

PUBLIC

Code Assessment

of the Bold

Smart Contracts

14 May, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 15

4 Terminology 16

5 Open Findings 17

6 Resolved Findings 19

7 Informational 42

8 Notes 48

Liquity - Bold - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Liquity team,

Thank you for trusting us to help you with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Bold according to Scope to
support you in forming an opinion on their security risks.

Liquity implements Liquity V2, a decentralized stablecoin system with user set interest rates, iterating on
Liquity V1.

The most critical subjects covered in our audit are functional correctness, rounding issues, and
correctness of external integrations. The security regarding functional correctness is high, after issues in
prior versions were resolved: Zappers can lose user funds. Security regarding rounding issues has been
improved after the amount of share inflation was restricted, see Rounding in debt shares calculation can
mint unbacked tokens. Security regarding external integrations is high, as issues with Balancer and
Leverage Zapper have been resolved: BalancerFlashLoan missing access control and Leverage zappers
do not return swap excess.

The general subjects covered are documentation, trustworthiness and code complexity. The project has
very extensive documentation. The trustworthiness is high, as the system is designed to be immutable
with limited trust assumptions. The system's contracts are very complex, which carries increased risk
compared to simpler code.

In summary, we find that the core contracts provide a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Liquity - Bold - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 3

• Code Corrected 3

Medium -Severity Findings 1

• Code Partially Corrected 1

Low -Severity Findings 16

• Code Corrected 12

• Specification Changed 3

• Acknowledged 1

Liquity - Bold - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Bold repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 30 Aug 2024 7d9c8e68104cd4493f8b7da7e28e6951a2f84304 Initial Version

2 08 Nov 2024 d72dcb1bb2c8cbefd5ea37350d921d1bb7736da1 Version with fixes

3 09 Dec 2024 26ff5b24a83978801fa561af27dd9fcb228ed9af Version with fixes

4 13 Jan 2025 ce0128a31922b4f7f5d79efb57ca6d1cfe6616d0 First Launch

5 03 Mar 2025 f87639de70369555073e00664bc8f7ea1fb9f000 Bug fixes

6 06 May 2025 2e901c785ba5c6d91a1fd55a358ead638961442a Version with fixes

7 14 May 2025 abe7cbfbd465fba3812282c51773455766a70e96 Final Version

For the solidity smart contracts, the compiler version 0.8.24 was chosen.

This review assumes that the contracts will be deployed only to Ethereum mainnet. Prior to deploying to
another chain, an additional in-depth assessment of the differences between that particular chain and
Ethereum mainnet, and its effects on the contracts, must be done.

The following contracts in the folder contracts/src are in the scope of the review:

ActivePool.sol
AddressesRegistry.sol
BoldToken.sol
BorrowerOperations.sol
CollateralRegistry.sol
CollSurplusPool.sol
DefaultPool.sol
SortedTroves.sol
GasPool.sol
StabilityPool.sol
TroveManager.sol
TroveNFT.sol
Dependencies:
 AddRemoveManagers.sol
 AggregatorV3Interface.sol
 Constants.sol
 IRETHToken.sol
 LiquityBase.sol
 LiquityMath.sol
 Ownable.sol
Interfaces:
 IAddRemoveManagers.sol

Liquity - Bold - ChainSecurity - © Decentralized Security AG 5

https://github.com/liquity/bold/tree/7d9c8e68104cd4493f8b7da7e28e6951a2f84304
https://github.com/liquity/bold/tree/d72dcb1bb2c8cbefd5ea37350d921d1bb7736da1
https://github.com/liquity/bold/tree/26ff5b24a83978801fa561af27dd9fcb228ed9af
https://github.com/liquity/bold/tree/ce0128a31922b4f7f5d79efb57ca6d1cfe6616d0
https://github.com/liquity/bold/tree/f87639de70369555073e00664bc8f7ea1fb9f000
https://github.com/liquity/bold/tree/2e901c785ba5c6d91a1fd55a358ead638961442a
https://github.com/liquity/bold/tree/abe7cbfbd465fba3812282c51773455766a70e96
https://chainsecurity.com

 IAddressesRegistry.sol
 IBoldRewardsReceiver.sol
 IBoldToken.sol
 ICollateralRegistry.sol
 ICollSurplusPool.sol
 IBorrowerOperations.sol
 ICommunityIssuance.sol
 ICompositePriceFeed.sol
 IDefaultPool.sol
 IHintHelpers.sol
 IInterestRouter.sol
 ILiquityBase.sol
 ILQTYStaking.sol
 ILQTYToken.sol
 IMultiTroveGetter.sol
 IPriceFeed.sol
 ISortedTroves.sol
 IStabilityPool.sol
 IStabilityPoolEvents.sol
 ITroveEvents.sol
 ITroveManager.sol
 ITroveNFT.sol
 IWETHPriceFeed.sol
 IWETH.sol
 IWSTETH.sol
 IWSTETHPriceFeed.sol
PriceFeeds:
 CompositePriceFeed.sol
 MainnetPriceFeedBase.sol
 RETHPriceFeed.sol
 WETHPriceFeed.sol
 WSTETHPriceFeed.sol
Types:
 BatchId.sol
 LatestBatchData.sol
 LatestTroveData.sol
 TroveId.sol
 TroveChange.sol
Zappers:
 LeverageWETHZapper.sol
 WETHZapper.sol
 LeverageLSTZapper.sol
 GasCompZapper.sol
Interfaces:
 ILeverageZapper.sol
 IFlashLoanReceiver.sol
 IFlashLoanProvider.sol
 IExchange.sol
Modules/Exchanges:
 CurveExchange.sol
 UniV3Exchange.sol
Modules/FlashLoans:
 BalancerFlashLoan.sol

Version 2In , the scope was modified as follows:

Liquity - Bold - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• The files and contracts BaseZapper, LeftoversSweep and HybridCurveUniV3Exchange have
been added.

2.1.1 Excluded from scope
Any contracts that are not explicitly listed above are out of the scope of this review. Third-party libraries,
like openzeppelin libraries, are out of the scope of this review.

The soundness of the financial model was not evaluated.

The repository is a monorepo: only the smart contracts listed above were the scope of the review.

Any known issues at the time of the report, (such as those mentioned in the docs, GitHub issues on the
public Bold repo, or on the Security Advisory page of the Liquity V1 repo) are considered out of scope
and have generally not been duplicated in this report.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Liquity V2 is a decentralized borrowing protocol, which issues the BOLD stablecoin. The codebase is a
fork of the Liquity V1 codebase, using the same core architecture.

This system overview focuses on the parts that are new in Liquity V2 compared to V1. A detailed
description of the entire system can be found in the ReadMe of the Bold repo (archived version here).

2.2.1 Major changes from Liquity V1

1. Multi-collateral system: The system includes a CollateralRegistry and multiple collateral
branches, each with its own parameters and TroveManager, where liquidations and gains are
handled within the same branch.

2. Collateral choices: The system supports collateral branches for ERC-20 tokens (WETH, rETH,
and wstETH), but not native ETH.

3. User-set interest rates: Borrowers can set and change their annual interest rates, with interest
accruing continuously and compounded discretely, and aggregate debt periodically minted as
BOLD.

4. Yield from interest paid to SP and LPs: Interest from Troves is split between the Stability Pool
and a router for DEX LP incentives, with each branch's interest paid to its own SP.

5. Redemption routing: BOLD redemptions are managed by the CollateralRegistry, aiming to restore
the BOLD peg and reduce unbackedness in the most unbacked branches.

6. Redemption ordering: Redemptions now prioritize Troves with the lowest annual interest rates,
ignoring collateral ratios.

7. Unredeemable Troves: Troves with very small BOLD debt after redemptions are tagged as
unredeemable to prevent griefing attacks, becoming redeemable again when debt exceeds
MIN_DEBT.

8. Troves represented by NFTs: Troves are transferable as NFTs, allowing multiple Troves per
Ethereum address.

9. Individual delegation: Trove owners can appoint managers to set interest rates and control debt
and collateral adjustments.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 7

https://web.archive.org/web/20240905124114/https://github.com/liquity/BOLD?tab=readme-ov-file
https://chainsecurity.com

10. Batch delegation: Trove owners can appoint batch managers to adjust interest rates for multiple
Troves within a predefined range.

11. Collateral branch shutdown: In extreme conditions, a collateral branch can be shut down,
freezing operations and enabling urgent redemptions to clear debt quickly.

12. Removal of Recovery Mode: Recovery Mode is removed, with liquidations only occurring below
the minimum collateral ratio. Borrowing restrictions still apply below the critical threshold.

13. Liquidation penalties: Liquidated borrowers below the minimum collateral ratio may now reclaim
some collateral depending on the branch and liquidation type.

14. Gas compensation: Liquidators receive gas compensation in a mix of collateral and WETH, with a
cap on variable compensation.

15. More flexibility for SP reward claiming: SP depositors can claim or stash LST gains and either
claim BOLD yield gains or add them to their deposit.

2.2.2 CollateralRegistry
Liquity V2 supports multiple collateral tokens. The CollateralRegistry contract stores a list of all the valid
collateral branches. Each collateral token has its own set of independent contracts, including a
TroveManager, StabilityPool, BorrowerOperations, ActivePool, DefaultPool, SortedTroves, GasPool, and
CollSurplusPool.

Collaterals can only be defined in the constructor. Once the system is deployed, it is impossible to add
any new collateral.

The CollateralRegistry is now the entry point into redemptions (rather than the TroveManager as in
Liquity V1). The redeemCollateral function will redeem BOLD from all active collateral branches
simultaneously. The amount redeemed from each branch is weighted by their "unbackedness". The
unbackedness is defined as the difference between the total BOLD debt of the branch, and the BOLD in
the branch’s StabilityPool (SP).

Example: Two active collateral branches, branch 1 has 1000 debt and 500 BOLD in the SP. Branch 2 has
2000 debt and 500 BOLD in the SP. If a redemption of 400 BOLD is requested, 100 will be redeemed
from branch 1 and 300 will be redeemed from branch 2. This is because the unbackedness of branch 2 is
three times as large as that of branch 1.

Redemptions in each branch still work the same as in Liquity V1, except that troves are not closed if they
are fully redeemed. Instead, they just stay open with no debt. Also, redemptions start with the lowest
interest rate trove, not the lowest collateral ratio trove.

2.2.3 Trove interest rates
In Liquity V2, trove owners pay an interest rate on their borrowed BOLD. The interest rate is set when
opening the position and can later be adjusted by the owner or can be delegated. The interest rate
chosen must be in the valid range (currently between 0.5 - 100% APR). Troves are now redeemed in
order of interest rate, starting with the lowest one. This incentivizes users to choose higher interest rates,
as they will generally want to avoid redemption. However, users are also incentivized to choose a rate
that is not too high, as otherwise, they will pay more interest than necessary. This should result in the
market converging to a fair interest rate.

The contract stores the total interest rate paid by the system as the weighted sum of trove debt multiplied
by trove interest rate:

SUM(trove.debt * trove.interestRate)

This expression is then used to mint the interest on every call modifying the debt. It is minted in a fixed
split rate of SP_YIELD_SPLIT (currently set to 75%) to the Stability Pool (SP), and the rest to the
Interest Router. The Stability Pool liquidity providers receive interest based on their share of the provided

Liquity - Bold - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

liquidity remaining in the pool (similar to how collateral gains are calculated). The yield is not
automatically added to the user's BOLD deposit, it requires user action to compound.

The system uses the weighted sum to calculate the "approximate" average interest in the branch as:

SUM(trove.debt (exl. interest + fees) * trove.interestRate) /
SUM(trove.debt (incl. interest + fees))

Whenever a user borrows BOLD, they pay an upfront fee equivalent to 1 week of average interest on the
amount borrowed. Further, any time they adjust their interest rate before
INTEREST_RATE_ADJ_COOLDOWN (currently 3 days) has passed, they will be charged a fee equivalent
to UPFRONT_INTEREST_PERIOD (currently 1 week) of the average interest rate. This is to discourage
users from changing their interest rate often to avoid redemptions.

2.2.4 Individual delegation
Trove owners can delegate certain rights to other addresses (for example to facilitate a hot/cold wallet
setup). There are four delegations that can be set:

1. addManager: This role can execute trove actions that improve a trove's collateralization, such
as paying back debt or adding collateral. If this role is set to the zero address, anyone is
allowed to.

2. removeManager: This role can execute trove actions that make a trove's collateralization
worse, such as taking on debt or removing collateral.

3. receiver: This is the address that will receive minted tokens or collateral requested by the
remove manager. If it is set to zero, the owner will receive the tokens. When the owner makes
a withdrawal, the tokens are always sent to the owner.

4. interestIndividualDelegate: This role can adjust the interest rate of the trove within a certain
range.

2.2.5 Batch delegation
Trove owners who do not want to manage their interest rate themselves can join a batch. A batch is a
group of troves that all have the same interest rate, set by the batch manager. The manager can adjust
the batch's interest rate at a specified maximum frequency and within a predefined range. In return, the
manager can set a management fee, which is minted to the manager as new BOLD tokens, while the
corresponding debt is added to the troves in the batch (pro rata).

The debts of all troves in a batch are accounted together, in a single debt variable. Each trove in turn
receives debtShares, which represent their share of the debt. A trove's debt (ignoring pending debt
redistributions) is calculated as:

batch.debt * trove.batchDebtShares / batch.totalDebtShares;

2.2.6 Collateral Branch shutdown
A branch can shut down under two conditions:

1. The TCR (Total collateral ratio) of the branch falls below the SCR (shutdown collateral ratio)

2. The Chainlink oracle fails by reverting, returning a non-positive price, or becoming stale

An oracle failure will trigger a shutdown when a user attempts to close a trove (either by closing or
liquidating) or when the oracle is called directly to fetch the price. Other actions, such as opening a trove,
will simply revert and not trigger a shutdown.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The condition TCR < SCR will trigger a shutdown when the shutdown function is called. A shutdown will
perform the following steps:

1. Mint any pending interest to the Stability Pool (SP). No more interest will be minted after this point.

2. Set the branch's isShutdown flag in the BorrowerOperations.

3. Set the shutdown time in the active pool and trove manager.

The isShutdown flag in the BorrowerOperations will prevent users from performing any operations with
the contract except for closing troves. The shutdown time is used to calculate the pending interest owed
by trove owners up until shutdown and to mint any pending management fee to the batch manager. After
a shutdown, the collateral registry will not route any redemptions through the branch. Instead, redeemers
are expected to call urgentRedemption on the TroveManager to redeem collateral from the shut-down
branch. These urgent redemptions are allowed for all troves, regardless of their collateral ratio and
interest rate. They generally behave like regular redemptions, except that there is no redemption fee, and
the redeemer receives a bonus of URGENT_REDEMPTION_BONUS (e.g. 1%) on the collateral they
redeem, paid by the trove owner. Urgent redemptions can lower the collateralization ratio of the system,
prioritizing speed. The shutdown allows liquidations to continue, so the following actions are still allowed:

• closeTrove()

• batchLiquidateTroves()

• claimCollateral()

• urgentRedemption()

In case an urgently redeemed trove has an ICR under 101%, the redeemer will receive all the collateral,
and the trove will be left with some debt. This debt can then be liquidated against the stability pool or
redistributed to other troves. In case the TCR of the branch is below 101% and the stability pool is empty,
the end-state will be a single remaining trove with no collateral and some bad debt. This could lead the
BOLD token to depeg, which could in turn affect the other branches.

