

PUBLIC

Code Assessment

of the KyberSwap Classic

Smart Contracts

April 23, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 13

7 Notes 18

Kyber.Network - KyberSwap Classic - ChainSecurity 2

https://chainsecurity.com

1 Executive Summary
Dear Loi, Dear Victor,

First and foremost we would like to thank Kyber.Network for giving us the opportunity to assess the
current state of their KyberSwap Classic system. This document outlines the findings, limitations, and
methodology of our assessment.

The suite of contracts implement a Dynamic Market Maker (DMM) based on UniswapV2. The main
changes are the use of an amplification model for the pools inventory function and fees based on the
recently traded volume.

Our main concerns are around the implementation of the amplification model. The paper
Amplification Model describes the model in detail, however, only covers the cases when trades and
contribution of liquidity are done in a balanced manner in regard to the pools tokens. The actual
implementation, however, allows unbalanced contributions. Three issues raised in the report are
connected to unbalanced contributions.

One medium severity security issue has been identified during the assessment. Additionally one medium
severity correctness issue and one medium severity aswell as several low severity design issues have
been reported.

We hope that this assessment provides valuable findings as well as more insight into the current
implementation. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 4

• Code Corrected 1

• Specification Changed 1

• Acknowledged 1

• No Response 1

Low -Severity Findings 6

• Code Corrected 6

Kyber.Network - KyberSwap Classic - ChainSecurity 3

https://chainsecurity.com

2 Assessment Overview
In this section we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the KyberSwap Classic repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 1 March 2021 ea642d04f531586afb14f06111a8c088294ece01 Initial Version

2 6 April 2021 fb470a33ed6a7e84fb06be39b3688d735e5f5a68 After first report

3 22 April 2021 f9e91ed05e41a733c27a28d81d630a5b5479f23e After second report

For the solidity smart contracts, the compiler version 0.6.6 was chosen. After the intermediate report,
the compiler version used was updated to 0.6.12.

2.1.1 Excluded from scope
The solidity files in subfolders examples and mock are out of scope for this review. The
LiquidityMigrator contract has been added in the final commit reviewed and is not part of this
review.

Kyber.Network - KyberSwap Classic - ChainSecurity 4

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

The suite of contracts implement a Dynamic Market Maker (DMM). The implementation is based on the
UniswapV2-core and the UniswapV2-periphery smart contracts. It differs from UniswapV2 in two
main ways:

1. The reserves use the Amplification Model. Instead of the inventory function x*y = k the function
x * y = k * a^2 is used which includes an amplification factor a > 1. This results in the
reserve having a smaller spread and slippage rate than a reserve using the Uniswap model. For
more details refer to the paper Amplification Model. Multiple pools for the same token pair
may exist. There can only be one unamplified pool per token pair where a is equal to 1, but there
can be multiple pools for the same token pair with an equal amplification factor > 1. Intuitively, the
greater the amplification factor the more stable is the price between the two tokens. It's important to
understand that the amplification factor itself is only used once during the first addition of liquidity to
a pool in order to calculate the values for the virtualReserves. Afterwards, the
virtualReserves are only updated proportionally to certain inputs. All invariants related to
adding or removing liquidity are based on the values of the "traditional" reserves. All invariants
related to swapping are based on the virtualReserves.

2. Dynamic fees: In contrast to UniswapV2, which enforces a 0.03% constant fee per exchange, the
fees depend on the volume exchanged during a given time window. Fees are lower during periods
of low activity which encourages trading while fees increase during high usage. For more details
refer to the paper XYZ model.

The system consists of two components: the core DMM (DMMPool.sol, DMMFactory.sol) and the
periphery (DMMRouter.sol, DaoRegistry.sol).

2.2.1 DMMPool
The DMMPool is based on the UniswapPair contract. It implements the core logic of the DMM (or AMM in
the Uniswap case). This includes functions to add/remove liquidity into the pool, swap tokens,
synchronise the reserves date and the functionality for the liquidity token.

These functions may be called directly although this practice is discouraged. Users are expected to
interact with the contract through the DMMRouter02 contract. Inside the DMMPool, all functions assume
that the tokens have already been transferred to the pool. This must only be done within the same
transaction in a preceding function code. Otherwise the next transaction interacting with this pool will take
advantage of these transferred tokens.

• mint: mints the liquidity tokens after users have added liquidity to the pool.

Assumption: The required amount of both pool tokens have already been transferred.

