PUBLIC

Code Assessment

of the KyberSwap Elastic V2
Smart Contracts

May 16, 2023

Produced for

P Kyber Network
’§ On-chain Liquidity Protocol

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Informational

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG

10
11
12
13
17

https://chainsecurity.com

1 Executive Summary

Dear Kyber Team,

Thank you for trusting us to help Kyber Network with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of KyberSwap Elastic V2
according to Scope to support you in forming an opinion on their security risks.

Kyber Network implements an AMM that allows liquidity providers to concentrate the liquidity in a certain
price range, with the fees being automatically reinvested in the second constant product curve without
concentrated liquidity. On top of the AMM, Kyber Network implements the anti-sniping mechanism to
mitigate the issue of just-in-time liquidity provision, and a TWAP oracle for each pool.

The most critical subjects covered in our audit are functional correctness, access control, and precision of
arithmetic operations. Security regarding all the aforementioned subjects is good.

The general subjects covered are code complexity, trustworthiness, gas efficiency and documentation.
Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

¥ Risk Accepted

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the KyberSwap Elastic V2 repository
based on the documentation files. This assessment is performed on the modified codebase from
KyberSwap Elastic report. The scope of this review is focused on the changes in the files from Scope,
compared to the last commits of the KyberSwap Elastic report. A focus was done on the Pool contract.

For this audit, the following files in the cont r act s folder are in scope:

* All files in i nt er f aces subfolder, if not mentioned in Excluded from Scope.
* Allfilesinli brari es subfolder, if not mentioned in Excluded from Scope.
* All files in per i phery subfolder, if not mentioned in Excluded from Scope.
» oracle/PoolOracle.sol

* Factory.sol

* Pool.sol

* PoolStorage.sol

* PoolTicksState.sol

Open issues and Notes reported in the report of KyberSwap Elastic are not repeated in this report but
may still apply. Please refer to report of the KyberSwap Elastic review.

The table below indicates the code versions relevant to this report and when they were received.

V | Date Commit Hash Note

1 | 24 April 2023 1902450fd9bcbc39c¢8cf53b0570837513d32cdfb Initial Version

2 | 10 May 2023 5c5f87619544e29df0af35dfb5fh98176¢c18b22b Updated Version
3 | 15 May 2023 3ba84353cbd88f30f222bb9c673e242a2e46fd12 Version with fixes

For the solidity smart contracts, the compiler version 0. 8. 9 was chosen.

2.1.1 Excluded from scope

Every contract not explicitly listed above and third party libraries are out-of-scope. Especially:

* interfaces/periphery/| QuoterV2. sol

* interfaces/|WETH. sol

* |ibraries/Full Math. sol

* |ibraries/Tickiat h. sol

* All files in ~"nmock™™ subfolder of "“contracts ~ folder.

* All files in ~“echidna ~ subfolder of "“contracts = folder.
* periphery/libraries/BytesLib. sol

* periphery/libraries/Pool Ti cksCounter. sol

* periphery/ Quot er V2. sol

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com/wp-content/uploads/2022/06/ChainSecurity_Kyber_Network_KyberSwap_Elastic_audit.pdf
https://chainsecurity.com/wp-content/uploads/2022/06/ChainSecurity_Kyber_Network_KyberSwap_Elastic_audit.pdf
https://chainsecurity.com/wp-content/uploads/2022/06/ChainSecurity_Kyber_Network_KyberSwap_Elastic_audit.pdf
https://chainsecurity.com

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

KyberSwap Elastic V2 is a version of noncustodial dynamic market maker protocol implementation, that
is similar to Kyber DMM v1 and other AMM protocols. It differs from Kyber DMM v1 in two main ways:

1. Concentrated liquidity: similar to Uniswap V3 protocol, KyberSwap Elastic V2 allows liquidity
providers (LPs) to provide liquidity into a specific price range. This allows more effective liquidity
utilization for the LPs.