2.2.7 Gas compensation
For every trove opened, a gas compensation for a potential liquidation must be deposited. The fixed gas
compensation (currently set to 0.0375 WETH) is always paid upfront, in WETH, regardless of the
collateral token used.

The second part of the gas compensation is determined at the time of liquidation. It is taken as a
percentage of the trove's collateral (currently set to 0.5%), with a maximum cap (currently set to 2 (2e18)
of the collateral token).

This ensures that the gas compensation for large troves is higher than for small troves. This makes
sense, as an unliquidated large trove is a bigger risk to the system's health than a small one.

2.2.8 PriceFeeds (Oracles)
Liquity V2 uses price feeds based on Chainlink oracles.

If a call to the Chainlink aggregator fails during a call to fetchPrice(), the
disablePriceFeedAndShutDown function will be called, which initiates the Collateral Branch
Shutdown. The branch will continue using the price feed's last valid price. This price may be significantly
different from the real market price.

Version 1

For some collateral tokens, a CompositePriceFeed is used. Here, the LST/USD price is calculated as the
product of the LST/ETH and the ETH/USD price. The LST/ETH price is queried in two ways: once by
calling the Chainlink oracle, and once using the LST's contract to get the "canonical rate" of how many
ETH are backing each of the LST tokens. Out of these two, the minimum price is used. In , if the
canonical rate call reverts, the oracle will not trigger a branch shutdown. (This changed in Changes In
Version 2.)

Liquity - Bold - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

2.2.9 Zappers
Liquity V2 introduces zappers, which can be used to wrap ETH into WETH (required for the gas
compensation) and make a deposit to Liquity V2 in the same transaction. They can also be used to take
on leverage using flashloans.

The zapper will set the addManager, removeManager, and receiver to itself in BorrowerOperations. This
allows the zapper to adjust the trove on behalf of the user later. The zapper implements its own access
control, which also supports delegating the same roles.

There are currently two supported zappers: GasCompZapper allows depositing ERC20 collateral and
wrapping ETH for the gas compensation at the same time. WETHZapper allows wrapping ETH and using
it for the gas compensation and as collateral simultaneously.

The zappers contain the following functions:

• openTroveWithRawETH(): Allows opening a Trove using raw ETH as the gas compensation
(and raw ETH as collateral for WETHZapper).

• addCollWithRawETH(): Allows adding collateral to a trove. For WETHZapper, raw ETH is first
wrapped. The user must be the trove owner or be set as add manager in the zapper.

• withdrawCollToRawETH(): Allows withdrawing collateral from a Trove. For WETHZapper,
WETH is unwrapped to ETH before being sent to the user. The user must be the trove owner or
be set as remove manager in the zapper.

• adjustTroveWithRawETH(): Allows adjusting a Trove's collateral and debt. For
WETHZapper, raw ETH can be wrapped and used as collateral or unwrapped when
withdrawing. The user must be the trove owner or have the required permissions for the
adjustment in the zapper.

• closeTroveWithRawETH(): Allows closing a Trove. The gas compensation is unwrapped and
sent to the user as raw ETH. For WETHZapper, withdrawn collateral is also unwrapped to ETH.
The user must be the trove owner or be set as remove manager in the zapper.

The basic zappers are extended by LeverageLSTZapper and LeverageWETHZapper. These allow taking
a flashloan to create or unwind a levered BOLD position. Currently, only Balancer is implemented as a
flashloan source.

The leverage zappers contain the following functions:

• openLeveragedTroveWithRawETH(): Allows opening a Trove using raw ETH as the gas
compensation (and raw ETH as collateral for WETHZapper). Some of the collateral is provided
by the user, the rest is taken from a flashloan. After opening, the minted BOLD are sold on a
DEX to repay the flashloan. This creates a levered long position on the collateral token.

• leverUpTrove(): Uses a flashloan to increase the leverage of a trove. The user must be the
trove owner or be set as remove manager in the zapper and the zapper must be set as add
manager, remove manager and receiver in the trove manager.

• leverDownTrove(): Uses a flashloan to decrease the leverage of a trove. The user must be
the trove owner or be set as remove manager in the zapper and the zapper must be set as add
manager, remove manager and receiver in the trove manager.

When swapping, the minimum swap price is defined implicitly. With the passed params, the user must
define the amounts correctly. The swap will always happen such that the exact amount of collateral taken
as flashloan is swapped (to). For example, if the user calls leverUpTrove() with a flashLoanAmount
of 1 WETH and a BOLDAmount of 2000 BOLD, 2000 BOLD will be taken as additional debt, and at most
this amount will be swapped for 1 WETH (any excess will not be swapped). If the price on the chosen
market is worse than 2000 BOLD per WETH, the transaction will revert. This is the minimum swap price.
If the user does not set the params correctly, they may incur significant slippage through MEV Sandwich

Liquity - Bold - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

attacks. Note that the removeManager set in the zapper has the power to perform these swap
parameters, so they must be fully trusted.

2.2.10 Trust Model
The system's contracts are designed to be immutable, with limited trust assumptions. There are no admin
roles (after deployment is complete) or upgradeability mechanisms (except for those in the oracles used).

The AddressesRegistry, BoldToken, and MainnetPriceFeedBase contracts assign an owner role. These
owners are expected to correctly configure the system and relinquish their ownership afterwards.

The trust model for removeManager and receiver depends on their configuration. When both addresses
are set, the receiver gets all funds withdrawn: removeManager and receiver are fully trusted to manage
the user funds. If both addresses are compromised, they could withdraw all the funds from the Trove. If
the receiver is set to address 0, the funds are transferred to the Trove owner instead. In this case, the
removeManager is only trusted to maintain the collateralization ratio to avoid causing losses to the owner
(e.g., by lowering the ICR close to the liquidation threshold). Additionally, the receiver configured in the
Zapper must be trusted not to revert transactions. Otherwise, they could cause a denial of service (DoS)
by exhausting all available gas when receiving ETH via raw call.

The interestIndividualDelegate and batchManager are trusted to adjust the interest rate in the best
interest of the Trove owner. They are expected not to modify the interest rate more frequently than
necessary, as the owner will incur upfront fees for each adjustment. Furthermore, they are trusted to set
the interest rate at an optimal level, balancing the risk of redemptions with the cost of interest.

The Chainlink Oracle is trusted to provide price updates within the expected threshold and return prices
in the expected format, not changing the return data size or the decimals used to report prices.
Additionally, they are trusted not to revert any calls.

The addManager can only improve the collateralization ratio of a trove. The addManager is mostly
untrusted, but can perform some special actions described in the Notes.

We have specifically investigated the use of WETH, wstETH and rETH as collateral tokens (i.e. their
respective Ethereum mainnet deployments). Any token that does not use 18 decimals of precision or has
other non-standard behavior is not supported by the protocol.
https://web.archive.org/web/20240930034220/https://github.com/d-xo/weird-erc20

2.2.11 Changes in Version 2
Version 2 of the codebase introduces the following changes:

• The closeTroveFromCollateral function has been added to the GasCompZapper and
WETHZapper contracts. This function allows the zapper to close a trove by selling its collateral,
instead of repaying with BOLD from the user. It accomplishes this by taking a flashloan of
collateral tokens, swapping them to BOLD on an exchange, then using the received BOLD to
repay the trove debt. The collateral that was in the trove is used to repay the loan, with excess
going to the user.

• Unredeemable troves have been renamed to zombie troves. When a trove becomes a zombie
trove but still has some debt (through a partial redemption), a pointer to it is stored. When the
next redemptions on the branch happen, that trove will be redeemed first (until it has no more
debt). Usually, there should only be one zombie trove with more than zero debt at a time.
However, if there are troves with collateral and no debt when a redistribution happens, they can
receive debt. This debt will not be redeemable.

• Similar how batch manager can only update the interest rates in a maximum frequency, users
can now set a minimum period between interest rate adjustments for their
interestIndividualDelegate. This can lower the trust required in the delegate.

• Borrowing is now allowed if the system is below the critical threshold, as long as the new trove
brings the system back above the critical threshold.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 12

https://web.archive.org/web/20240930034220/https://github.com/d-xo/weird-erc20
https://chainsecurity.com

• The CompositePriceFeeds has been updated. They now continue to report prices if the LST
Chainlink Oracle fails. The collateral branch is still shutdown, however the LST price will then be
calculated using the ETH oracle price and the canonical exchange rate returned by the LST
contract. The price is only allowed to be reduced, it can never increase when calculated this
way. According to Liquity, this design incentivizes redeemers to quickly repay all outstanding
debt on a shutdown branch by offering them the "lowest available price" on (urgent)
redemptions.

• Redemption of LSTs uses the fetchRedemptionPrice function to get the collateral token
price, taking the maximum of the LST price and the canonical price, as long as the prices are not
at least 2% (for rETH) or 1% (for wstETH) apart. This reduces the risk of redemption arbitrage
due to oracle price deviations. In previous versions, redeemers could exploit (downward) price
deviations to redeem collateral at a lower price to cause losses to trove owner.

• In case the price difference exceeds the threshold, it is assumed to be a legitimate price
difference, with the canonical exchange rate lagging behind (updated once per day). In these
cases, redemptions (like all other price-relevant operations) return the minimum price for rETH,
as the rETH/ETH oracle price is considered by Liquity to be more susceptible to upward
manipulation that would otherwise make redemptions unprofitable. The stETH/USD oracle price
feed is considered to be more resistant, so the redemption price for wstETH in case of a > 1%
price difference is calculated with Chainlink's stETH price multiplied by the canonical exchange
rate.

• The LST price feeds now trigger a shutdown if the canonical price call to the LST contract
reverts.

2.2.12 Changes in Version 4
Version 4 of the codebase introduces the following changes:

• The INTEREST_RATE_ADJ_COOLDOWN has been increased from 3 to 7 days.

• The URGENT_REDEMPTION_BONUS changed from 1% to 2%.

• The MAX_LIQUIDATION_PENALTY_REDISTRIBUTIONS increased from 10% to 20%.

2.2.13 Changes in Version 5
Version 5 of the codebase introduces the following updates:

• Parameter Adjustments:

• The Critical Collateral Ratio (CCR) is increased from 150% to 160% for staked ETH
branches (sETH / rETH).

• The Minimum Collateral Ratio (MCR) is increased from 110% to 120% for staked ETH
branches (sETH / rETH).

• The Liquidation Penalty Redistribution is increased from 10% to 20% for staked ETH
branches (sETH / rETH).

• The maximum annual interest rate is increased from 100% to 250%.

• The minimum interest rate adjustment period is increased from 1 minute to 1 hour.

• A 10% buffer collateral ratio is introduced on top of the MCR for modifying troves in batches. For
staked ETH branches, this results in an effective collateralization ratio of 130% (120% MCR +
10% buffer). The increased collateralization requirement applies only when opening a new trove,
modifying an existing one, or joining/switching to a batch. Liquidations remain unaffected and
continue to use the MCR of 120% for staked ETH branches.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

• A minimum deposit of 1e18 BOLD tokens is now required in the Stability Pool. Only amounts
exceeding this minimum can be used to offset debt during liquidations. Users cannot withdraw
the last 1e18 BOLD from the Stability Pool, but they can initially deposit less than 1e18 BOLD.

• The Stability Pool can no longer be fully emptied via liquidation due to the minimum deposit
requirement. As such the the pool no longer stores epochs to keep account of pool-emptying
events. The precision of the running variable P, which tracks the remaining deposits in the pool,
is increased from 1e18 to 1e36. Further, the error correction mechanisms for calculating running
variables P, S, and B are removed as part of this change.

2.2.14 Changes in Version 6
Version 6 of the codebase introduced the following changes:

• Liquidators now receive only a portion of the trove collateral offset by the Stability Pool instead
of the total collateral. If the total debt of the trove is redistributed, they only receive the WETH
gas compensation.

• The owner of the last trove in a branch can now close the trove if the branch is shutdown.

• Allow anyone to remove a trove from a batch with inflated batch shares (kick). The trove from
the batch is assigned the same interest rate as the batch it was previously in.

• The RemoveManager role now inherits AddManager permissions, allowing any
RemoveManager to add collateral or repay debt for a trove.

2.2.15 Changes in Version 7
Version 7 of the codebase introduced the following changes:

• The MainnetPriceFeedBase contract no longer has an owner and is now configured during
deployment.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

• Trust : Violations to the least privilege principle

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code Partially CorrectedUnredeemable Troves Can Pay Minimum Interest Rate

Low -Severity Findings 1

• AcknowledgedDiscrepancy in swapFromBold Behavior

5.1 Unredeemable Troves Can Pay Minimum
Interest Rate
Design Medium Version 1 Code Partially Corrected

CS-BOLD-005

A trove that has less than MIN_DEBT is marked as unredeemable (also referred to as a zombie trove).
Unredeemable troves are not part of the sorted list of troves that can be redeemed, to prevent clogging of
the list with tiny troves.

As unredeemable troves have no risk of being redeemed, they are not incentivized to pay more than the
minimum interest rate. A trove can intentionally be made unredeemable by opening it with MIN_DEBT,
then self-redeeming a small amount of debt to bring it below MIN_DEBT.

As such, it could be profitable to open many small troves and make them unredeemable, rather than
creating a single large trove that must pay a higher interest rate to avoid redemption.