The liquidity tokens minted correspond to the contribution of the user to the pool. For example if the
user contributes 10% to the reserves (not the virtual ones) of the pool, they will hold 10% of the
liquidity tokens. Usually users contribute with the same proportion in both reserves. In any other
case the minimum contribution to a reserve is considered. The virtual reserves also increase by the
same proportion. In case the amount in a reserve exceeds the corresponding one in the virtual
reserve the new value of the virtual reserve is set to be the amount in the reserve.

If no liquidity tokens have ever been issued the contract mints a number of tokens equal to the
square root of the product of the contributed amounts. From these a MINIMUM_LIQUIDITY amount
is sent to address -1 and the rest to the user.

During minting, _mintFee() is called which settles the fees accrued by the previously executed
swaps through this pool. At the end of the minting the state of the pool is updated i.e., the size of the
reserves and the virtual reserves.

Kyber.Network - KyberSwap Classic - ChainSecurity 5

https://chainsecurity.com

• burn: this is the inverse procedure to mint. A user sends an amount of liquidity provider tokens
they wish to burn and get back a corresponding proportion of both tokens.

Assumptions: The liquidity tokens to be burned have already been transferred to the pool.

Note, that _mintFee is also called in this case.

• swap: implements the logic of the exchange in the pool.

The condition for a swap to conclude sucessfully is that the pools invariant k, based on the virtual
reserves holds at the end of the swap after the fees have been deducted. The amplification factor of
the pool is not directly involved in a swap.

Tokens must be transferred to the pool either before or at the latest during the callback.

The complexity of the function stems from two features it implements:

1. it allows for flash swaps

2. it allows an input token to be an output token. In other words, both tokens can be input and
output tokens at the same time, while one would expect one token to be the input token and
the other the output.

During a swap the amount of output tokens are sent to the recipient. Then, an arbitrary call to the
recipient is executed. As a next step, the balances of the reserves are calculated and the fees are
implicitely accrued, and finally the state of the pool is updated.

2.2.2 DMMFactory
The factory allows the deployment of new pools. It is important to note that there can be only one
unamplified pool for a specific pair, while there can be many pools even with the same amplification
factor for the same pair. The main functionality of the contract is in function createPool. During its
execution, a new pool contract is deployed and a registry in a from a map and an array is updated. The
second functionality is setFeeConfiguration which allows the feeSetter to set the address that
collects the fees on behalf of the protocol as well as the governmentFeeBps which determines the
percentage of exchange fees kept by protocol.

2.2.3 The DaoRegistry
The DMMFactory can be used by everyone to deploy a pool. The DaoRegistry is used to register
pools that are trusted by the Kyber Network. Only the administrator of the Registry is allowed to add or
remove trusted pools.

2.2.4 The DMMRouter (Periphery)
The DMMRouter is the main proxy thourgh which users interact with the pools. It implements wrapper
functions that check and calculate the input arguments for the low level calls implemented by the
DMMPool.

It allows for high level calls similarly to Uniswap, namely:

• addLiquidity and variations addLiquidityETH, addLiquidityNewPool,
addLiquidityNewPoolETH

• removeLiquidity and variations removeLiquidityETH, removeLiquidityWithPermit,
removeLiquidityETHWithPermit
removeLiquidityETHSupportingFeeOnTransferTokens,
removeLiquidityETHWithPermitSupportingFeeOnTransferTokens

• swapExactTokensForTokens, swapTokensForExactTokens, swapExactETHForTokens,
swapExactTokensForETH,
swapExactTokensForTokensSupportingFeeOnTransferTokens,

Kyber.Network - KyberSwap Classic - ChainSecurity 6

https://chainsecurity.com

swapExactTokensForETHSupportingFeeOnTransferTokens. In these calls a full exchange
path must be provided as well as the corresponding pools.

2.2.5 Fees
Fees accrue during exchanges. The general invariant enforced is:

(x1 − fee · xin / 10 ** 18) · (y1 − fee · yin / 10 ** 18) >= x0 · y0

where x0, y0, x1, y1 are the corresponding amplified balance for tokens x and y before and after there
exchange, xin and yin, the input values for the tokens and fee, the fee applied.

As mentioned, the fees are dynamic: The fee value depends on the RFactor and the amplification factor.
rFactor: Expresses the ratio between the exchange volume in a short time window and a longer one. It
is important to notice that both volumes are updated at the beginning of a new block. For optimization
purposes both windows are calculated using EMA according to the recursive formula:

ema = (ema * (1 - alpha) + volume * alpha) * (1 - alpha) ^ (skip_block -1)

where

• skip_block: the number of blocks without an exchange

• alpha: a constant 2/N+1

• volume: the exchange volume

The fees are calculated using the following formula:

• if r >= 1.477:

6/1000

• if 1.477 > r >= 1:

(985/27 + 20000/27*(r - 120/100)^3 + 250/9*(r - 120/100)) /1000

• else:

[200 + sign(r - 836/1000) * 5 * (r - 836/1000)^2 /

(2/1000 + (r - 836/1000)^2)]/1000

Depending on the amplification factor a, the fee may be reduced:

• if amp <= 2: fee

• if 2 < amp <= 5: 2/3 * fee

• if 5 < amp <= 20: 1/3 * fee

• else: 4/30 * fee

Intuitively, the higher the correlation between two tokens the less fee someone would pay.