2. Reinvestment curve: this curve allows LP fees to be automatically reinvested into the pool, thus
achieving the compounding interest for LP position.

The main contracts of the KyberSwap Elastic V2 are:
* Factory
* Pool
* Router
» AntiSnipAttackPositionManager

* PoolOracle

2.2.1 Factory

Factory provides governance fee destination and percentage via f eeConf i gur at i on function. Factory
contract creates new Pool contracts for given pair of tokens and swap fee. The implementation code of
new Pool contracts that the factory creates cannot be updated. Pool contracts themselves are also not
upgradeable. Factory also stores all whitelisted position managers for the Pool contracts. Factory has
one privilege role: conf i gMast er . Holder of this role can:

« Change configuration master

« Enable or disable position manager whitelisting

« Adding new position manager contracts to the whitelist

» Update Vesting period duration (Used by Ant i Sni pAt t ackPosi ti onManager)

« Change governance fee and governance fee recipient. The governance fee cannot be higher than
20%.

» Adding new fee values and distances that pools can support.

2.2.2 Pool

The Pool contract implements the AMM with concentrated liquidity. For liquidity provision, it allows
whitelisted addresses, typically the Anti Sni pAttackPositi onManager to mint new positions or
modify existing ones on the pool with mi nt () . The bur n function is permissionless and allows the owner
of the position to partially or fully de-provision their position. Interaction with i nt () and burn() will
send the owed amount of reinvestment tokens to the nsg. sender. Holders of RTokens can then
redeem them with bur nRTokens() for the underlying tokens of the pool.

Regular users can use the swap function to swap between the pool's underlying assets, the fees
collected during a swap are reinvested in the reinvestment curve and RTokens are minted for the

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

liquidity providers and the governance. For a flash loan, users can use the f | ash function to borrow part
of or all the assets from the pool. The fees collected on a flash loan are sent to the governance and are
not reinvested, and thus do not contribute to the LP fees growth.

2.2.2.1 Formulas

For the current amount of T and T a Pool implements a constant product automated market maker
with formula

x*y=(Lp+ Lr)2
, Where L,_is an aggregated liquidity from all DMM LPs positions that provide liquidity for the current price
P, and Lr Is liquidity provided by the reinvestment curve.

Concentrated liquidity provision is possible at specific price ranges. Each price is linked to a tick. The
price at a tick t is given by

v1.0001¢

See Ticks section for more info about ticks. When an initialized tick is crossed, the active base liquidity L
is updated to represent the new aggregated liquidity available at the new price.

All fees collected from swaps effectively increase the Lr amount. Part of this fee goes to the governance
address. The government fee percentage and receiver configuration are stored on the Factory contract.
The maximum government fee is 20% of the swap fees. When a swap crosses a tick or when users
add/remove liquidity from the pool, the reinvestment tokens (RTokens) are minted for the DMM position
owners. The minted RTokens are ERC20 tokens that can be transferred and burned to get a share of
reinvestment curve liquidity.

The Pool contract supports flash loan functionality. The flash loan fee is the same as the swap fee and
the full fee amount is sent to the Factory defined governance fee destination address.

The formulas for price computations are (1.) for the current price Py and (2.) for the target price Py

1.pc=
A
2.pe= ii&

The formulas for a swap are (3.) for T0 to T1’ and (4.) for T1 to To:

3. (x + (1 —fee) ¥ Ax) * (y + Ay) = (Lp + L,)?

4.(x + Ax)*(y + (1 —fee) * Ay) = (Lp + L,)?
Each swap will reinvest the collected fees in the reinvesment curve, so the invariant is updated at each
swap step. The formula to compute the new invariant after a swap is:

(X +Ax) *(y + Ay) = (Lp + L,)?