However, there are a few mitigating factors that make this strategy unattaractive:

1. For each trove opened, the ETH_GAS_COMPENSATION amount of WETH must be locked up.
This is a fixed cost per trove. However, this amount is returned when closing the trove, so the
cost is mainly the cost of capital/opportunity cost on this amount.

2. The Ethereum gas fee must be paid for the opening, redeeming, and closing of each trove.
This is a fixed cost per trove, but changes over time depending on the gas price.

3. Unredeemable troves cannot be adjusted, except if they are made redeemable. This means
any collateralization adjustment (e.g. to avoid liquidation) to the troves must be done in 2 steps:
First adjust the trove, then self-redeem again to make it unredeemable. These steps must be
repeated for every trove, so the cost of adjusting the trove is 2n times the cost of adjusting a
single trove, where n is the number of troves.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

4. Interest accrual will eventually increase the debt of the trove above MIN_DEBT, making it
redeemable. This means the trove must start with a debt significantly below MIN_DEBT.

Ultimately, the strategy's profitability will depend on the balance between the additional costs (which
heavily depend on gas price) and the interest rate savings.

Code partially corrected:

Unredeemable troves have been renamed to zombie troves. When a trove becomes a zombie trove but
still has some debt (through a partial redemption), a pointer to it is stored. When the next redemptions on
the branch happen, that trove will be redeemed first (until it has no more debt).

This resolves the attack described in the issue, as small troves can now be redeemed.

Note that there is still an edge case where the issue persists: Usually, there should only be one zombie
trove with more than zero debt at a time. However, if there are troves with collateral and no debt when a
liquidation through redistribution happens, they can receive debt. This debt will not be redeemable and
those troves can still pay only the minimum interest rate, as long their debt stays below MIN_DEBT.

Intentionally creating troves like this is difficult, as it requires liquidations to take place when the stability
pool is completely empty, which should only happen in extreme circumstances. It should be significantly
easier to do this when the system is first deployed and there are no other users on the same branch yet,
or when a branch's collateral token becomes very unpopular.

Note on the audit process: This issue was reported to ChainSecurity by Liquity while the audit was in
progress. It had also been discovered internally already, though the severity had not been fully assessed
yet.

The GitHub issue related to Liquity's report can be found here.

5.2 Discrepancy in swapFromBold Behavior
Design Low Version 1 Acknowledged

CS-BOLD-006

The UniV3Exchange and CurveExchange both implement the swapFromBold function. As the
exchanges can be used interchangeably, it is expected that they behave the same.

However, the UniV3Exchange uses an ExactOutput swap, which swaps the exact amount of collateral
tokens requested, and may leave excess BOLD tokens. CurveExchange on the other hand uses Curve's
exchange function, which is equivalent to an ExactInput swap, and may leave excess collateral
tokens.

Acknowledged:

Liquity acknowledged that ExactOutput is more natural but stated that they may add more exchanges
in the future and cannot guarantee that every exchange implements the version they choose.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 18

https://web.archive.org/web/20241003090539/https://github.com/liquity/bold/issues/425
https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedRounding in Debt Shares Calculation Can Mint Unbacked Tokens

High -Severity Findings 3

• Code CorrectedBalancerFlashLoan Missing Access Control

• Code CorrectedLeverage Zappers Do Not Return Swap Excess

• Code CorrectedZappers Can Lose User Funds

Medium -Severity Findings 0

Low -Severity Findings 15

• Code CorrectedIncorrect Scaling of P

• Code CorrectedPool Deposit Are Compared to Precision

• Code CorrectedTotal Deposit Are Compared to Wrong Constant

• Code CorrectedBatches Can Be Used to Make Two Free Adjustments in a Row

• Code CorrectedDelegation Specification

• Specification ChangedIncorrect Code Comments

• Code CorrectedInterest Delegates Are More Trusted Than Needed

• Code CorrectedMissing Payable Modifier

• Code CorrectedMissing Validation of Troves in Urgent Redemptions

• Code CorrectedOpening Troves Can Be Blocked

• Code CorrectedOut-of-gas May Lead to Shutdown

• Specification ChangedPrice Limit in UniV3Exchange Is Too Strict

• Code CorrectedShutdown Can Be Triggered Twice

• Code CorrectedUser-provided transferFrom Source Address

• Specification ChangedZapper Delegation Is Not Reset When a Trove Is Closed

Informational Findings 12

• Code CorrectedGas Optimizations in StabilityPool

• Code CorrectedReceiver Address in Balancer Flashloan Is Reset Late

• Code CorrectedBacked Tokens Can Be Redeemed Unproportionally

• Code CorrectedCEI Pattern Violated in Adjust Trove

• Code CorrectedComments From Development

• Code CorrectedCore Debt Invariant Incorrectly Documented

• Code CorrectedFloating Pragma

Liquity - Bold - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

• Code CorrectedInconsistent Input Validation by Zappers

• Code CorrectedIndexed Parameters of Events

• Code CorrectedMinting Unbacked Tokens via Redistributions

• Code CorrectedMisleading Function Names in Zapper

• Code CorrectedMissing Events

6.1 Rounding in Debt Shares Calculation Can Mint
Unbacked Tokens
Design Critical Version 1 Code Corrected

CS-BOLD-001

The function TroveManager._updateBatchShares() rounds down the debt shares of the trove:

batchDebtSharesDelta = currentBatchDebtShares * debtIncrease/batchDebt

The rounding error increases with the amount of debt per debt share of the batch. Initially, one debt share
is minted per unit of debt, but this ratio decreases over time as the batch debt grows due to rounding,
interest, and management fees.

An adversary can exploit this by making the ratio very small, i.e.,

batchDebt > 2000e18 * currentBatchDebtShares
At a ratio of 2000e18, an attacker can mint Bold tokens for free. The amount of debt shares they receive
for creating a trove of minimum debt is rounded to zero, allowing them to offload the debt to other users
in the batch.

There are two ways to increase the ratio of debt to shares:

1. High Management Fees and Frequent Compounding: Charging a high management fee of
100% and compounding frequently can increase the debt-to-shares ratio to 2000e18 after
approximately 50 years (ln(2000e18) / 100%).

2. Donating Dust Amounts of Debt: Donating small amounts of debt to the batch and increasing the
impact of off-by-one rounding errors by creating a tiny trove.

The steps to exploit the second method are as follows:

1. Open Trove A with 2000e18 debt in the batch and 2000e18 shares.

2. Redeem Trove A down to 1 debt and 1 share.

3. Open another Trove B with 2000e18 debt in the same batch.

4. Wait to earn some interest, e.g., 1 wei.

• Total shares = 2000e18 + 1, Total debt = 2000e18 + 2 (assuming zero fee for simplicity)

5. Donate 1 wei by calling adjustTrove with increaseDebt = 1. No shares will be minted since
(2000e18 + 1) * 1 // (2000e18 + 2) = 0.

• Total shares = 2000e18 + 1, Total debt = 2000e18 + 3

6. Close Trove B and pay back (2000e18 + 3) * 2000e18 / (2000e18 + 1) = 2000e18 + 1 debt.

• Total shares = 1, Total debt = 2

7. Open another trove with 2000e18 debt in the same batch.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

• Total shares = 2000e18 + 1, Total debt = 2000e18 + 2

An attacker can repeat steps 5. - 7. in a loop, increasing the amount of debt per share in each iteration. It
can be shown that the ratio can be increased by a factor of at least 3/2 in each iteration. Thus, an
attacker can inflate the ratio to 2000e18 in fewer than 120 iterations:

120 = log1.52000e18
Once the ratio is inflated, the attacker can mint Bold tokens for free by offloading the debt to Trove A.
Multiple mints can be performed in one transaction, creating bad debt as Trove A cannot be liquidated in
between. The bad mint will further inflate the batchDebtShares ratio, allowing the next mint to be twice
the size.

In this way, the attacker can mint a large number of unbacked BOLD, at most until the TCR of the branch
reaches the CCR.

There are also two other ways in which the manipulated batchDebtShares ratio can be exploited:

An attacker can exploit the redemption mechanism with an inflated exchange rate. During redemption,
the redeemer specifies the amount of debt to be redeemed and then burns the corresponding number of
shares:

batchDebtSharesDelta = currentBatchDebtShares * debtDecrease/batchDebt

An attacker can create a trove and join a redeemable batch. When paying back debt, the shares burned
are rounded down. For example, if currentDebtShares = 10 and batchDebt = 20_000e18, any redemption
of less than 200e18 Bold will not burn any shares:

0 = 10 * 199e18//20.000e18
Thus, an attacker can repeatedly redeem a victim's trove in that batch, buying up all their collateral while
paying back the batch's debt without burning any of the victim's debt shares. The attacker receives
attackerShares / totalShares * redeemBold of Bold paid by the victim.

Finally, an attacker can also access dirty memory by creating a redeemable trove in a batch with no debt
shares. This is done by creating a trove with the minimum debt of 2000e18 and no shares in a batch,
exploiting the rounding issue discussed above. All other troves in the batch must be closed to make the
number of total number of shares in the batch zero.

The redeemCollateral function overwrites the singleRedemption structure during each loop iteration.
When the trove is in a batch, the function _redeemCollateralFromTrove computes the latest trove data
from batch data. The function _getLatestTroveDataFromBatch does not write anything to
_latestTroveData if totalDebtShares are zero. In this case, the attribute singleRedemptionValues.batch
will contain values from the previous loop iteration.

if (totalDebtShares > 0) {
 _latestTroveData.recordedDebt = _latestBatchData.recordedDebt * batchDebtShares / totalDebtShares;
 ...
}

The attack will mint unbacked interest and management fee and lead to insolvency of the protocol.

Code corrected:

The function _requireBelowMaxSharesRatio has been added to the TroveManager to prevent the
ratio of debt shares to debt to increase by too much. The function takes the boolean
_checkBatchSharesRatio and reverts when the boolean is true and the ratio of debt to shares exceeds a
threshold of MAX_BATCH_SHARES_RATIO (1E9).

function _requireBelowMaxSharesRatio(
 uint256 _currentBatchDebtShares,

Liquity - Bold - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

 uint256 _batchDebt,
 bool _checkBatchSharesRatio
) internal pure {
 // debt / shares should be below MAX_BATCH_SHARES_RATIO
 if (_currentBatchDebtShares * MAX_BATCH_SHARES_RATIO < _batchDebt && _checkBatchSharesRatio) {
 revert BatchSharesRatioTooHigh();
 }
}

The boolean is set to true for all operations that call into _updateBatchShares, except redemptions.
Hence, for troves in a batch with inflated shares, the following operations cannot be performed:

• opening troves

• adjusting troves (i.e. increasing debt, withdrawing collateral, etc...)

• applying pending debt

In addition to redemptions, the following operations that burn shares by calling into
_removeTroveSharesFromBatch are still allowed:

• redeeming troves

• liquidating troves

• closing troves

• removing the trove from the batch

In case a user ends up being part of a batch with inflated shares for some reason, they should change to
a different batch to unlock full functionality again.

The issue described 2 root causes: Inflating via high interest rate and inflation via donation attacks.
Inflation with high interest rate is still possible, however inflation via donation attack is only possible until
the ratio of debt shares to debt reaches 1e9. In theory, an attacker can exploit the ratio up to 1e9 and
then wait 25 years more to inflate the ratio to 100e18.

The issue described 3 attacks vectors:

1. Minting unbacked tokens by inflating the ratio of debt shares to debt

2. Redeeming a victim's trove without burning any of the victim's debt shares

3. Accessing dirty memory by creating a redeemable trove in a batch with no debt shares

The first and third attack vectors are prevented by restricting the opening of positions. The second attack
vector is still theoretically possible but progresses very slowly. With 100% inflation compounded weekly,
the debt shares to debt ratio would reach 100e18 after 25 years. The victim trove would need to stay in
the batch for the entire time to be at-risk.

6.2 BalancerFlashLoan Missing Access Control
Correctness High Version 1 Code Corrected

CS-BOLD-002

The leverage zapper contracts use Balancer flashloans to make trove adjustments. For example, the
receiveFlashLoanOnLeverUpTrove function can only be called by the flashloanProvider.
flashLoanProvider.makeFlashLoan() is in turn supposed to be called through the
leverUpTrove function, which checks that the caller has rights to adjust the trove.

However, flashLoanProvider.makeFlashLoan() does not have any access control. It can be
called by any address, and any params can be passed. In this way, the access control of the zapper can
be circumvented. The flashLoanProvider will call back into the zapper and adjust any trove (that the
Zapper has rights to remove from) passed in the params, even though the user does not have the

Liquity - Bold - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

required rights. Additionally, an attacker could call the Balancer vault directly, specifying the
BalancerFlashLoan as callback recipient, without using the makeFlashLoan function at all. The
receiveFlashLoan function would accept the callback, as it only checks that the call comes from the
Balancer vault.

An attacker could use leverUpTrove() to bring a trove very close to liquidation, or
leverDownTrove() to reduce the trove's leverage. The attacker could make a profit by sandwiching
trades on the exchange used, which may cause slippage if the trove is large compared to the market's
liquidity. The attacker can set the slippage limits that will be used in the trade (by choosing the
parameters), so the execution price can become arbitrarily bad.

Code corrected:

Version 2In , the BalancerFlashLoan contract no longer takes the zapper parameter as input. Instead,
whenever the makeFlashloan function is called, the storage variable receiver will be set to the
msg.sender of the call (expected to be a zapper). After the flashloan returns, the receiver is reset to
the zero address.

The receiveFlashLoan function calls the receiver, which is now read from storage rather than the
input params. This way, the contract can only call a zapper if the zapper previously called
makeFlashLoan(). The zapper's access control is enforced before making the call to
makeFlashloan().

If receiveFlashLoan is called while the receiver is set to zero, the function will revert. This ensures
that the receiveFlash function cannot be entered by calling the Balancer vault directly.

Version 4In , the receiver address is now reset at the beginning of the function receiveFlashLoan.

6.3 Leverage Zappers Do Not Return Swap
Excess
Design High Version 1 Code Corrected

CS-BOLD-003

The leverage zappers use swaps and flashloans to create leveraged positions. However, they do not
handle excess tokens returned from the swaps. Excess tokens should be expected to be present often,
as market prices can change between submitting a transaction and its execution.

In UniV3Exchange.swapFromBold(), the zapper swaps BOLD for collateral tokens using an
ExactOutput swap. Any excess BOLD tokens will be left in the UniV3Exchange contract. The tokens
will not be returned to the user.

