18 * (2000e18 + 2) / (4000e18 + 5) =
2000e18 - 1

Thus, the user would end up with shares = 1 left after the redemption.

In conclusion, the rounding can potentially lead to unexpected behavior. If there is a way to trigger
rounding that causes the ratio of debt : debt shares to go below 1, this could have catastrophic
consequences. However, we have not been able to identify a transaction sequence that causes this.

It should be seen as a core protocol invariant that the debt : debt shar e ratio is never allowed to go
below 1.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 52

https://chainsecurity.com

In the function Tr oveManager. updat eBat chShar es does not round down when fully
closing a position:

i f (_newTroveDebt 0) {
bat ches[_bat chAddr ess] . debt _bat chDebt debt Decr ease;
bat ches[_bat chAddr ess] . t ot al Debt Shar es cur r ent Bat chDebt Shar es Troves[_trovel d] . bat chDebt Shar es;
Troves[_trovel d] . bat chDebt Shar es 0;
} else {
bat chDebt Shar esDel t a curr ent Bat chDebt Shar es debt Decrease / _bat chDebt ;

Troves[_trovel d] . bat chDebt Shar es bat chDebt Shar esDel t a;
bat ches| _bat chAddr ess] . debt _bat chDebt debt Decr ease;
bat ches[_bat chAddr ess] . t ot al Debt Shar es curr ent Bat chDebt Shar es bat chDebt SharesDel t a;

Note on the audit process: At the beginning of the audit, it was already known to Liquity that fully
redeemed troves can end up with a non-zero amount of debt shares. The GitHub issue related can be
found here.

8.14 Zapper Remove Manager Requires Increased
Trust

The zappers implement the same delegation scheme as the core system. There is a r enoveManager
and a recei ver, that can be set to different addresses. In the core system, the r enoveManager
cannot directly profit or cause losses by making malicious changes, because the r ecei ver will receive
the funds.

In the zappers, the r enbveManager can directly profit and cause losses by making malicious changes,
because they can decide the parameters of the swaps made in the leverage functions. Swapping at bad
exchange rates (and sandwiching those swaps) can cause losses to the owner of the trove.

As a result, the trust required in a r enoveManager that is not also the r ecei ver is higher in the zapper
than in the core system.

I:$: Liquity - Bold - ChainSecurity - © Decentralized Security AG 53

https://web.archive.org/web/20241003114027/https://github.com/liquity/bold/issues/416
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Major changes from Liquity V1
	2.2.2 CollateralRegistry
	2.2.3 Trove interest rates
	2.2.4 Individual delegation
	2.2.5 Batch delegation
	2.2.6 Collateral Branch shutdown
	2.2.7 Gas compensation
	2.2.8 PriceFeeds (Oracles)
	2.2.9 Zappers
	2.2.10 Trust Model
	2.2.11 Changes in Version 2
	2.2.12 Changes in Version 4
	2.2.13 Changes in Version 5
	2.2.14 Changes in Version 6
	2.2.15 Changes in Version 7

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Unredeemable Troves Can Pay Minimum Interest Rate
	5.2 Discrepancy in swapFromBold Behavior

	6 Resolved Findings
	6.1 Rounding in Debt Shares Calculation Can Mint Unbacked Tokens
	6.2 BalancerFlashLoan Missing Access Control
	6.3 Leverage Zappers Do Not Return Swap Excess
	6.4 Zappers Can Lose User Funds
	6.5 Incorrect Scaling of P
	6.6 Pool Deposit Are Compared to Precision
	6.7 Total Deposit Are Compared to Wrong Constant
	6.8 Batches Can Be Used to Make Two Free Adjustments in a Row
	6.9 Delegation Specification
	6.10 Incorrect Code Comments
	6.11 Interest Delegates Are More Trusted Than Needed
	6.12 Missing Payable Modifier
	6.13 Missing Validation of Troves in Urgent Redemptions
	6.14 Opening Troves Can Be Blocked
	6.15 Out-of-gas May Lead to Shutdown
	6.16 Price Limit in UniV3Exchange Is Too Strict
	6.17 Shutdown Can Be Triggered Twice
	6.18 User-provided transferFrom Source Address
	6.19 Zapper Delegation Is Not Reset When a Trove Is Closed
	6.20 Gas Optimizations in StabilityPool
	6.21 Receiver Address in Balancer Flashloan Is Reset Late
	6.22 Backed Tokens Can Be Redeemed Unproportionally
	6.23 CEI Pattern Violated in Adjust Trove
	6.24 Comments From Development
	6.25 Core Debt Invariant Incorrectly Documented
	6.26 Floating Pragma
	6.27 Inconsistent Input Validation by Zappers
	6.28 Indexed Parameters of Events
	6.29 Minting Unbacked Tokens via Redistributions
	6.30 Misleading Function Names in Zapper
	6.31 Missing Events

	7 Informational
	7.1 Unimplemented Function Can Be Called
	7.2 Bypassing Collateral Adjustment Check
	7.3 Gas Optimizations
	7.4 Insufficient Gas Compensation Could Mint Bad Debt
	7.5 Price Deviation in Composite Price Feed
	7.6 Small Redemptions Do Not Increase Base Rate
	7.7 Upfront Fee Is Zero for Small Borrows
	7.8 Upfrontfee Can Bring Troves Below MCR
	7.9 rETH Address Might Change

	8 Notes
	8.1 Add Manager Can Increase Stake
	8.2 CCR and SCR Considerations
	8.3 Delegations Are Deleted on Liquidation
	8.4 Frontrunning Considerations for Off-Chain Infrastructure
	8.5 Fully Backed Branches Can Have Low Interest Rates
	8.6 Inconsistent Use of Receivers in Zappers
	8.7 Integration Notes for Smart Contract Devs
	8.8 Interest Rate Adjustments Below CCR
	8.9 Manipulating Bold Supply With Flashloans
	8.10 No Interest Paid on Pending Redistributions
	8.11 Possible Attacks Against Zapper Users
	8.12 Sending NFTs Does Not Reset Delegation
	8.13 Trove Shares Exchange Rate Invariant
	8.14 Zapper Remove Manager Requires Increased Trust