The formulas to compute the new liquidity of the reinvestment curve after the swap are (5.) for T to T
and (6)forT toT

5. (X, + fee * Ax) *y, = LA
6. VX * (v, + fee* Ay) = LYY

Since the square root is costly to compute on a smart contract, Kyber Network implements
approximations for (5.) and (6.) that are resp. (7.) and (8.):

' fee* Ax*\/pc
7L =y, 4 feetXpe
approx 2

Ay fee* Ay
8.LY =L +5r

The amount of RTokens that are minted represents the active DMM position's participation in the
increase of the reinvestment curve's liquidity:

L« g — L *TotalS /
otalsupplyrrokens

calcrMintQty = Loi L

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.3 Ticks

For a Pool with ati ckDi st ance equal tot g an initialized tick t will be responsible for the prices in
[a, b) with:

a=v1.0001t, b=11.0001t*t

Each initialized tick is updated when they are entered from below, left from below, or modified due to an
LP position tweak. Each initialized tick holds information about the LP positions using that tick as a
boundary (up or down):

| i quidityG oss: positive value. The sum of the liquidity of all the positions having this tick as
a boundary (up or down).

| i qui di t yNet : can be positive or negative. Active liquidity delta to be added/removed to/from
the active liquidity L, when the tick is crossed. If the tick t is crossed up, the net liquidity from
tick t +1 is added, if the tick t is crossed down, the net liquidity from tick t is deducted. The
value added by an LP is negative/positive when the tick is an upper/lower tick.

»f eeG owt hQut si de: yields a value such that the difference between a range's upper and
lower ticks' f eeGr owmt hQut si de is equal to the fee growth inside the range

e secondsPer Li qui di t yQut si de: yields a value such that the difference between a range's
upper and lower ticks' secondsPer Li qui di t yQut si de is equal to the seconds elapsed per
unit of active base liquidity inside the range

To help the computation of f eeG owt hQut si de and secondsPer Li qui di t yQut si de, the pool
tracks the two values f eeG owmt hd obal and secondsPer Li qui di t yd obal , holding the global
growth of the fee and the seconds elapsed per active unit of base liquidity Lb over the whole pool.

2.2.4 Router

The Pool contracts rely on callbacks to get the funds from the message sender. The Rout er contract
acts as a service contract, that allows using token approvals to fulfill the callback request from pool. In
addition, using the swap path data, the user can perform a chain of swaps between multiple pairs of
tokens.

2.2.5 AntiSnipAttackPositionManager

A snipping attack is an attack vector for concentrated liquidity pools. It is also known as : Just-in-Time
Liquidity (JIT). A liquidity provider can add and remove liquidity atomically in one block, sandwiching the
swap transactions. This way, the LP gains the majority of the swap fees, while not having a long-term
commitment to liquidity provision. Anti Sni pAt t ackPosi ti onManager is a contract that prevents this,
by introducing a vesting period for the acquired fees. The contract will distribute a unique ERC721 token
for every position LPs open. Anti Sni pAtt ackPosi ti onManager contract will act as a direct liquidity
provider for the pool and will receive and hold the RTokens from fees. It does so by locking aside the
appropriate part of RTokens and paying out the vested RTokens. The amount of withdrawable fees
linearly grows during the vesting period, which is defined in the Fact ory contract. If the position is
removed before the end of the vesting period, tokens that are still locked will be burned without profit.
Effectively, this prevents the creation and destruction of the liquidity position in the same block and does
not allow the malicious LPs to avoid the impermanent loss risk.

2.2.6 PoolOracle

The Pool Oracl e contract implements a Time Weighted Average Price (TWAP) oracle. The oracle
works in the same way Uniswap V3 TWAP oracle works and can be used to indicate the approximated
geometric average price of a pair of assets on a given pool. The oracle can track the price of multiple
pairs simultaneously by tracking a mapping indexed by nmsg. sender. It yields a finite number of
observations (car di nal i ty) per pool, at most one observation can be recorded per block, and the
latest observation has the cumulative tick value of

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

n
Z observationTick; * observationTime; — observationTime; _

i=1
with observati onTi c:ko = 0 and observati onTi me, = bl ock. ti mest anp at oracle initialization.