In CurveExchange.swapFromBold(), UniV3Exchange.swapToBold(), and
CurveExchange.swapToBold() the zapper swaps tokens using an ExactInput swap. Any excess
output tokens will be sent to the zapper but will not be returned to the user.

Tokens stuck in the zapper can be claimed by anyone (see Zappers can lose user funds).

Code corrected:

Version 2In , the exchange contract UniV3Exchange returns excess tokens to the Zapper contract.
Further, the zapper functions calling Curve or Uniswap (i.e. openLeveragedTroveWithRawETH,
leverUpTrove, and leverDownTrove) have been updated to send excess tokens back to the caller.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

For this, initial token balances in the Zapper and the Caller address are stored before the swap with
_setInitialBalancesAndReceiver. After the swap, _returnLeftovers checks the Zapper's
balance and returns the difference of initial balance and current balance to the caller.

uint256 currentCollBalance = _collToken.balanceOf(address(this));
if (currentCollBalance > _initialBalances.collBalance) {
 _collToken.transfer(_initialBalances.receiver, currentCollBalance - _initialBalances.collBalance);
}
uint256 currentBoldBalance = _boldToken.balanceOf(address(this));
if (currentBoldBalance > _initialBalances.boldBalance) {
 _boldToken.transfer(_initialBalances.receiver, currentBoldBalance - _initialBalances.boldBalance);
}

6.4 Zappers Can Lose User Funds
Correctness High Version 1 Code Corrected

CS-BOLD-004

The adjust, leverdown, and repay functions in the zappers can reduce the debt of a user's trove. To do
this, they transfer the specified amount to repay from the user and then trigger the repayment in the
BorrowerOperations.

However, if the specified debt repayment amount would bring a trove below MIN_DEBT, only the amount
that would bring the trove to MIN_DEBT is repaid. The rest of the funds will remain stuck in the zapper.

This is due to the following code in _adjustTrove():

// When the adjustment is a debt repayment, check it's a valid amount and that the caller has enough Bold
if (_troveChange.debtDecrease > 0) {
 uint256 maxRepayment = vars.trove.entireDebt > MIN_DEBT ? vars.trove.entireDebt - MIN_DEBT : 0;
 if (_troveChange.debtDecrease > maxRepayment) {
 _troveChange.debtDecrease = maxRepayment;
 }
 _requireSufficientBoldBalance(vars.boldToken, msg.sender, _troveChange.debtDecrease);
}

Consider the following example:

1. A user has a trove with a debt of 3000 BOLD.

2. The user calls the adjust function in the zapper with a debt repayment amount of 2000 BOLD.

3. The zapper transfers 2000 BOLD from the user to the zapper.

4. The zapper triggers the repayment in the BorrowerOperations. This will repay 1000 BOLD to
the trove, bringing the debt to 2000 BOLD (the MIN_DEBT).

5. The remaining 1000 BOLD will remain stuck in the zapper.

The worst case is the following: When there is a debt repayment to one of the lowest interest rate troves
in a branch, the repayment can be frontrun by a redemption that brings the trove just above MIN_DEBT.
This will result in the entire intended repayment amount being stuck in the zapper. A malicious batch
manager could intentionally reduce the interest rate of the trove's batch to make the redemption possible.

The worst-case attack would look as follows:

1. A user has a trove with a debt of 1'000'000 BOLD.

2. The user calls the adjust function in the zapper with a debt repayment amount of 500'000
BOLD.

3. The trove's batch manager frontruns the call and changes the interest rate to make the trove
low in the redemption order (or it already had a low interest rate).

Liquity - Bold - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

4. The attacker redeems the trove until it has only 2001 BOLD debt left.

#. The zapper transfers 500'000 BOLD from the user to the zapper. 4. The zapper triggers the
repayment in the BorrowerOperations. This will repay 1 BOLD to the trove, bringing the debt to 2000
BOLD (the MIN_DEBT). 5. The remaining 499'999 BOLD will remain stuck in the zapper. 6. The
attacker can collect the stuck funds by backrunning using the method below

Anyone can collect the stuck funds from the zapper by creating a trove in the zapper, setting the
receiver role in BorrowerOperations to an address other than the zapper, then creating additional
BOLD tokens through the zapper. The newly created BOLD will go to the receiver, and the zapper will
send the stuck funds to the caller.

Code corrected:

The Zappers now inherit from the new LeftoversSweep contract. It provides functionality to track the
contract's balances at the start of a call, then return any extra amount that is added during the call using
the _returnLeftovers function.

In all instances where there could be leftovers, they are now returned to the caller.

6.5 Incorrect Scaling of P
Correctness Low Version 5 Code Corrected

CS-BOLD-042

In the function StabilityPool.offset, P can be scaled up. The code assumes that P is in the value
range of (1e27, 1e36]. However, this is not always true. Instead, P can get scaled to a higher value.

For example for the following values:

• P = 2e17 + 1

• totalBoldDeposits = 1e20

• _debtToOffset = 5e19

The while loop in offset() is entered, since in the calculation of newP the new value is rounded down
to 1e27. But after scaling up again the final computed P is 1000000000000000000000000000500000000
which is bigger than 1e36.

uint256 numerator = P * (totalBoldDeposits - _debtToOffset);
uint256 newP = numerator / totalBoldDeposits;

...

while (newP <= P_PRECISION / SCALE_FACTOR) {
 numerator *= SCALE_FACTOR;
 newP = numerator / totalBoldDeposits;
 currentScale += 1;
 emit ScaleUpdated(currentScale);
}

As a result, multiple computations in the code, e.g. in getDepositorCollGain, will be incorrect. This is
because for a scale period that begins with a P > 1e36, the P can drop by more than 1e9, even though
the code assumes it drops by 1e9.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

Code corrected:

Version 6In the function StabilityPool.offset has been modified to ensure that the value of P is
always in the range [1e27, 1e36].

while (newP < P_PRECISION / SCALE_FACTOR) {
 numerator *= SCALE_FACTOR;
 newP = numerator / totalBoldDeposits;
 currentScale += 1;
 emit ScaleUpdated(currentScale);
}

6.6 Pool Deposit Are Compared to Precision
Correctness Low Version 5 Code Corrected

CS-BOLD-039

The function _updateYieldRewardsSum() compares the total deposits to DECIMAL_PRECISION
when verifying that the minimum threshold for yield distribution is reached. However, other parts of the
code use MIN_BOLD_IN_SP to check that the stability pool has enough funds. Note that both constants
are set to 10**18 so the generated bytecode is the same.

Code corrected:

Version 6

The function has been updated to compare the Stability Pool deposits against MIN_BOLD_IN_SP in
.

6.7 Total Deposit Are Compared to Wrong
Constant
Correctness Low Version 5 Code Corrected

CS-BOLD-040

The function _updateYieldRewardsSum() compares the total deposits to DECIMAL_PRECISION
when verifying that the minimum threshold for yield distribution is reached. However, other parts of the
code use MIN_BOLD_IN_SP to check that the total deposits are large enough. Both constants have the
same value 1e18 so the bug has no impact.

Code corrected:

Version 6The function has been updated to compare the total deposits to MIN_BOLD_IN_SP in .

6.8 Batches Can Be Used to Make Two Free
Adjustments in a Row
Design Low Version 1 Code Corrected

CS-BOLD-021

Liquity - Bold - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

Whenever a trove's interest rate is adjusted, it is checked when the trove's last adjustment took place. If it
is less than INTEREST_RATE_ADJ_COOLDOWN ago, the upfrontfee for an early adjustment is charged.

However, the setBatchManagerAnnualInterestRate function only takes into account the last
adjustment of the batch, not of the individual troves.

This means a user can do the following repeatedly:

1. Wait until their trove's last adjustment was more than INTEREST_RATE_ADJ_COOLDOWN ago.

2. Join a batch controlled by them with a different interest rate, that was adjusted more than
INTEREST_RATE_ADJ_COOLDOWN ago.

3. Adjust the interest rate of the new batch.

4. Wait until the batch adjustment was more than INTEREST_RATE_ADJ_COOLDOWN ago.

5. Leave the batch.

In this way, the user is able to adjust their interest rate twice in a row (steps 2./3.) without paying the
upfront fee. Leaving the batch in step 5 does not trigger any upfront fee either as long as the interest rate
of the trove is equal to the interest rate of the batch.

In summary, a user can perform two adjustments in a row every 2 * INTEREST_RATE_ADJ_COOLDOWN
(or 6 days). One way to exploit is by starting with a market interest rate of 5% in step 1 and then join a
batch with a lower interest, such as 0.5%, in step 2.

Without the free adjustment, maintaining a low interest rate would be risky, since the user would risk
redemptions and changing the interest later would require them to pay 7 days' worth of interest. However,
since the second update is free, the user can wait until they face the risk of redemptions and only then
update the interest rate back to 5% in step 3.

The profitability of this strategy depends on the frequency of redemptions and, consequently, the duration
for which the user can continue paying the low interest rate.

Code corrected:

The function BorrowerOperations.setInterestBatchManager has been updated to charge an
upfront fee whenever a user joins a batch. Previously, the fee was only charged if the interest rate was
adjusted less than INTEREST_RATE_ADJ_COOLDOWN ago. Now, users pay the upfront fee when joining
the batch (in step 2) and cannot profit from a free adjustment in step 3.

6.9 Delegation Specification
Correctness Low Version 1 Code Corrected

CS-BOLD-034

The documentation states that a receiver address can be chosen, who receives the collateral drawn
by the Remove Manager. It does not mention that the receiver also receives the tokens when the
owner makes a withdrawal.

Version 1In of the code, the receiver receives the tokens no matter who initiates a withdrawal,
whenever it is set.

Code corrected:

The code has been corrected to match the documentation. The receiver only receives the collateral
when a withdrawal is initiated by the Remove Manager. When the owner makes a withdrawal, the tokens
are sent to the owner.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 27

https://web.archive.org/web/20240905124114/https://github.com/liquity/BOLD?tab=readme-ov-file#remove-managers
https://chainsecurity.com

6.10 Incorrect Code Comments
Correctness Low Version 1 Specification Changed

CS-BOLD-007

1. The code comments of the function
ActivePool._mintBatchManagementFeeAndAccountForChange() state that the arithmetic
is done in two steps to avoid overflow. However, the arithmetic could only underflow from the
decrease.

2. The natspec in the function BorrowerOperations._openTrove() mentions a so-called
composite debt that includes bold gas compensation. The concept of composite debt was used in
Liquity V1, but is not present in Liquity V2, where the gas compensation is charged in WETH
instead.

3. Similar to 2., code comments in BorrowerOperations._applyUpfrontFee() mention the
same deprecated concept of composite debt.

4. The code comments in TroveManager.redeemCollateral() write the word "proportinally"
instead of "proportionally".

5. The code comments in TroveManager.redeemCollateral() state that troves are redeemed
based on their collateral ratio. However, redemption order is now actually based on the interest
rate.

6. The natspec above the function LiquityMath._decPow() mentions two functions
TroveManager._calcDecayedBaseRate and
CommunityIssuance._getCumulativeIssuanceFraction that are not part of the repository.

7. The natspec above the public variable in the StabilityPool.sortedTroves mentions that the
state variable is used for liquidations, but it is not used anywhere.

8. The code comments above the struct TroveManager.Batch state that the collateral is shared
between troves in a batch, but collateral is kept separately.

9. The code comments above the state variable MainnetPriceFeedBase.priceFeedDisabled
state that it should be removed after shutdown logic is implemented, but the code relies on it to
return the fallback price.

#. The comments in TroveManager._urgentRedeemCollateralFromTrove() state that collateral
has to be capped as the CR can be below 100% for urgent redemptions. However, due to the bonus
multiplier, CR < 101% already requires capping the reward.

Additionally, there is a typo in the code:

• In BorrowerOperations.adjustUnredeemableTrove, batchAnnualInterestRate is written as
batchAnnualInteresRate.

Specification changed:

The code comments have been updated.

6.11 Interest Delegates Are More Trusted Than
Needed
Trust Low Version 1 Code Corrected

Liquity - Bold - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

CS-BOLD-022

Interest individual delegates have some restrictions on the interest rate they can set, indicating they are
not fully trusted.

However, they are not restricted in how frequently they can update the interest rate, allowing them to
grief users by adjusting the interest rate multiple times and incurring the upfront fee each time.

In contrast, users are able to set a minimum interest rate adjustment period for batch managers. This
allows the user to limit how often a batch manager may incur the upfront fee (if at all).

Code corrected:

The parameter minInterestRateChangePeriod has been added for interest rate delegatees.
Delegatees must now wait for this period to pass after the last update before they can adjust the interest
rate.

6.12 Missing Payable Modifier
Design Low Version 1 Code Corrected

CS-BOLD-037

The function WETHZapper.adjustZombieTroveWithRawETH calls the internal function
_adjustTrovePre, which expects an ether amount to be sent for conversion to WETH. However,
adjustZombieTroveWithRawETH lacks the payable modifier, causing any transaction that sends
ether to revert.

The function is used to adjust zombie troves that were previously redeemed below the minimum debt of
2000e18 to adjust debt and collateral so that the trove is no longer considered a zombie. Zombie troves
are the first in line for redemptions taking place.

If a trove’s current collateral is insufficient to cover the minimum debt required to exit zombie status, the
trove cannot be adjusted and will face full redemption in the next call.

Trove owners can still adjust their troves manually by calling BorrowerOperations directly. However,
calls to the zapper function will continue to fail until it is redeployed with the necessary payable modifier.

Code corrected:

Version 2In , a payable modifier has been added to the function adjustZombieTroveWithRawETH to
allow the function to receive ether.

6.13 Missing Validation of Troves in Urgent
Redemptions
Correctness Low Version 1 Code Corrected

CS-BOLD-023

The function TroveManager.urgentRedemption does not validate if a trove ID exists or if the trove
has any debt to redeem. This can lead to unnecessary gas consumption when a trove has no debt or has
been previously redeemed.

Further it accepts Troves that have been closed or never existed, causing writes to the following storage
locations by _applySingleRedemption:

• rewardSnapshots[_troveId].coll = L_coll

Liquity - Bold - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

• rewardSnapshots[_troveId].boldDebt = L_boldDebt

• Troves[_troveId].lastDebtUpdateTime = uint64(block.timestamp)`

The dirty memory locations cannot cause invalid state modifications within the protocol, but they are
returned by getter functions and can be read by external applications.