2.3 Trust Model
In general pools are not trusted since anyone can deploy a pool with arbitrary tokens. Pools considered
as trusted are registered in the DaoRegistry.

Users are expected to interact with the system via the Router. The router features some slippage
protection which protects users from changing liquidity conditions before the transaction is mined.

The owner of the registry is a trusted entity.

Kyber.Network - KyberSwap Classic - ChainSecurity 7

https://chainsecurity.com

The feeToSetter role of the DMMFactory is trusted since it is responsible for setting the address
which collects the protocol fees feeTo as well as the governmentFeeBps parameter related to the
fees. We understand that the fees will be collected and distributed by the KyberDAO.

Kyber.Network - KyberSwap Classic - ChainSecurity 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

Kyber.Network - KyberSwap Classic - ChainSecurity 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Kyber.Network - KyberSwap Classic - ChainSecurity 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Obsolete Storage Writes During Pool Deployment

• AcknowledgedActual Amplification Reduces After Unblanced Contribution

Low -Severity Findings 0

5.1 Obsolete Storage Writes During Pool
Deployment
Design Medium Version 2

After the intermediate report, the following functions have been added to DMMPool:

function name() public override view returns (string memory) {
 IERC20Metadata _token0 = IERC20Metadata(address(token0));
 IERC20Metadata _token1 = IERC20Metadata(address(token1));
 return string(abi.encodePacked("KyberDMM LP ", _token0.symbol(), "-", _token1.symbol()));
}

function symbol() public override view returns (string memory) {
 IERC20Metadata _token0 = IERC20Metadata(address(token0));
 IERC20Metadata _token1 = IERC20Metadata(address(token1));
 return string(abi.encodePacked("DMM-LP ", _token0.symbol(), "-", _token1.symbol()));
}

The pool storage still contains the old name and symbol variables which are set during execution of the
constructor. Due to the new functions, the new name and symbol will be returned while the storage
variables are now obsolete.

constructor() public ERC20Permit("KyberDMM LP", "DMM-LP", "1") VolumeTrendRecorder(0) {

These unnessesary storage writes makes the deployment of new pools more expensive than necessary.
In particular 100,000 gas (roughly 20 USD at the time of writing) could be saved during each pool
deployment.

Kyber.Network - KyberSwap Classic - ChainSecurity 11

https://chainsecurity.com

5.2 Actual Amplification Reduces After Unblanced
Contribution
Design Medium Version 1 Acknowledged

Users may add liquidity to a pool by directly invoking DmmPool.mint().

Normally, liquidity is added in balanced amounts of token0 and token1 according to the pool's
inventory as the amount of liquidity tokens minted in return is based on the lower contribution. The
surplus amount of the other token is kept by the pool.

After minting, the values of the virtual reserves are updated as follows:

liquidity = Math.min(
 amount0.mul(_totalSupply) / data.reserve0,
 amount1.mul(_totalSupply) / data.reserve1
);
uint256 b = liquidity.add(_totalSupply);
_data.vReserve0 = Math.max(data.vReserve0.mul(b) / _totalSupply, _data.reserve0);
_data.vReserve1 = Math.max(data.vReserve1.mul(b) / _totalSupply, _data.reserve1);

Unbalanced contributions reduce the factor between the value of the actual reserve and the
virtualReserve, hence the pool "looses amplification" figuratively speaking. In an extreme scenario of
an unbalance contribution, which is rather costly for an attacker and has no clear benefit, the following
scenario may arise:

Assume a pool has following state: reserve0 = 1000, reserve1 = 1000, vReserve0 = 2000 and
vReserve1 = 2000.

1. A user adds 2000 token0 and 1 token1 to the pool. The values for vReserve0 and
vReserve1 should now be 2002. However, as the pool received an additional amount of token0
the value of reserve0 (3000) is now higher than the result of the calculation for the new
vReserve0 amount, hence the value for vReserve0 is set to _data.reserve0.

2. This step may be repeated for the other token: A user adds 3 tokens to reserve0 and
2998 tokens to reserve1. Then again the vReserve1 will get the value of reserve1.

