

PUBLIC

Code Assessment

of the LIP-23: Rebase Check

Smart Contracts

Jun 21, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Lido Team,

Thank you for trusting us to help Lido with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of LIP-23: Rebase Check
according to Scope to support you in forming an opinion on their security risks.

Lido implements an improvement of the OracleReportSanityChecker which aims to mitigate the risk
of malicious oracle daemons colluding and reporting excessive negative rebases of stETH.

The most critical subjects covered in our audit are compliance with the specification, correctness of the
arithmetic operations, and functional correctness. No major issues were uncovered. Security regarding
all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Code Corrected 1

• Specification Changed 1

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the LIP-23: Rebase Check repository
based on the documentation files.

Version 2

The audit was carried out on the changes introduced through the GitHub pull request "Negative rebase
limit #67". More specifically, only the changes from the develop branch to were taken into
consideration. The codebase at develop was assumed to be bug-free.

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 27 May 2024 694e7b10f5f8a00e3b7634e4e020539b3a67b20d Initial Version

2 18 Jun 2024 efeff81c18f85451ebf98e8fd8bb78b8eb0095f6 Version with fixes

For the solidity smart contracts, the compiler version 0.8.9 was chosen.

The following files are in scope:

• code/lido-core_code/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol

• code/lido-core_code/contracts/0.8.9/lib/SafeCastExt.sol

2.1.1 Excluded from scope
All files not specified in the scope are automatically considered to be out-of-scope.
OracleReportSanityChecker is assumed to work correctly. Only the changes in its functionality
were reviewed. Moreover, the correctness of Oracle Daemons is out of scope. In the current setup, the
liveness of the system might be impacted if high negative rebasing is reported. We assume that the Lido
Governance will be able to correctly configure the system to make progress. This is an assessment of the
correct implementation of the specification of LIP-23. The specification itself was not subject to review.
LIP-23 makes assumptions based on the current specification of the consensus layer. Should this
change, the sanity check may be revisited.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Lido offers LIP-23, an improvement of OracleReportSanityChecker which aims to mitigate the risk
of malicious Oracle daemons colluding and reporting big negative rebases of stETH. For more
information about Lido core, please refer to previous reviews.

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com/security-audit/lido/
https://chainsecurity.com

2.2.1 stETH
Lido is a liquid staking protocol. Users can stake their ETH in exchange for stETH. The stETH contract is
an ERC20 rebasing token. User balances are internally represented as shares and their actual balances
are a product of the total shares and the amount of ETH per share currently held by active validators, and
pending validators, and buffered in the Lido contract. As the amount of ETH per share increases due to
rewards, the user balances also increase proportionally. Negative rebasing can also occur in case of
slashing or other penalties to the Lido validators.

2.2.2 AccountingOracle
The rebasing mechanism of the stETH strongly depends on information coming from the consensus
layer. This information is contained in an Oracle Report that is transmitted daily to the
AccountingOracle from off-chain entities named Oracle Daemons. There are currently nine Oracle
Daemons, and out of these, it is sufficient for five of them to reach a consensus in order for the report to
be finalized.

The Oracle Daemons call the function submitReportData of the AccountingOracle effectively
passing the report on-chain.

2.2.3 OracleReportSanityChecker
Before the data of the Oracle report can be used, it is necessary to perform several sanity checks. This is
to avert the rare case of the committee of Oracle Daemons is compromised, malfunctions, or colludes.

On a high level, the OracleReportSanityChecker performs the following checks on a report
submitted on the i-th day:

1. The amount to withdraw on the i-th day cannot be larger than the balance of the
WithdrawalVault.

2. The amount of execution layer rewards received on the i-th day cannot be larger than the
balance of elRewardsVault.

3. The shares to burn on the i-th day cannot be more than the ones stored in the Burner
contract.

4. The total ether staked by Lido cannot decrease more than a certain threshold.

5. The total ether staked by Lido cannot increase more than a maximum APY.

6. The number of new Lido validators that appeared on the i-th day cannot be more than the
Ethereum validators' churn limit.

2.2.4 Negative Rebase Sanity Check
The focus of this audit is the changes to check number 4, which aims to lower the threshold of a tolerated
negative rebase. A negative rebase beyond this threshold could imply malfunctioning or colluding Oracle
Daemons. Note, however, that the check cannot detect wrong/false values that still satisfy its conditions.
In particular, the check requires that the sum of the absolute values of the negative rebases in the last 18
days does not exceed the sum of:

1. the slashing penalty (1 ETH) of an overapproximation of all the active validators of the last 18
days

2. the inactivity penalty (0.101 ETH) of an overapproximation of all the active validators of the last
54 days

In case the sanity check fails, the OracleReportSanityChecker will ask a second opinion from a
specific SecondOpinionOracle. If the second opinion is consistent with the data received from the rest
of the Oracle committee, then the negative rebase will happen. It is important to note that at the current

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

state no SecondOpinionOracle is implemented, and therefore the transaction will simply revert in
such case. If the address of the second-opinion Oracle is set then the value it reports is sanitized by
comparing it to the value reported. Note that the tolerance for negative rebases depends on the
frequency of the report as less frequent reports allow for bigger negative rebases.