Code corrected:

Troves are now skipped if their status is not active or zombie, or if they have no debt.

6.14 Opening Troves Can Be Blocked
Design Low Version 1 Code Corrected

CS-BOLD-008

The function BorrowerOperations._openTrove computes the trove ID from the owner address and
a trove index chosen by the caller. Anyone can open a trove on behalf of another _owner by providing
the necessary collateral. Note that there cannot be two troves with the same trove ID:

vars.troveId = uint256(keccak256(abi.encode(_owner, _ownerIndex)));
_requireTroveIsNotOpen(vars.troveManager, vars.troveId);

An attacker can grief other users by frontrunning them and opening a trove with the same ID on behalf of
the same account, setting themselves as the manager and receiver of the collateral. They could then
backrun the failing transaction by withdrawing the collateral from the trove. This attack is not free, as the
attacker must pay the upfront fee for the trove. However, the fee can be relatively small. At an average
interest rate of 5%, they would pay 0.05 * 2000 / 52 = 1.92 BOLD, plus the gas costs for the operation.
The owner of the trove can remove the attacker as manager and claim their collateral if they are able to
make a transaction before the attacker.

This griefing is most problematic for multisigs or governance proposals that are executed after a time
lock. Here, an attacker can potentially permanently DOS a contract from opening troves.

Code corrected:

Version 6In , the caller of the function BorrowerOperations._openTrove is hashed into the trove ID:

vars.troveId = uint256(keccak256(abi.encode(msg.sender, _owner, _ownerIndex)));
_requireTroveDoesNotExists(vars.troveManager, vars.troveId);

This ensures that trove IDs are unique to the caller, preventing an attacker from frontrunning troves
created by calling BorrowerOperations directly.

All troves opened via a Zapper contract share the same msg.sender (the Zapper). As such the Zapper
hashes the msg.sender into the ownerIndex, which is then later hashed into the trove ID:

function _getTroveIndex(uint256 _ownerIndex) internal view returns (uint256) {
 return _getTroveIndex(msg.sender, _ownerIndex);
}

This mechanism ensures that troves created through a Zapper contract are also protected from
frontrunning attacks.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

6.15 Out-of-gas May Lead to Shutdown
Design Low Version 1 Code Corrected

CS-BOLD-030

The MainnetPriceFeedBase shuts down the collateral branch when the static call to
latestRoundData() reverts. The fallback uses a try-catch block as follows in
_getCurrentChainlinkResponse:

// Secondly, try to get latest price data:
try _aggregator.latestRoundData() returns (
 uint80 roundId, int256 answer, uint256, /* startedAt */ uint256 updatedAt, uint80 /* answeredInRound */
) {
 // If call to Chainlink succeeds, return the response and success = true
 chainlinkResponse.roundId = roundId;
 chainlinkResponse.answer = answer;
 chainlinkResponse.timestamp = updatedAt;
 chainlinkResponse.success = true;

 return chainlinkResponse;
} catch {
 // If call to Chainlink aggregator reverts, return a zero response with success = false
 return chainlinkResponse;
}

There are two cases in which the external call to Chainlink reverts: Either Chainlink explicitly reverts, or
the call runs out of gas. As such, the catch statement (which triggers branch shutdown) can be executed
if the call to Chainlink runs out of gas. However, this will only have an effect if there is enough gas left to
execute the shutdown logic. The call to Chainlink will receive 63/64 of all available gas. After reverting
due to out of gas, 1/64 will be left. This means that if the shutdown logic consumes 64 times less gas
than the Chainlink's latestRoundData(), the branch can unintentionally be shutdown even though the
Chainlink oracle has not failed. The code has no access-control, so anyone can call fetchPrice() with
any amount of gas.

At the time of writing, a call to latestRoundData appears to use approximately 11000 gas units.
1/64 * 11000 = 172, which is by far not enough to execute the branch shutdown. Given these
conditions, the attack is currently not feasible.

Note that an attacker can prewarm storage slots and addresses to reduce the cost of the remainder of
the execution. Further, note that the gas consumption of Chainlink might increase in the future (as the
contracts are upgradeable). Additionally, the gas cost of Ethereum opcodes could change in the future.

Version 2In , the function _getCanonicalRate was added, that retrieves the internal accounting rate of
the LST tokens (rETH / ETH or stETH / ETH) and uses a similar try-catch block to handle reverting calls.
Further, the oracle has been changed to return the canonical price (eth price x LST rate) when the
Chainlink LST oracle has failed. This code change would allow the attack on the call to
wstETH.stEthPerToken() even with the current gas cost of opcodes. The function
wstETH.stEthPerToken() consumes approximately 37000 gas. To continue the execution,
1/64 * 37000 = 578 would be needed.

In case the system is already shutdown, an attacker could call fetchPrice, which falls back to
_fetchPriceETHUSDxCanonical. Here, the call to retrieve the canonical rate could be provided with
e.g. 35000 gas units to make it run out of gas. Note that afterwards the only "expensive" operations are
writing PriceSource.lastGoodPrice to storage and reading and returning lastGoodPrice. The
attacker could prewarm the storage slots and addresses to reduce the cost of the remainder of the
execution.

// Get the underlying_per_LST canonical rate directly from the LST contract
(uint256 lstRate, bool exchangeRateIsDown) = _getCanonicalRate();

Liquity - Bold - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

// If the exchange rate contract is down, switch to (and return) lastGoodPrice.
if (exchangeRateIsDown) {
 priceSource = PriceSource.lastGoodPrice;
 return lastGoodPrice;
}

Code corrected:

The code has been updated to check the gas left before and after the call in
WSTETHPriceFeed._getCanonicalRate and
MainnetPriceFeedBase._getCurrentChainlinkResponse.

function _getCurrentChainlinkResponse(AggregatorV3Interface _aggregator)
 internal
 view
 returns (ChainlinkResponse memory chainlinkResponse)
{
 uint256 gasBefore = gasleft();

 // Try to get latest price data:
 try _aggregator.latestRoundData() returns (
 uint80 roundId, int256 answer, uint256, /* startedAt */ uint256 updatedAt, uint80 /* answeredInRound */
) {
 // If call to Chainlink succeeds, return the response and success = true
 chainlinkResponse.roundId = roundId;
 chainlinkResponse.answer = answer;
 chainlinkResponse.timestamp = updatedAt;
 chainlinkResponse.success = true;

 return chainlinkResponse;
 } catch {
 // Require that enough gas was provided to prevent an OOG revert in the call to Chainlink
 // causing a shutdown. Instead, just revert. Slightly conservative, as it includes gas used
 // in the check itself.
 if (gasleft() <= gasBefore / 64) revert InsufficientGasForExternalCall();

 // If call to Chainlink aggregator reverts, return a zero response with success = false
 return chainlinkResponse;
 }
}

Note that the check is conservative, as it does not include the gas used in the check itself and the gas
cost for setting up the call. In practice that can lead to some calls reverting that should not, but the user
can just provide a higher gas limit in that case, i.e. right before the call we only have gasBeforeCall =
gasleft() - gasUsedUntilExternalCAll and after the call we only have gasAfterCall = gasleft() -
gasUsedAfterExternalCall. Note that now the following condiition holds here:

gasAfter > gasAfterCall > gasBeforeCall > gasBefore

6.16 Price Limit in UniV3Exchange Is Too Strict
Design Low Version 1 Specification Changed

CS-BOLD-009

The function UniV3Exchange.getBoldAmountToSwap calculates the amount of BOLD to swap for a
given amount of collateral tokens. It uses the user provided-specified _maxBoldAmount and
_minCollAmount to set a price limit, which is then passed to the Quoter.

function getBoldAmountToSwap(uint256, /*_boldAmount*/ uint256 _maxBoldAmount, uint256 _minCollAmount)
 external /* view */
 returns (uint256)
{
 // See: https://github.com/Uniswap/v3-core/blob/d8b1c635c275d2a9450bd6a78f3fa2484fef73eb/contracts/UniswapV3Pool.sol#L608
 //uint160 sqrtPriceLimitX96 = _zeroForOne(boldToken, collToken) ? MIN_SQRT_RATIO + 1: MAX_SQRT_RATIO - 1;

Liquity - Bold - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

 uint256 maxPrice = _maxBoldAmount * DECIMAL_PRECISION / _minCollAmount;
 uint160 sqrtPriceLimitX96 = priceToSqrtPrice(boldToken, collToken, maxPrice);
 IQuoterV2.QuoteExactOutputSingleParams memory params = IQuoterV2.QuoteExactOutputSingleParams({
 tokenIn: address(boldToken),
 tokenOut: address(collToken),
 amount: _minCollAmount,
 fee: fee,
 sqrtPriceLimitX96: sqrtPriceLimitX96
 });
 (uint256 amountIn,,,) = uniV3Quoter.quoteExactOutputSingle(params);
 return amountIn;
}

The Quoter reverts if the price limit is exceeded during the swap. However, this does not imply that
swapping _maxBoldAmount BOLD for _minCollAmount of collateral is unachievable —just that the
post-trade price exceeds the limit ratio (_maxBoldAmount / _minCollAmount). What matters for the user
is the average price of the trade.

This overly strict price limit may prompt users to choose looser values for _maxBoldAmount and
_minCollAmount than needed and allow MEV bots to extract more value during large swaps.

Specification changed:

Version 2The function UniV3Exchange.getBoldAmountToSwap has been removed in .

6.17 Shutdown Can Be Triggered Twice
Correctness Low Version 1 Code Corrected

CS-BOLD-010

The shutdown function in BorrowerOperations is used to shut down the branch when the TCR falls
below the SCR. If the branch is already shut down, the function will revert.

However, the function calls priceFeed.fetchPrice(), which can also shut down the branch if the
price feed is failing.

This means that if the oracle fails at the same time that the branch's TCR falls below the SCR, the branch
can be shut down twice. This will emit both the ShutDown and ShutDownFromOracleFailure events,
which should be mutually exclusive and may not be handled correctly by off-chain infrastructure. There
don't seem to be any other side effects, as the _applyShutdown will have no additional effect if it is
called twice in the same block.

Code corrected:

Version 2In , the shutdown function returns early if the oracle failure causes a shutdown. The event
Shutdown is not emitted.

function shutdown() external {
 if (hasBeenShutDown) revert IsShutDown();

 uint256 totalColl = getEntireSystemColl();
 uint256 totalDebt = getEntireSystemDebt();
 (uint256 price, bool newOracleFailureDetected) = priceFeed.fetchPrice();
 // If the oracle failed, the above call to PriceFeed will have shut this branch down
 if (newOracleFailureDetected) return;

 // Otherwise, proceed with the TCR check:
 uint256 TCR = LiquityMath._computeCR(totalColl, totalDebt, price);

Liquity - Bold - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

 if (TCR >= SCR) revert TCRNotBelowSCR();

 _applyShutdown();

 emit ShutDown(TCR);
}

6.18 User-provided transferFrom Source Address
Design Low Version 1 Code Corrected

CS-BOLD-011

In UniV3Exchange and CurveExchange, the swapFromBold and SwapToBold function take a _zapper
argument. This is used in a transferFrom call.

boldTokenCached.transferFrom(_zapper, address(this), _boldAmount);

As the _zapper address is provided by the user, this can be used to pull tokens from any address that
has given approval to the Exchange contract. For example, the zappers give unlimited approval. If a
misinformed user gives approval to the Exchange contract accidentally, they could also be drained.

The zappers are not intended to ever have a balance, so the impact is limited. However, it is considered
bad practice to use transferFrom with a user-provided address.

The msg.sender address could be used instead.

Code corrected:

The code has been updated to use msg.sender as the from argument in transferFrom.

6.19 Zapper Delegation Is Not Reset When a
Trove Is Closed
Design Low Version 1 Specification Changed

CS-BOLD-012

When a trove is created through a zapper, the zapper will be set as the addManager, removeManager
and receiver of the trove in the core system. However, a user can also create a trove without using a
zapper, then set these roles to the zapper later to use its functionality.

This must be done with extreme care, as there might be delegations set in the zapper that the user is not
aware of. Either the user could have had a trove with the same troveId earlier, that they had set
delegation for in the zapper and then closed (closing a trove does not reset zapper delegation). Or the
user could have gotten frontrun on trove creation, with an attacker creating a trove with the same troveId
in the zapper, then immediately closing it but leaving the delegation in place on the zapper.

Zapper roles are always written to when a trove is created in the zapper, so the issue can only appear
when a user opens a trove without using a zapper, then sets the zapper as the manager.

Specification changed:

Liquity - Bold - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

Version 2In of the protocol, each trove must have a unique troveId, preventing the reuse of
delegations from closed troves.

6.20 Gas Optimizations in StabilityPool
Informational Version 5 Code Corrected

CS-BOLD-041

The code in the StabilityPool could be made more gas efficient. The following optimizations were
identified:

1. In getDepositorYieldGainWithPending(), the condition
totalBoldDeposits >= DECIMAL_PRECISION should be checked at the very start of the
function, since no yield is distributed when totalBoldDeposits is less than 10**18.

2. In the same function, yieldGainsPending is always zero when added to newYieldGainsOwed,
so the addition has no effect.

3. The withdrawFromSP() function attempts to move pending yield to depositors by calling
_updateYieldRewardsSum(0) in case the sum of pending yield and deposit exceed the
threshold. However, since yield is only distributed when total deposits exceed the threshold (and
withdrawals cannot increase the deposit amount) this call has no effect.

Code corrected:

Version 6All aforementioned optimizations have been implemented in .

6.21 Receiver Address in Balancer Flashloan Is
Reset Late
Informational Version 2 Code Corrected

CS-BOLD-043

The function BalancerFlashLoan.makeFlashLoan fixed the access control issue by setting the
receiver address to the caller's address and then resetting it to the zero address after the flashloan is
executed (see BalancerFlashLoan missing access control).

// This will be used by the callback below no
receiver = IFlashLoanReceiver(msg.sender);

vault.flashLoan(this, tokens, amounts, userData);

// Reset receiver
receiver = IFlashLoanReceiver(address(0));

The receiveFlashLoan function only checks the receiver address and the function does not reset the
receiver address. In the current contract design, this is not a problem. However, to lower the risk of
mistakes in future versions or forks of the code, the receiver could be reset in the receiveFlashLoan
function.

Code corrected:

Liquity - Bold - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

Version 4In , the code has been updated to reset the receiver at the beginning of the
receiveFlashloan.