0
A new observation is triggered from the Pool when:
« a tick (initialized or not) is crossed during a swap, the oracle is updated with the tick before the swap

e an LP position is updated (_t weakPosi ti on() is called)

To have access to historic prices, one can voluntarily pay for the initialization of more observation slots
by calling the function i ncr easeCbser vati onCar di nal i t yNext .

The following functions are available to query the cumulative tick values:

* obser veFr onPool : get the value of the accumulator at different points in time starting from now
([now secondsAgos0 , how secondsAgos1 , ...])inagiven pool

* observe: get the value of the accumulator at different points in time starting from a given ti ne
([time-secondsAgos ti ma-secondsAgosl , ...]) in the pool that has the address

O 1
neg. sender

* observeSi ngl e: get the value of the accumulator at one point in time starting from a given ti ne
([ti me- secondsAgo) in the pool that has the address nsg. sender

* obser veFr omPool At : get the value of the accumulator at different points in time starting from a
giventinme ([tine- secondsAgosO , time- secondsAgos1 , ...])ininagiven pool

2.2.7 Trust model

e confi gMast er : is trusted to act non-maliciously and to the advantage of the system and the users
by setting reasonable parameters and whitelisting trusted addresses

« Pool deployed and unlocker: trusted
* liquidity providers: not trusted

* users: not trusted

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

(EXT=D-Severity Findings 0
(C2D-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 1

+ DOMAIN_SEPARATOR Is Not Recomputed if chainld Changes

5.1 DOMAIN_SEPARATOR Is Not Recomputed if

chainld Changes
(Security [(EOIZETTR] Risk Accepted)
CS-KYBE2-003

The ERC712Per mi t . DOVAI N_SEPARATOR is immutable, and thus won't be changed if the chain forks. If
Ethereum fork in the future (like PoW fork), the chainld will change however the BasePositionManager on
forked chain will still accept permit with old chainld. This leads to cross-chain replay attacks, where
signature from one domain is used on the other domain.

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E)-Severity Findings 0
y g
(CL:0)-Severity Findings 1
» Oracle Observation Functions Parameters
(Medium)-Severity Findings 0
(Low)-Severity Findings 5
ty g

» Compiler and Library Versions (RS

+ Missing Sanity Checks
+ Swap Amount Vs Price Limit Discrepancy

» maxNumTicks Computation Can Be Wrong
« secondsPerLiquidity of the First LP Starts at UNIX Time 0

6.1 Oracle Observation Functions Parameters

(Correctness JHEN TR Code Corrected)

The Pool O acl e functions observe, observeSi ngl e, and obser veFr onPool At accept arbitrary
parameters t i me that should serve as a reference point for the secondsAgo parameter, and t i ck that
should be used to transform the latest observation if needed. But the Oracl e library requires the
provided ti me to be the current block timestamp, and ti ck to be the current tick of the pool. More
specifically for ti me, the function Oracl e. | t e requires a and b to be chronologically before ti ne.
Thus, an arbitrary t i me parameter may return a wrong value for the accumulator. The same is valid for
an arbitrary value of t i ck, which could yield an incorrect accumulator if the last observation had to be
transformed.

CS-KYBE2-001

Example with arbitrary t i me:
cardinality 8
bl ock. ti nest anmp 1050
time = 550
secondsAgo 100

With the following state, for simplicity assume that ti cki ==observati onTi mestanp,, only the
timestamps are showed:

| 350| |500] |700| |900| |1024| |150| |220| | 300

i ndex

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

the function obser veSi ngl e(550, 100, 1024) will yield surrounding observations (4, 0) (index 4
for bef oreOr At and index O for at Or Aft er), instead of the expected (0, 1), and return a wrong
ti ckCumul ati ve value.

Description of changes:

Remove obser veFr onPool At observe, and observeSi ngl e functions, add
observeSi ngl eFronPool to read a single observation from a pool. All observe functions use
bl ock.tinestanpasati ne for.