3. Now it holds that reserve0 = vReserve0 and reserve1 = vReserve1.

After such a scenario an amplified pool is no longer amplified.

Note that a similar attack vector can be implemented using burn for tokens that accrue rewards on
transfer.

The documentation provided does not describe the expected behavior when liquidity is added in case of
an unbalanced contribution. In the paper Amplification Model, in section
Adding liquidity in Ampfliciation model on page 7 the only case described is when the
contributions match the expected ratio.

Acknowledged:

Kyber is aware of this scenario and states:

Note that liquidity providers get benefits if this scenario happens and the attacker has no economic
incentives to do this.

Kyber.Network - KyberSwap Classic - ChainSecurity 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Specification ChangedConflicting Statements About Contribution Ratio

• Code CorrectedSandwich Attack on New Liquidity Providers

Low -Severity Findings 6

• Code CorrectedOutdated Compiler Version

• Code CorrectedRedundant Modulo Operation

• Code CorrectedUnused Library

• Code CorrectedUnused blockTimestampLast

• Code CorrectedWrong Inequality

• Code CorrectedvReserve Wrong Naming

6.1 Conflicting Statements About Contribution
Ratio
Correctness Medium Version 1 Specification Changed

The document Dynamic AMM model design and rationals in section 2.3.3 Add Liquidity
reads:

When users add liquidity to existing pools, they must add liquidity with the current ratio of token in the
pool. The amount of mint token will be the min increase proportion of 2 tokens, the virtual balances
will scale out with the mint token to assure that the price range of the pools is only bigger. Special
case: the pool has reserve0=1000 and reserve1=1000 and vReserve0=2000 and vReserve1=2000.
An user adds 2000 token0 and 1 token1 to the pool. The vReserve0 and vReserve1 should be 2002.
But the reserve0 (3000) is higher than vReserve0. Therefore, we must vReserve0 = max(reserve0,
vReserve0) to assure the assumption that vReserve0 >= reserve0

The first statement clearly states:

must add liquidity with the current ratio of token in the pool

while the next statement handles a special case where this does not hold - hence the two statements are
contradicting.

The actual implementation does not enforce that adding liquidity must be done with the current ratio of
the tokens in the pool.

Finally the rational behind setting vReserve to reserve in case the new value for vReserve is less
than reserve is not clear. It's understood that vReserve cannot be smaller than reserve as the

Kyber.Network - KyberSwap Classic - ChainSecurity 13

https://chainsecurity.com

amplification factor must be >= 1, however it's questionable and not documented why setting the value
equal to reserve is the correct action in this case.

Specification changed:

The specification has been updated and now describes the scenario of an unbalanced contribution more
detailed.

6.2 Sandwich Attack on New Liquidity Providers
Security Medium Version 1 Code Corrected

This attack works against new liquidity providers when they are adding liquidity. The overall idea of the
attack is that the virtual reserve values are out of sync with the reserve values. Hence, the slippage
protection of addLiquidity() can be circumvented. The reserve values are brought out of sync by
adding unbalanced liquidity. Adding unbalanced liquidity by itself is good for liquidity providers, but in this
combination it can be used for an attack.

Prerequisites:

• A pool with little liquidity, e.g. new pool

• The pool is amplified

• The attacker has the ability to perform a sandwich attack

Setup:

• The pool has two token T0, T1

• T0 is worth 100 USD

• T1 is worth 1 USD

• The pool is balanced, e.g. 1 T0 and 100 T1

Attacks Steps:

1. Attacker adds liquidity regularly through the router. Hence, the pool is still correctly balanced. In
particular the reserves and virtual reserves have the ratio 1:100.

2. The victim looks at the pool and decides to add liquidity

• The victim uses the router and allows for no slippage or a tiny amount of slippage (hence,
following best practices)

• The victim sets up amountADesired and amountBDesired in 1:100 ratio, also amountAMin and
amountBMin have 1:100 ratio

4. The attacker detect the victim transaction in the mempool and starts a sandwich attack

5. First attacker transaction:

• The attacker swaps all of T0 out of the pool

• The attacker adds unbalanced liquidity (as described in our report)

• These two steps can be repeated

• As a result the reserves are in a 1:100 ratio but the virtual reserves are in a different ratio, e.g.
1:210 in our example

6. The victim transaction is executed, all checks pass, the transaction is successfully completed

Kyber.Network - KyberSwap Classic - ChainSecurity 14

https://chainsecurity.com

7. Second attacker transaction:

• Attacker removes all its liquidity from the pool, now only the victim's liquidity is in the pool

• Attacker uses the incorrect ratio of the virtual reserves to execute a swap that is bad for the
victim

Effect and Analysis:

• The "gifted" liquidity through unbalanced minting here goes back to the attacker as they are the
only/primary liquidity provider

• In our example with an amplification factor of 100, the attacker can steal 12.69% of the victim's
funds. Hence, the more the victim deposits, the more can be stolen.