6.22 Backed Tokens Can Be Redeemed
Unproportionally
Informational Version 1 Code Corrected

CS-BOLD-013

In CollateralRegistry, the redeemCollateral function has a special case for when all active branches
are fully "backed". In this case the function will redeem from all active branches proportionally to the
branch debt.

However, an edge case that is not explicitly handled is when there is a branch with more than zero
unbacked debt, but less than the requested _boldAmount (and the other branches are fully backed). In
this case, the function will redeem only from this branch, even though the branch will also become fully
backed during the redemption process. This means that "fully backed" branches can be redeemed
disproportionately.

It is not clearly specified if this is expected behavior or not.

Code corrected:

Version 6In , the redeemable amount gets capped by the total amount of unbacked debt if not all
branches are fully backed.

// Don't allow redeeming more than the total unbacked in one go, as that would result in a disproportionate
// redemption (see CS-BOLD-013). Instead, truncate the redemption to total unbacked. If this happens, the
// redeemer can call `redeemCollateral()` a second time to redeem the remainder of their BOLD.
if (_boldAmount > totals.unbacked) {
 _boldAmount = totals.unbacked;
}

As a result, an attacker cannot redeem disproportionately from a backed branch, as they will only redeem
until the branch becomes fully backed. The redeemer is expected to invoke the function again to redeem
the remaining amount. That second redemption is proportionally between all backed branches.

6.23 CEI Pattern Violated in Adjust Trove
Informational Version 1 Code Corrected

CS-BOLD-024

The function WETHZapper._adjustTrovePost sends tokens after adjusting a trove. It first sends ETH
via a call to the receiver and then sends BOLD tokens.

function _adjustTrovePost(
 ...
) internal {
 // WETH -> ETH
 if (!_isCollIncrease) {
 WETH.withdraw(_collChange);
 (bool success,) = _receiver.call{value: _collChange}("");
 require(success, "WZ: Sending ETH failed");
 }

Liquity - Bold - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

 // Send Bold
 if (_isDebtIncrease) {
 boldToken.transfer(_receiver, _boldChange);
 }
}

The BOLD token is not reentrant, but the recipient could reenter the contract if it receives Ether.

Therefore, it is considered best practice to first send the bold tokens, and call the recipient last, following
the Checks-effects-interactions (CEI) pattern.

Code corrected:

Version 2In , the ETH call has been moved to the end of the function.

6.24 Comments From Development
Informational Version 1 Code Corrected

CS-BOLD-025

We have identified the following remaining code comments that should be removed before deployment:

1. Several functions in the code have open TODOs.

2. Code for batch redistributions in function
TroveManager._getLatestTroveDataFromBatch() is commented out.

3. The TroveManager contract has imports for testing
imports // import "forge-std/console2.sol";

Code corrected:

Version 7The remaining TODOs have been removed in .

6.25 Core Debt Invariant Incorrectly Documented
Informational Version 1 Code Corrected

CS-BOLD-015

The core debt invariant in the docs is described as:

SUM_i=1_n(trove.entireDebt) = ActivePool.aggRecordedDebt + ActivePool.calcPen
dingAggInterest()

for all n troves in the branch.

However, this is incorrect as pending debt from redistributions is not included in aggRecordedDebt.

The correct invariant must include the defaultPool.BoldDebt:

SUM_i=1_n(trove.entireDebt) = ActivePool.aggRecordedDebt + ActivePool.calcPen
dingAggInterest() + defaultPool.BoldDebt

Code corrected:

Liquity - Bold - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

Version 2The core debt invariant in the docs has been correct in .

6.26 Floating Pragma
Informational Version 1 Code Corrected

CS-BOLD-026

Liquity uses a floating pragma in some of the contract files (i.e. AddressesRegistry.sol). It is
considered best practice to lock the Solidity version, to ensure the contracts are tested with the same
compiler version as they are deployed.

Code corrected:

The floating pragmas have been removed. Additionally, the solidity version was upgraded from 0.8.18 to
0.8.24.

6.27 Inconsistent Input Validation by Zappers
Informational Version 1 Code Corrected

CS-BOLD-028

Liquity uses separate Zapper contracts for WETH collateral and other LST collateral tokens. The
contracts are inconsistent.

The WETHZapper enforces, in _adjustTrovePre(), that debt must decrease by a positive amount:

require(!_isDebtIncrease || _boldChange > 0, "WZ: Increase bold amount should not be zero");

However, GasCompZapper._adjustTrovePre() is missing that check, allowing calls with
debtIncrease set to true and boldChange equal to zero:

if (_isCollIncrease || (!_isDebtIncrease && _boldChange > 0)) {
 _requireSenderIsOwnerOrAddManager(_troveId, owner);
}

If no add manager is assigned (set to address 0), anyone can call this function, but it has no effect on
BorrowerOperations.adjustTrove(), as _adjustTrove() debt increases only have an effect if
they are larger than 0.

Code corrected:

All zappers now inherit from the new BaseZapper contract, which contains the
_checkAdjustTroveManagers function.

This function enforces the following checks:

if ((!_isCollIncrease && _collChange > 0) || _isDebtIncrease) {
 receiver = _requireSenderIsOwnerOrRemoveManagerAndGetReceiver(_troveId, owner);
}

if (_isCollIncrease || (!_isDebtIncrease && _boldChange > 0)) {
 _requireSenderIsOwnerOrAddManager(_troveId, owner);
}

Liquity - Bold - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

6.28 Indexed Parameters of Events
Informational Version 1 Code Corrected

CS-BOLD-035

The event CollSent used by the CollSurplusPool could denote the parameter _to with the keyword
indexed, to make it easier for external applications to query pending collateral withdrawals.

Code corrected:

The event CollSent in CollSurplusPool has been updated to index the parameter _to.

6.29 Minting Unbacked Tokens via
Redistributions
Informational Version 1 Code Corrected

CS-BOLD-036

Version 1

Version 2

 of the protocol had a critical rounding issue that allowed an attacker to mint unbacked tokens by
manipulating the debt share exchange rate of batches via donations. In , the issue was fixed by
banning all batch operations that increase debt, once a certain exchange rate limit is reached. The
exception is redemptions, as explained in Rounding in debt shares calculation can mint unbacked tokens.

Under normal circumstances, redemptions decrease the debt of the user, hence one cannot mint
unbacked tokens even with the exchange rate being manipulated. However, an exception to this are
redemptions that trigger redistribution of debt to Troves where the amount of debt redeemed is smaller
than the amount of debt redistributed. In this case, the debt of the user will go up with the redemption,
and they can mint unbacked tokens.

From experience with the previous iterations of the protocol, the probability of redistributions is
considered low, as liquidations typically use the StabilityPool first, falling back to redistributions only if the
StabilityPool is empty. As liquidations are profitable for the StabilityPool (they are given up to a 10%
discount) the StabilityPool should attract deposits when liquidations take place.

However, if one branch has no users (i.e. as the LST chosen is not very popular), or if the contract has
just been deployed, then an attacker could be the only user of the protocol and could create
redistributions to themselves to inflate the shares price. For this they could run a slightly modified version
of the attack as described previously:

1. Manipulate the exchange rate of a Batch up to 1e8 (or any other value below 1e9) as described
in Rounding in debt shares calculation can mint unbacked tokens.

2. Open Trove A ("Debt Trove") with minimum debt & collateral (= stake) AND Trove B ("Collateral
Trove") with minimum debt and large amount of collateral (= stake).

3. Fully redeem Troves A and (partially) redeem B. Trove A maintains some shares in the Batch
(due to rounding), but is not in the sorted troves anymore, and hence unredeemable. Trove B is
lastZombieTroveId.

Example: Trove A - 1 debt shares, Trove B - 1 debt share, Batch A - 2 debt shares, 4e9 debt.

Note that both Trove A and Trove B have debt shares. So, any debt given to the batch (without minting
shares) will be allocated by 1/2 to Trove A and 1/2 to Trove B. To exploits this, an attacker creates many
redistributions: One reliable way to create a redistribution is to open a trove in a batch with a
collateralization ratio just a little above the MCR. Troves in a batch can be be reliably lowered below by

Liquity - Bold - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

triggering an upfront fee update (i.e. by changing the interest rate). The attacker can then liquidate the
trove in the same transaction.

4. Trigger a liquidation with redistribution, i.e. redistribution allocates 1e18 new debt to Trove B.

5. Redeem Trove B (lastZombieTroveId) with boldAmount, so that the debt is increased by a
small amount, i.e. with 1e18 pending redistributions you can redeem 1e18 - 1e9 - 1 debt. In that
case, no

debt shares are minted as the expression rounds down: (1e18 - (1e18 - 1e9 - 1) // 1e9 = 0.

Now repeat Step 4. - 5. until hitting an economically relevant size (i.e. 1 debt share = 2000e18 debt).

An attacker could then trigger a redistribution that transfers 1500e18 Bold and 0.5 WETH to Trove B.
Trove B receives all the collateral, but all debt is given to the Batch as 1500e18 debt will be rounded to 0
debt shares. As a result, 1/2 of the debt will be owed by Trove A instead.

A sophisticated attacker could create multiple of these redemptions in a row and redeem trove A, until
trove B gets liquidated. The impact is twofold:

1. The attacker can inflate the share price despite borrowing restrictions.

2. The attacker can exploit the inflated shares by creating troves and liquidating them via
redistribution. One trove with a large stake receives the majority of the collateral, but the debt is
given to the Batch they are in.

If the Trove has few shares in the Batch, redistributions become highly profitable as it receives collateral
but no debt. This is very costly for the trove holding the majority of the debt shares. Repeatedly doing this
creates "bad debt" (unbacked tokens) as the trove with the majority of the debt shares cannot be
liquidated quickly enough.

This attack requires the StabilityPool of the branch to be empty and is only profitable if there is very little
collateral on the branch that does not belong to the attacker. This is most likely to happen in 2 cases:

1. The system is freshly deployed and one of the branches does not have any troves yet.

2. One branch's collateral token becomes so unpopular that all users close their positions and
withdraw their collateral from the branch.

In case 1., there is likely not much collateral in the system yet, so the impact is limited. In case 2., there
may be another branch with high value that could lose a large amount of money through unbacked
minting.

Note that the attacker cannot close the position if the total collateralization ratio is not above the CCR
after their Trove is closed. This can only be achieved if other users add more collateral to the system,
making the probability of this attack being exploited very low.

Code corrected:

Version 2In , the issue was resolved by burning all shares from a trove when all its debt is getting repaid.
This prevents the attacker from redeeming the "Debt Trove" while retaining some shares in step 2.

6.30 Misleading Function Names in Zapper
Informational Version 1 Code Corrected

CS-BOLD-017

In GasCompZapper and LeverageLSTZapper, the same function names are used as in their counterparts
WETHZapper and LeverageWETHZapper.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

For example, adjustTroveWithRawETH(): In WETHZapper the function name is accurate, as raw
ETH can be wrapped or unwrapped to be used in the function. However, in GasCompZapper the function
never operates with raw ETH.

Code corrected:

The relevant function names in the GasCompZapper have been adjusted to no longer reference raw
ETH.

6.31 Missing Events
Informational Version 1 Code Corrected

CS-BOLD-029

The functions AddRemoveManager._setAddManager() and
AddRemoveManager._setRemoveManager() do not emit events when the manager is set. This can
make it difficult to track changes to the manager.

Since Trove NFTs can be sent to other addresses, the missing events make it hard for the owner to track
the current add and remove manager addresses and could lead to users receiving Trove NFTs without
knowing the current manager addresses.

Code corrected:

Version 2In , the events AddManagerUpdated and RemoveManagerAndReceiverUpdated are
emitted whenever managers are set, changed, or removed.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Unimplemented Function Can Be Called
Informational Version 2

CS-BOLD-038

The contracts GasCompZapper and WETHZapper are not marked as abstract and can be used as base
contracts.

They define the functions receiveFlashLoanOnOpenLeveragedTrove,
receiveFlashLoanOnLeverUpTrove and receiveFlashLoanOnLeverDownTrove with empty
bodies, performing no operations. This means these functions can be called, but they will not perform any
actions. If these functions are not intended to be called, a caller might expect them revert on the call to
prevent misuse.

7.2 Bypassing Collateral Adjustment Check
Informational Version 1 Acknowledged

CS-BOLD-014

The check BorrowerOperations._requireValidAdjustmentInCurrentMode prevents reducing
collateral in undercollateralized troves (ICR < MCR).

It can be bypassed through self-redemptions, by first adjusting the interest rate of the trove to be the
lowest in the branch, then redeeming from it.

Acknowledged:

Liquity responded:

That workaround would:

Reduce the size of an undercollateralized trove
Improve the ICR of an undercollateralized trove
So it’s not bad for the system.
That condition prevents the final state to be undercollateralized.
So the only way to use that workaround and still end up with ICR < MCR
is the trove was already undercollateralized.
It doesn’t allow to convert a healthy trove into an undercollateralized one.

Therefore, we accept it for simplicity of the code.

7.3 Gas Optimizations
Informational Version 1 Code Partially Corrected

Liquity - Bold - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

CS-BOLD-027

1. The function ActivePool.mintBatchManagementFeeAndAccountForChange() is protected
by the _requireCallerIsBOorTroveM() modifier but is only called by the TroveManager
contract and never the BorrowOperations.

2. The interest calculation in ActivePool.calcPendingAggInterest() could short-escape and
return 0 if the last update has been at the current timestamp. Similarly, the function
ActivePool.calcPendingAggBatchManagementFee() could short-escape early.

3. The function TroveManager._getLatestTroveDataFromBatch() reads the entire structure
batch from storage, but only uses one value from it.

4. The modifier CollateralRegistry._requireBoldBalanceCoversRedemption() asserts
that the user's balance is smaller than the total supply, but this invariant is already enforced by OZ's
token implementation.

5. The function TroveManager._redistributeDebtAndColl can skip the call
sendCollToDefaultPool when the collateral to redistribute is zero.

6. The modifier UniV3Exchange._requireCallerIsUniV3Router() is never used.

7. The function UniV3Exchange.uniswapV3SwapCallback() is never used.

8. The BorrowerOperations.adjustTroveInterestRate function only charges an upfront fee
when the new interest rate is not equal to the previous rate, but this is not possible due to the check
in _requireAnnualInterestRateIsNew.