6.2 Compiler and Library Versions

D (Cow) (Version 1) CRIEEIEED)

Solc version 0. 8. 9 is not the most up-to-date version and has known bugs.

CS-KYBE2-002

The smart contract libraries used by the project are:

" @penzeppelin/contracts": "4.3.1",
" @penzeppel i n/ contract s-upgradeabl e": ""4.6.0",

However, these libraries are neither up to date nor consistent with one another.

Code corrected:
The OZ libraries now both use version 4. 3. 1.
Regarding the solc compiler Kyber Network responded:

We didn’t upgrade the solidity version to latest as it could increase the possible changes for the
protocol.

Known bugs in solc 0. 8. 9 should not be triggered the assessed codebase.

6.3 Missing Sanity Checks
D) (Low) (Version 1) (XTI

The function Ti cksFeesReader . get Nearestlniti ali zedTi cks is missing input sanitization for the
ti ck parameter. It can accept invalid ticks such thattick < M N TICKortick > MAX TICK. The
while loops won't terminate for invalid ticks.

CS-KYBE2-004

Code corrected:

A check was added.

require(T. MN_TI CK tick tick T.MACTICK, "tick not in range');

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 14

https://github.com/ethereum/solidity/blob/0a0c389541c0f247691951edd64451be7145436c/docs/bugs_by_version.json#L1861
https://chainsecurity.com

6.4 Swap Amount Vs Price Limit Discrepancy

D (Low) (Version 1) CIXTTTD)

The swap terminates in 2 cases: specified amount is exhausted or specified price limit is reached.
However, there exists an edge case when specified amount is just enough to reach a price limit. In that
case the Pool will rely on specified amount value as a limit, that will lead to computation of a new pool
state using esti mat el ncrement al Li qui di ty function. If the price limit was used, the new state
computation would be handled by cal cl ncr enent al Li qui di ty function. The pool state is defined by
prices and computation of a new state using token amounts leads to more numeric conversions and thus
to less precision.

CS-KYBE2-005

If a Pool has following initialized tick ranges: [a, b) [b, c). And current tick is b+1, a swap specifying
get Sgrt Rati oAt Ti ck(b) as a limit would switch the liquidity to the value of [a, b) tick range. But a
swap swapQ y needed to reach the same state would result in a pool state where the liquidity has not
being shifted.

Code corrected:

The conmput eSwapSt ep function uses cal cl ncr enent al Li qui di ty when the usedAnpunt is equal
to speci f i edAnmount . Thus, the more precise price limit is used for this edge case.

6.5 maxNunli cks Computation Can Be Wrong

(D (Low) (Version 1) CXIEEIEED)

In the functions Ti cksFeesReader . get Ti cksl nRange , the computation of maxNumTi cks can return
a value that is too low when | engt h==0, thus making the returned memory array incomplete.

CS-KYBE2-006

Example, when start Ti ck < O:

MAX_ Tl CK 2;

M N_TI CK 2;

| ength 0;
startTi ck 1;
ti ckDi st ance 1;

With this setting, maxNumTi cks=3 and only the ticks - 1, 0, 1 will be returned, missing the tick 2. In
get Al | Ti cks for this case will be: maxNumirli cks=7, while should be 5.

Example, when start Ti ck > 0:

MAX TICK = 5;

M N_TI CK 5;

| ength 0;
startTi ck 2;

ti ckDi st ance 2;

With this setting, maxNunili cks=1 and only the tick 2 will be returned, missing the ticks 4 and 5.

Code corrected:

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

The cases from above are fixed.

6.6 secondsPerLi qui dity of the First LP Starts
at UNIX Time O
(Correctness JETINZEITB) Code Corrected

When a liquidity provider (LP) opens the first position (LPl) of a pool at t,
pool Dat a. secondsPer Li qui di t yUpdat eTi me == 0 and _syncSecondsPer Li qui dity() will
have no effect since no base liquidity is yet in the pool. When the second position is opened at t,,
_syncSecondsPer Li qui di ty() will update the state, but secondsEl apsed will be equal to the time
delta from UNIX timestamp O until now (tz)' So, the liquidity added by LP1 will be accounted for since 0
instead of L.