Version 22.2.5 Changes in
Version 2 of the system introduces the following changes:

• OracleReportSanityChecker.checkAccountingOracleReport() can only be called by the
Lido contract.

• The second opinion oracle returns an extra value withdrawalVaultBalanceWei which is
checked against the oracleWithdrawalVaultBalanceWei.

2.2.6 Roles & Trust Model
We identified the following roles:

• Oracle Daemon: they daily submit an Oracle report. In general, they are not trusted.

• Lido Governance: in case the sanity check fails and a second opinion is needed, the Lido
Governance is assumed to deploy a proper second-opinion oracle to allow the system to
progress.

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Code CorrectedSpecification Mismatch

• Specification ChangedThe Second Opinion Oracle Should Return a Unified Balance

Informational Findings 1

• Code CorrectedPast Report Data Retrieval

6.1 Specification Mismatch
Correctness Low Version 1 Code Corrected

CS-LIP23-003

The specification states that in cases where
clRebaseSumNegative_18 > maxClRebaseNegativeSum, then the check must try to retrieve a
second opinion.

However, the check is implemented as follows:

if (negativeCLRebaseSum < maxAllowedCLRebaseNegativeSum) {
 // If the diff is less than limit we are finishing check
 emit NegativeCLRebaseAccepted(_refSlot, _unifiedPostCLBalance,
 negativeCLRebaseSum, maxAllowedCLRebaseNegativeSum);
 return;
}

...

_askSecondOpinion(_refSlot, _unifiedPostCLBalance, _limitsList)

This implies that if negativeCLRebaseSum >= maxAllowedCLRebaseNegativeSum then the check
will try to retrieve a second opinion, which is not in line with the specifications. In particular, if
negativeCLRebaseSum = maxAllowedCLRebaseNegativeSum, according to the specifications, a
second opinion should not be consulted, whereas according to the code, a second opinion should be
consulted.

Core corrected:

Version 2Lido has corrected the code in . Now the check is implemented as follows (notice the <=
operator):

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

if (negativeCLRebaseSum <= maxAllowedCLRebaseNegativeSum) {
 // If the rebase diff is less or equal max allowed sum, we accept the report
 emit NegativeCLRebaseAccepted(_refSlot, _postCLBalance + _withdrawalVaultBalance,
 negativeCLRebaseSum, maxAllowedCLRebaseNegativeSum);
 return;
}

...

_askSecondOpinion(_refSlot, _postCLBalance, _withdrawalVaultBalance, _limitsList);

6.2 The Second Opinion Oracle Should Return a
Unified Balance
Design Low Version 1 Specification Changed

CS-LIP23-001

In OracleReportSanityCheck._askSecondOpinion(), the value clBalanceGwei returned by
the second opinion oracle is converted to WEI and then compared to the unified Consensus Layer (CL)
balance originating from the Accounting Oracle. This latter unified balance is equal to the CL balance
plus the amount of Ether that was withdrawn from the Beacon Chain to WithdrawalVault.

Even though no implementation of the second opinion oracle is available yet, the variable name
clBalanceGwei suggests that the balance returned by the second opinion will not represent a unified
CL balance. In this case, the checks inside _askSecondOpinion might not be correct.

Specification changed:

Version 2Lido corrected the code in . Now _askSecondOpinion compares the post CL balance (and
not the unified post CL balance) to the second opinion CL balance. Moreover, it requires that the balance
of the withdrawal vault at the refslot is strictly equal to the balance reported by the second opinion
(oracleWithdrawalVaultBalanceWei == _withdrawalVaultBalance). Note that according to
the plan at the time of review, for the second opinion, some zk-solution or direct Merkle-Patricia proof
(e.g., with EIP-2935) is going to be used. Therefore, for an honest oracle, the check should succeed.

6.3 Past Report Data Retrieval
Informational Version 1 Code Corrected

CS-LIP23-002

In the specifications, the negativeClRebaseSum_18 is computed through a sum over the values of the
last 18 reports. However, developers should note that the implementation in
_sumNegativeRebasesNotOlderThan(uint256 _timestamp) sums all reports having a
timestamp greater or equal than _timestamp. As as consequences, it might be that the sum is executed
over the last 19 reports, instead on 18, depending on the reference slot of the reports.

Code corrected:

Version 2Lido corrected the code in by only considering reports having a timestamp greater (and not
equal) than _timestamp.

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Note that since the updated function sums the negative rebases newer than _timestamp, the name
_sumNegativeRebasesNotOlderThan is currently not accurate.

Lido - LIP-23: Rebase Check - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 stETH
	2.2.2 AccountingOracle
	2.2.3 OracleReportSanityChecker
	2.2.4 Negative Rebase Sanity Check
	2.2.5 Changes in
	2.2.6 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Specification Mismatch
	6.2 The Second Opinion Oracle Should Return a Unified Balance
	6.3 Past Report Data Retrieval