9. The immutable StabilityPool.sortedTroves is never used.

10. The modifier BorrowerOperations._requireIsShutDown() is never used.

11. The function WSTETHPriceFeed._fetchPrice() calls wstETH.stEthPerToken(), which in
turn calls stETH.getPooledEthByShares. It would be cheaper to call stETH directly.

12. The TroveManager contract could define state variables only set once in the constructor as
immutable: collateralRegistry, sortedTroves, boldToken, collSurplusPool, gasPoolAddress,
stabilityPool, borrowerOperations, troveNFT.

13. The BorrowerOperations contract could define state variables only set once in the constructor as
immutable: troveManager, gasPoolAddress, collSurplusPool, sortedTroves, boldToken.

14. The ActivePool contract could define state variables only set once in the constructor as immutable:
interestRouter, boldToken.

Version 2 :

15. The function priceToSqrtPrice and _zeroForOne in UniV3Exchange are not used
anywhere.

16. The function TroveManager._requireBelowMaxSharesRatio could first check the condition
_checkBatchSharesRatio before computing the product
_currentBatchDebtShares * MAX_BATCH_SHARES_RATIO to short-circuit the evaluation.

Code partially corrected:

Version 2The optimization points 6, 7 and 14 have been implemented in .

Liquity - Bold - ChainSecurity - © Decentralized Security AG 43

https://chainsecurity.com

7.4 Insufficient Gas Compensation Could Mint
Bad Debt
Informational Version 1 Risk Accepted

CS-BOLD-016

The system relies on the gas compensation to be sufficient to cover the gas costs of the liquidation. If the
gas cost of a liquidation is higher than the gas compensation, the system can end up with bad debt. This
can happen due to falling collateral prices, in which case no new debt can be directly minted to
insufficiently collateralized troves. However, bad debt can still be newly minted through interest and batch
fee accrual, if the gas is expensive for extended periods of time.

An attacker could join their own batch and set the batch management fee to the maximum amount
(currently 100%) to mint themselves tokens. If liquidations stay expensive for months, this could be
profitable. A user could also create a batch with ICR = 1.1 and the maximum interest rate (currently 100%
APR) and join the stability pool to which the interest is minted. If it is unprofitable to liquidate the trove,
after about 4 days unbacked tokens will be minted to the stability pool (as the interest will surpass the
10% overcollateralization).

However, both of these attacks can easily be punished by anyone willing to make an unprofitable
liquidation, so they incur a high risk for the attacker. As timely liquidations are profitable for the stability
pool, anyone who is part of the stability pool also has an additional incentive to liquidate. These factors
make the described attacks unlikely to be profitable.

Note that there is a variable gas compensation dependent on a trove's collateral amount, so liquidations
of larger troves are more likely to be profitable than those of smaller troves.

In conclusion, these attacks are likely not of concern unless the gas prices on Ethereum significantly and
permanently increase in the years to come. However, they illustrate how the debt of the system can
increase (and be minted to an attacker), even when troves fall below the minimum collateralization ratio.

Risk accepted:

Liquity is aware of this issue, but has decided to keep the code unchanged, providing the following
reasoning:

Indeed, we are aware that the liquidation mechanism is not perfect.
We’ve had long discussions about it internally.
As mentioned in the issue, big troves are prioritized,
so it’s very unlikely that this becomes a problem for the system health.
Based also on Liquity v1 experience, we are confident that the mechanism will be robust enough.

7.5 Price Deviation in Composite Price Feed
Informational Version 1 Risk Accepted

CS-BOLD-031

The RETHPriceFeed calculates RETH/USD price as the product of the RETH/ETH and ETH/USD price
fees in CompositePriceFeed._fetchPrice().

The Chainlink RETH/ETH price feed has a deviation threshold of 2%, and the ETH/USD price feed has a
deviation threshold of 0.5%. So, the combined price can deviate up to approximately 2.5% from the
actual price before it gets updated.

A branch can shut down for two reasons:

1. Oracle failure.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 44

https://chainsecurity.com

2. Total collateralization ratio (TCR) drops below the Shutdown Collateralization Ratio (SCR).

The second event can occur when the Liquid Staking Token (LST) price de-pegs due to slashing events
or market volatility. In such cases, the protocol provides a 1% bonus on the oracle price in
TroveManager.urgentRedemption().

However, this bonus may not be sufficient, as the oracle price can deviate up to 2.5% from the actual
price before it gets updated.

Additionally, the price feed queries the canonical rate from Rocket Pool that updates every 24 hours and
then takes the minimum of Chainlink Price and canonical rate. In the worst case the urgent redemptions
could be delayed by 24 hours, as it may happen that neither Chainlink nor the canonical rate update
within this period.

Risk accepted:

Liquity is aware of the issue and provided the following response:
This a known issue and accepted risk. We already accept the urgent redemption bonus may be insufficient in branch shutdown, especially if the branch is using lastGoodPrice.
Besides we have checked the historical deviation of RETH/ETH and it seem in practice was way more accurate, so that 2% seems theoretical and unlikely to be hit.
Of course no warranty that it cannot happen at all, but, again, we accept the risk.

7.6 Small Redemptions Do Not Increase Base
Rate
Informational Version 1 Acknowledged

CS-BOLD-018

The function CollateralRegistry._getUpdatedBaseRateFromRedemption calculates the base
rate from the share of bold tokens that are redeemed.

// get the fraction of total supply that was redeemed
uint256 redeemedBoldFraction = _redeemAmount * DECIMAL_PRECISION / _totalBoldSupply;

As the redeemedBoldFraction is rounded down, splitting a redemption into multiple smaller ones can
reduce the fee paid. The most extreme case are redemptions with
redeemAmount < totalBoldSupply / 1e18, which will have their fraction rounded to zero,
meaning they will not increase the base rate at all. However, multiple redemptions will incur higher gas
costs.

Acknowledged:

The Liquity team is aware of this behavior and has provided the following description:

For “the most extreme case”, assuming a total supply of 10B (1e10 * 1e18), the redeem amount would be 1e10 wei, i.e. 1e-8 BOLD.
It doesn’t make sense to redeem such amount, as the amount paid in gas would be much higher.

7.7 Upfront Fee Is Zero for Small Borrows
Informational Version 1 Acknowledged

CS-BOLD-033

The function BorrowerOperations._calcUpfrontFee calculates the upfront fee as

Liquity - Bold - ChainSecurity - © Decentralized Security AG 45

https://chainsecurity.com

function _calcInterest(uint256 _weightedDebt, uint256 _period) internal pure returns (uint256) {
 return _weightedDebt * _period / ONE_YEAR / DECIMAL_PRECISION;
}

Note that the period is currently 1 week, and the weighted debt is equal to the trove debt times the
average interest rate in the system.

Hence, the upfront fee is rounded to zero when

debt * averageinterestrate/52e18 < 0
When the average the interest rate is 0.5% (5e15), then anyone borrowing less than 10400 (52e18 /
5e15) wei pays no fees.

Similarily, the interest rate charged on small troves can be rounded to zero. For a trove with 1e8 debt and
an interest rate of 5e15, updating the interest rate every 12 seconds would not result in any interest
owed:

1e8 * 5e15 * 12 < 31536000 * 1e18

Acknowledged:

Liquity acknowledged the issue and has decided not to make a change, giving the following response:

This is only possible for zombie troves.
10k wei (1e-14 BOLD) seems a negligible amount, both in at user and system wide level.

7.8 Upfrontfee Can Bring Troves Below MCR
Informational Version 1 Code Partially Corrected

CS-BOLD-019

The _applyUpfrontFee function in BorrowerOperations contains the _requireICRisAboveMCR()
check. This ensures that an upfrontfee from an adjustment cannot bring the trove below the MCR.

However, the setBatchManagerAnnualInterestRate function, which is used to adjust the interest
rate of a batch, does not contain such a check (as troves in a batch can have different ICRs). As a result,
it is possible for an upfrontfee of a batch interest adjustment to bring a trove below the MCR.

The batch interest rate can only be adjusted at most once per second, so if a trove is pushed below the
MCR, it should be liquidated before the next adjustment can happen. If this limitation was not in place,
batch interest could be adjusted many times in a block and potentially create bad debt when the ICR falls
below 100%.

Other ways of bringing a Trove's ICR below MCR are:

• Batch management fee is charged

• Interest is charged

• Collateral price falls

Code partially corrected:

Version 5In , a buffer collateralization ratio of 10% has been introduced. This ensures that whenever a
Trove owner adjusts their trove that is part of a batch or joins a batch, their collateralization ratio remains
sufficiently above the Minimum Collateralization Ratio (MCR).

Liquity - Bold - ChainSecurity - © Decentralized Security AG 46

https://chainsecurity.com

Previously, a user could create a liquidation within a single transaction by following these steps on the
WETH collateral branch (staked ETH branches have a similar exploit):

1. Create a Trove with a collateralization ratio of exactly 110% in Batch A.

2. Charge an upfront fee in Batch A, which immediately lowers the collateralization ratio of the Trove
below 110%, making the Trove liquidatable.

3. Liquidate the Trove.

With the buffer collateralization ratio, it is no longer possible to execute all three steps in a single
transaction. The upfront fee is equivalent to one weeks' worth of interest, with a maximum annual interest
rate of 250%. This caps the maximum upfront fee at:

250
Since the enforced 10% collateral buffer exceeds this maximum upfront fee, a single transaction can no
longer immediately push a Trove into liquidation.

A user can still achieve the same outcome over time:

1. Create a Trove with a 120% collateralization ratio in Batch A.

2. Wait until the Trove's collateralization ratio naturally declines (due to interest accrual, price
changes, or management fees) until it approaches 110%.

3. Charge an upfront fee in Batch A, reducing the collateralization ratio to below 110%, making the
Trove liquidatable.

4. Liquidate the Trove.

Unlike the previous exploit, steps 3 and 4 can still be performed in the same transaction, but some time
must pass between step 1 (creating the Trove) and step 3 (applying the upfront fee).

However, unlike a trove that is not in a batch, steps 3 and 4 can be carried out in the same transaction so
that the owner of the batch can perform the liquidation with certainty. For a trove that is not in a batch, the
owner of the trove will have to wait for the collateralization rate to fall naturally and generally has no
guarantee that they will able to liquidate their trove. This opportunity could instead be taken by another
user, such as an MEV bot.

7.9 rETH Address Might Change
Informational Version 1 Acknowledged

CS-BOLD-020

The rocket pool protocol stores addresses in a storage contract. The protocol's codebase indicates that
addresses should not be used directly but be retrieved on-chain. However, the collateral token address is
set once in the AddressesRegistry and cannot be updated.

In practice, it seems unlikely that the rETH token's address will change due to other integrations.
Additionally, it is unspecified how integrators should properly handle such a migration.

Acknowledged:

Liquity has reached out to the Rocketpool team to confirm that, while technically possible, the rETH
address is not expected to ever change.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 47

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Add Manager Can Increase Stake
Note Version 1

The addManager is generally not trusted, as it can only improve the collateralization ratio of a trove. If
the manager is set to address 0, anyone can add collateral to a trove.

However, increasing the collateral of a trove also increases its stake. In extreme scenarios where
redistributions give more debt to active positions than collateral, an attacker could send collateral to
another trove owner to increase their share in the bad redistributions.

Users who want to avoid this can set the addManager to the same address as the owner, which will
disallow others from increasing their collateral.

8.2 CCR and SCR Considerations
Note Version 1

Note that the CCR and SCR must be set in a way that they are not too close to each other to prevent
intentional triggering of branch shutdown.

In particular, the CCR should be higher than the SCR by an amount that is greater than the largest
expected price change in a single oracle update. Otherwise, an attacker could intentionally trigger
shutdown by frontrunning the oracle update.

This would be similar to the known attacks for triggering recovery mode in Liquity V1.

The currently proposed values of CCR = 1.5 and SCR = 1.1 appear far enough apart that these
attacks are not feasible. Any future deployments that use closer values should consider this attack
vector.

8.3 Delegations Are Deleted on Liquidation
Note Version 1

Liquidations return surplus collateral to the trove owner. However, only the owner of the trove can reclaim
the surplus. Delegated accounts cannot. Note that liquidations trigger the
BorrowerOperations.onLiquidateTrove hook, so all delegations for that trove ID are deleted on
liquidation.

If the trove owner is a smart contract, it must implement the function to claim collateral. It cannot rely on
another contract via delegation. Not having the ability to call claimCollateral() risks losing access
to the surplus collateral in case of liquidation.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 48

https://web.archive.org/web/20241001090246/https://github.com/liquity/dev/security/advisories/GHSA-64wf-29wj-rpgx
https://chainsecurity.com

8.4 Frontrunning Considerations for Off-Chain
Infrastructure
Note Version 1

Due to the risk of frontrunning, integrators should make sure to consider the following points when writing
off-chain infrastructure:

1. The function CollateralRegistry.redeemCollateral calculates the redemption fee based
on the user-provided maximum redeemed amount, rather than the actual amount. If the user sets a
_maxIterationsPerCollateral, they may not receive the maximum amount. This will result in
receiving less collateral than expected, while still paying the same percentage fee. Similarily, if all
but one branch is backed, a redemption could redeem all collateral on a branch and then escape.

2. The user can also set a _maxFeePercentage, which will revert the transaction if the actual fee
percentage is higher than expected. If the user is frontrun, the prior redemption will increase the
basefee and reduce the total BOLD supply, so the fee will increase. This can cause their
redemption to revert, as the user's specified _boldAmount would push the fee above the specified
maximum. The user may want to write a wrapper contract that calculates the _boldAmount that
can be redeemed without going above the _maxFeePercentage.

3. The execution order of liquidations can influence subsequent liquidations through redistributions. A
profitable redistribution could restore a previously liquidatable trove, while an unprofitable
redistribution might cause a previously healthy trove to become liquidatable.

8.5 Fully Backed Branches Can Have Low Interest
Rates
Note Version 1

Redemptions are distributed between branches according to their "unbackedness". If a branch has more
BOLD in the stability pool than it has outstanding debt, it is considered "fully backed" and no redemptions
are routed to it.

Usually, users are encouraged to pay a high interest rate to avoid redemption. However, in the case of a
fully backed branch, no redemptions can happen in that branch, so there is no longer an incentive to pay
more than the minimum interest rate. As a result, it should be expected that the interest rate on fully
backed branches will be the minimum interest rate.