CS-KYBE2-007

Description of changes:

Always update the pool Dat a. secondsPer Li qui di t yUpdat eTi ne to the current block timestamp
whenever the secondsElapsed > 0.

6.7 Code Duplication
[Informational] [Version 1]

In the case !i sTokenO, the function SwapMat h. cal Fi nal Pri ce computes the same t np value in
each of the subbranches. The computation can be carried out outside of the conditional structure.

CS-KYBE2-008

Code corrected:

The common code was moved outside the branch bodies.

6.8 Wrong Comments

[Informational] [Version 1]

The nat spec of the struct | BasePosi ti onManager . M nt Par ans still mentions the f ee in bps, but
the fees have been updated to be in f eeUni t s.

CS-KYBE2-012

Code corrected:

@ar am f ee now correctly states that fee is in fee units.

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Griefing Attack
[Informational] [Version 1]

The swap function can perform multiple iterations of the while loop before terminating. Such execution
can cost a lot of gas. Malicious actor can bring the pool price to an extremely high or low value. This can
be done during the initial Pool unlock or via swap. While swap will require a lot of gas from attacker,
similar amount of gas will also be required to bring the price back to true value. Since the amount of
tokens needed to unl ockPool is low, the cost of attack is small.

CS-KYBE2-009

7.2 Oracle Limitations

[Informational] [Version 1]

Theti ckCunul ati ve from PoolOracle contract can be used to compute the time-weighted average tick
for a given period of time. If the price is computed from this tick, this is effectively a geometric mean of
the time-weighted average price (gm-TWAP). Compared to the arithmetic mean TWAP (am-TWAP),
gm-TWAP is more sensitive to upward price movements and less sensitive to downward price
movements. Any protocol that plans to use PoolOracle needs to be aware of this.

CS-KYBE2-010

In addition, in PoS consensus, the multi-block price manipulations are possible on AMM protocols:
« https://chainsecurity.com/oracle-manipulation-after-merge/

« https://blog.uniswap.org/uniswap-v3-oracles

7.3 PoolOracle Observations Mapping Collision
(Informationalj [Version 1]

The mappi ng(address => Oracl e. Qbservati on[65535]) field in PoolOracle contract allows any
msg.sender to modifier consecutive 2**16 storage slots. This theoretically can write to storage slot 151
and thus overwrite the owner of the contract. Note that solidity does not check for storage pointer
overflows. However, this is a practically impossible attack, since it requires attacker to find an address
that corresponds to mapping storage slot with 240 fix bits.

CS-KYBE2-011

@ Kyber Network - KyberSwap Elastic V2 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com/oracle-manipulation-after-merge/
https://blog.uniswap.org/uniswap-v3-oracles
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Factory
	2.2.2 Pool
	2.2.2.1 Formulas

	2.2.3 Ticks
	2.2.4 Router
	2.2.5 AntiSnipAttackPositionManager
	2.2.6 PoolOracle
	2.2.7 Trust model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 DOMAIN_SEPARATOR Is Not Recomputed if chainId Changes

	6 Resolved Findings
	6.1 Oracle Observation Functions Parameters
	6.2 Compiler and Library Versions
	6.3 Missing Sanity Checks
	6.4 Swap Amount Vs Price Limit Discrepancy
	6.5 maxNumTicks Computation Can Be Wrong
	6.6 secondsPerLiquidity of the First LP Starts at UNIX Time 0
	6.7 Code Duplication
	6.8 Wrong Comments

	7 Informational
	7.1 Gas Griefing Attack
	7.2 Oracle Limitations
	7.3 PoolOracle Observations Mapping Collision