The troves at the minimum interest rate risk that the branch will become unbacked, as this will re-enable
redemptions. This can happen through withdrawals from the stability pool, liquidations, or through more
debt creation on the branch. However, if this happens gradually, there will still only be a small percentage
of redemptions executed through that branch (affecting the latest troves to adopt the strategy), as its
unbackedness will still be quite low. As soon as the branch becomes unbacked, the trove owners can
react by increasing the interest rate again (or depositing more BOLD to the stability pool). If the owners
need to adjust, they may need to pay an upfrontfee for doing so.

This problem could be self-correcting if stability pool depositors withdraw when the average interest rate
of the branch drops, as this will result in a lower yield paid to the stability pool. It is unclear how this would
play out in practice.

8.6 Inconsistent Use of Receivers in Zappers
Note Version 1

Liquity - Bold - ChainSecurity - © Decentralized Security AG 49

https://chainsecurity.com

The Zappers have a receiver per trove. However, it is not used consistently:

• In adjustTroveWithRawETH the Zapper sends the WETH and BOLD to the receiver defined in
the Zapper itself and any "extra" BOLD to the msg.sender.

• In closeTroveFromCollateral the Zapper sends all funds to the receiver defined in the
Zapper itself.

• In openTroveWithRawETH the Zapper sends all BOLD to the msg.sender.

Integrators and users should be aware of the when the receiver is used and when it is not used.

8.7 Integration Notes for Smart Contract Devs
Note Version 1

The following function behaviors may be unexpected and must be taken into account when writing
contracts that integrate with Liquity V2:

The repayBold and adjustTrove functions in BorrowerOperations can be used to repay debt. If the
amount specified to repay would result in the trove falling below MIN_DEBT, then only the amount
required to reach MIN_DEBT will be repaid. The remaining amount will be left with the caller. Integrators
must not expect a revert if the amount specified is impossible to repay exactly and must return leftover
amounts in the calling contract to the user.

The withdrawFromSP function in StabilityPool takes an _amount parameter. If the user has a BOLD
deposit that is smaller than _amount, the user's full balance will be withdrawn. Integrators must not
expect a revert if _amount is impossible to withdraw and must account for the actual withdrawal amount.

Any operation on a trove within a batch can influence other troves in the same batch. For instance, if we
retrieve the data for Trove A by calling getLatestTroveData, then close another trove within the same
batch, and subsequently call getLatestTroveData for Trove A again, the debt of trove A may have
increased due to rounding errors. Integrators must expect that the state of a trove can change between
calls, even if the trove itself is not directly modified.

8.8 Interest Rate Adjustments Below CCR
Note Version 1

When the system's TCR falls below the CCR, adjustments to troves that create debt are not allowed. As
a result, paying the upfrontfee for a premature interest rate adjustment is also not allowed. This means
that interest rate adjustments are only allowed after the INTEREST_RATE_ADJ_COOLDOWN period has
passed since the last adjustment.

Users should be aware of this and take caution when the TCR gets close to the CCR, as they may be
unable to increase their interest rate once the threshold is passed.

8.9 Manipulating Bold Supply With Flashloans
Note Version 1

When opening a trove, a user pays an upfront fee equal to the average interest for 7 days. The interest
rate can be as low as 0.5%, thus the upfront fee can be as low as 0.5%/52 = 0.0096%. The interest rate
calculation also takes the interest of the newly opened Trove into account. Hence, a large trove can have
a significant impact on the average interest rate and by extension the upfront fee of opening the trove.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 50

https://chainsecurity.com

A user could be incentivized to inflate the BOLD supply using a flashloan, since the redemption fee
depends on the percentage of the BOLD supply being redeemed.

This can be particularly profitable when large amounts of BOLD are getting redeemed. For example,
when a user attempts to redeem 50'000 BOLD of a total supply of 1 million BOLD, they would pay a fee
of 5% of the redeemed amount. If the supply is doubled to 2 million BOLD, the fee would be halved to
2.5%.

Assuming that the average interest rate is 1% after the big trove is opened, this behavior is profitable:

0.05 * 50000 < 0.025 * 50000 + 1e9 * 0.01/52
Note that the flashloan can be taken out from the smallest branch to have a larger impact on the average
interest rate in that branch, which will make the upfront fee cheaper. If the user wants to avoid
self-redemption, they can add the minted BOLD to the stability pool to reduce the percentage of
redemptions that are routed through that branch.

8.10 No Interest Paid on Pending Redistributions
Note Version 1

When a liquidation causes a redistribution, the redistributed debt is accounted for in the DefaultPool.
Whenever a trove is touched, its pending redistributions are moved from the DefaultPool to the trove.

Note that no interest is paid on pending redistributed debt. Interest will only start accruing once the debt
is moved to the trove.

Also note that the approximate interest rate calculated for the upfrontfee ignores the pending
redistributed debt. As the pending debt has an interest rate of 0%, the average interest rate can therefore
be higher than the effective interest rate paid on all outstanding BOLD.

8.11 Possible Attacks Against Zapper Users
Note Version 6

For Zapper operations that involve a swap, users provide a part of the input data, e.g. for the
closeTroveFromCollateral function of the WETHZapper the users provide _flashLoanAmount
which is (after fee subtraction) swapped against the entire debt of the trove. As the trove state might
change, after the user has signed and sent the transaction, certain attacks are possible.

Extracting Redistribution Profits:

Preconditions: A user calls a function like closeTroveFromCollateral of the WETHZapper, then a
significant redistribution happens and the user's trove is redeemable.

Possible Attack: By performing a redemption so that the minExpectedCollateral just passes, the
attacker can extract the redistribution profits the trove just received, as they are now part of the trading
slippage. Any original trading slippage can additionally be extracted.

Extracting Redemption Fees:

Preconditions: A user calls a function like closeTroveFromCollateral of the WETHZapper, then a
significant redemption with a high fee happens and the user's trove does not have an AddManager in
BorrowOperations.

Possible Attack: The attacker donates collateral, so that the minExpectedCollateral just passes.
Then, the attacker can extract the redemption fee, that was just received, as it is now part of the trading
slippage. Any original trading slippage can additionally be extracted.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 51

https://chainsecurity.com

8.12 Sending NFTs Does Not Reset Delegation
Note Version 1

Troves in Liquity V2 are transferable NFTs. This allows the user to transfer a trove, which means it could
be sold on a marketplace. Users purchasing a trove should be aware that the delegation of the trove is
not reset when the trove is transferred. This means the seller could set themselves as the remove
manager and receiver before the transfer is executed (potentially setting it at the last second,
frontrunning the purchase), then remove collateral from the trove after the transfer is completed.

As a result, purchasers of troves should be cautious and ensure that the purchase transaction includes a
reset of the delegation.

Also note that delegation can be set in the zappers, so users must check this before delegating their
trove to a zapper.

8.13 Trove Shares Exchange Rate Invariant
Note Version 1

The function TroveManager._updateBatchShares() rounds down the shares removed from the
batch when debt is decreased. Hence, any operations that decrease the debt level (i.e. redemptions,
lowering the debt level of troves) reduce the amount of debt per debt share due to rounding.

We have not identified any strategy that could reduce the exchange rate below the initial exchange rate
of one debt token per debt share.

If it was possible to bring the value of a debt share below one debt, it may be possible for further rounding
issues to make debt shares very cheap (i.e., totalDebtShares >> totalBatchDebt). This could result in an
overflow of the debt share calculation. For example, when the currentBatchDebtShares is 1e60 and
the debtDecrease is 1e18, then the calculation to get the trove of a debt recordedDebt would overflow.

function _getLatestTroveDataFromBatch() internal view {
 Trove memory trove = Troves[_troveId];
 Batch memory batch = batches[_batchAddress];
 uint256 batchDebtShares = trove.batchDebtShares;
 uint256 totalDebtShares = batch.totalDebtShares;

 ...

 if (totalDebtShares > 0) {
 _latestTroveData.recordedDebt = _latestBatchData.recordedDebt * batchDebtShares / totalDebtShares;

This could prohibit certain positions from getting liquidated and be exploited to mint unbacked tokens to
managers.

Additionally, full redemptions can leave some debt in the trove. For example, when total batch shares are
4000e18, debt is 4000e18 + 5, and the user has 2000e18 shares, the user debt is calculated as:

user.debt = batch.debt * user.shares / batch.shares = (4000e18 + 5) * 2000e18 / 4000e18 = 2000e18 + 2

However, redeeming that user debt burns:

user.shares = batch.shares * user.debt / batch.debt = 4000e18 * (2000e18 + 2) / (4000e18 + 5) =
2000e18 - 1

Thus, the user would end up with shares = 1 left after the redemption.

In conclusion, the rounding can potentially lead to unexpected behavior. If there is a way to trigger
rounding that causes the ratio of debt:debtshares to go below 1, this could have catastrophic
consequences. However, we have not been able to identify a transaction sequence that causes this.

It should be seen as a core protocol invariant that the debt:debtshare ratio is never allowed to go
below 1.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 52

https://chainsecurity.com

Version 2In the function TroveManager._updateBatchShares does not round down when fully
closing a position:

// Subtract debt
// We make sure that if final trove debt is zero, shares are too (avoiding rounding issues)
// This can only happen from redemptions, as otherwise we would be using _removeTroveSharesFromBatch
// In redemptions we don’t do that because we don’t want to kick the trove out of the batch (it’d be bad UX)
if (_newTroveDebt == 0) {
 batches[_batchAddress].debt = _batchDebt - debtDecrease;
 batches[_batchAddress].totalDebtShares = currentBatchDebtShares - Troves[_troveId].batchDebtShares;
 Troves[_troveId].batchDebtShares = 0;
} else {
 batchDebtSharesDelta = currentBatchDebtShares * debtDecrease / _batchDebt;

 Troves[_troveId].batchDebtShares -= batchDebtSharesDelta;
 batches[_batchAddress].debt = _batchDebt - debtDecrease;
 batches[_batchAddress].totalDebtShares = currentBatchDebtShares - batchDebtSharesDelta;
}

Note on the audit process: At the beginning of the audit, it was already known to Liquity that fully
redeemed troves can end up with a non-zero amount of debt shares. The GitHub issue related can be
found here.

8.14 Zapper Remove Manager Requires Increased
Trust
Note Version 1

The zappers implement the same delegation scheme as the core system. There is a removeManager
and a receiver, that can be set to different addresses. In the core system, the removeManager
cannot directly profit or cause losses by making malicious changes, because the receiver will receive
the funds.

In the zappers, the removeManager can directly profit and cause losses by making malicious changes,
because they can decide the parameters of the swaps made in the leverage functions. Swapping at bad
exchange rates (and sandwiching those swaps) can cause losses to the owner of the trove.

As a result, the trust required in a removeManager that is not also the receiver is higher in the zapper
than in the core system.

Liquity - Bold - ChainSecurity - © Decentralized Security AG 53

https://web.archive.org/web/20241003114027/https://github.com/liquity/bold/issues/416
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Major changes from Liquity V1
	2.2.2 CollateralRegistry
	2.2.3 Trove interest rates
	2.2.4 Individual delegation
	2.2.5 Batch delegation
	2.2.6 Collateral Branch shutdown
	2.2.7 Gas compensation
	2.2.8 PriceFeeds (Oracles)
	2.2.9 Zappers
	2.2.10 Trust Model
	2.2.11 Changes in Version 2
	2.2.12 Changes in Version 4
	2.2.13 Changes in Version 5
	2.2.14 Changes in Version 6
	2.2.15 Changes in Version 7

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Unredeemable Troves Can Pay Minimum Interest Rate
	5.2 Discrepancy in swapFromBold Behavior

	6 Resolved Findings
	6.1 Rounding in Debt Shares Calculation Can Mint Unbacked Tokens
	6.2 BalancerFlashLoan Missing Access Control
	6.3 Leverage Zappers Do Not Return Swap Excess
	6.4 Zappers Can Lose User Funds
	6.5 Incorrect Scaling of P
	6.6 Pool Deposit Are Compared to Precision
	6.7 Total Deposit Are Compared to Wrong Constant
	6.8 Batches Can Be Used to Make Two Free Adjustments in a Row
	6.9 Delegation Specification
	6.10 Incorrect Code Comments
	6.11 Interest Delegates Are More Trusted Than Needed
	6.12 Missing Payable Modifier
	6.13 Missing Validation of Troves in Urgent Redemptions
	6.14 Opening Troves Can Be Blocked
	6.15 Out-of-gas May Lead to Shutdown
	6.16 Price Limit in UniV3Exchange Is Too Strict
	6.17 Shutdown Can Be Triggered Twice
	6.18 User-provided transferFrom Source Address
	6.19 Zapper Delegation Is Not Reset When a Trove Is Closed
	6.20 Gas Optimizations in StabilityPool
	6.21 Receiver Address in Balancer Flashloan Is Reset Late
	6.22 Backed Tokens Can Be Redeemed Unproportionally
	6.23 CEI Pattern Violated in Adjust Trove
	6.24 Comments From Development
	6.25 Core Debt Invariant Incorrectly Documented
	6.26 Floating Pragma
	6.27 Inconsistent Input Validation by Zappers
	6.28 Indexed Parameters of Events
	6.29 Minting Unbacked Tokens via Redistributions
	6.30 Misleading Function Names in Zapper
	6.31 Missing Events

	7 Informational
	7.1 Unimplemented Function Can Be Called
	7.2 Bypassing Collateral Adjustment Check
	7.3 Gas Optimizations
	7.4 Insufficient Gas Compensation Could Mint Bad Debt
	7.5 Price Deviation in Composite Price Feed
	7.6 Small Redemptions Do Not Increase Base Rate
	7.7 Upfront Fee Is Zero for Small Borrows
	7.8 Upfrontfee Can Bring Troves Below MCR
	7.9 rETH Address Might Change

	8 Notes
	8.1 Add Manager Can Increase Stake
	8.2 CCR and SCR Considerations
	8.3 Delegations Are Deleted on Liquidation
	8.4 Frontrunning Considerations for Off-Chain Infrastructure
	8.5 Fully Backed Branches Can Have Low Interest Rates
	8.6 Inconsistent Use of Receivers in Zappers
	8.7 Integration Notes for Smart Contract Devs
	8.8 Interest Rate Adjustments Below CCR
	8.9 Manipulating Bold Supply With Flashloans
	8.10 No Interest Paid on Pending Redistributions
	8.11 Possible Attacks Against Zapper Users
	8.12 Sending NFTs Does Not Reset Delegation
	8.13 Trove Shares Exchange Rate Invariant
	8.14 Zapper Remove Manager Requires Increased Trust