• The attacker's funds can be smaller than the victim's funds. The percentage of stolen funds remains
the same.

• This is independent of the price ratios between T0 and T1 (1:100 in this example). Different ratios
lead to the same outcome.

• Other amplification factors lead to different results, but there are probably ways to make this attack
more effective

Example Numbers:

Pool after liquidity has been added:

[++] T0: 1.0
[++] T1: 100.0
[++] Value: 200.0 USD
[+] Value of 1 LP Share: 20.00 USD
[+] Virtual Reserves: 10.00, 1000.00

At this point all seems fine and the victim decides to add liqudity.

Pool after pre-manipulation:

[++] T0: 5.5249
[++] T1: 552.49
[++] Value: 1104.97 USD
[+] Value of 1 LP Share: 110.50 USD
[+] Virtual Reserves: 6.89, 1452.49

At this point the reserves are still in a 1:100 ratio, but the virtual reserves are not. There ratio is 1:210.

Pool before final swap to exploit incorrect ratios:

[++] T0: 100.0
[++] T1: 10000.0
[++] Value: 20000.0 USD
[+] Value of 1 LP Share: 110.50 USD
[+] Virtual Reserves: 124.68, 26290.01

At this point only the victim's liquidity is left. The ratio of the virtual reserves is still 1:210.

Code corrected:

The router now features a slippage protection on the ratio of the virtual reserves. The function takes two
new arguments where users can specify the lower and upper bound for the ratio between the virtual

Kyber.Network - KyberSwap Classic - ChainSecurity 15

https://chainsecurity.com

reserves. This mitigates the attack described above as the attacker can no longer arbitrarily unbalance
the virtual reserves. Note that the protection is in the Router, hence, users interacting with the pool
contract directly are not protected.

6.3 Outdated Compiler Version
Design Low Version 1 Code Corrected

The project uses an outdated version of the Solidity compiler.

pragma solidity 0.6.6;

Known bugs in version 0.6.6 are:
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1378

More information about these bugs can be found here: https://docs.soliditylang.org/en/latest/bugs.html

At the time of writing the most recent Solidity release is version 0.6.12. For version 0.6.x the most
recent release is 0.6.12 which contains some bugfixes but no breaking changes.

Code corrected:

After the intermediate report the compiler version has been updated to 0.6.12.

6.4 Redundant Modulo Operation
Design Low Version 1 Code Corrected

In DMMPool._update there is a redundant use of modulo operation
uint32 blockTimestamp = uint32(block.timestamp % 2**32);. With optimizations enabled,
the solidity compiler version 0.6.6 generates almost identical bytecode for
uint32(uint256(block.timestamp)) and uint32(uint256(block.timestamp)%2**32);.

This code no longer exists in the updated implementation.

6.5 Unused Library
Design Low Version 1 Code Corrected

Library UQ112x112 is present in the repository but never used.

Code corrected:

The unused library has been removed.

6.6 Unused blockTimestampLast
Design Low Version 1 Code Corrected

Kyber.Network - KyberSwap Classic - ChainSecurity 16

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1378
https://docs.soliditylang.org/en/latest/bugs.html
https://chainsecurity.com

Variable blockTimestampLast in DMMPool is regularly updated but never used. The purpose of the
variable is not documented.

Code corrected:

The unused variable has been removed.

6.7 Wrong Inequality
Design Low Version 1 Code Corrected

DMMLibrary.getAmount ensures reserveOut >= amountOut. However, if the equality holds the
transaction will later fail since a later call in swap requires
amount0Out < data.reserve0 && amount1Out < data.reserve1.

Code corrected:

The equality check has been removed.

6.8 vReserve Wrong Naming
Design Low Version 1 Code Corrected

In DMMLibrary.getReserves(), the return values of DMMPool.getReserves are assigned to
vReserve variables while the values returned by the function correspond to the unamplified reserves.

(uint256 vReserve0, uint256 vReserve1,) = IDMMPool(pool).getReserves();

IDMMPool(pool).getReserves() :

function getReserves()
 external
 override
 view
 returns (
 uint112 _reserve0,
 uint112 _reserve1,
 uint32 _blockTimestampLast
)
{
 _reserve0 = reserve0;
 _reserve1 = reserve1;
 _blockTimestampLast = blockTimestampLast;
}

Code corrected:

The naming of the variables in the code has been corrected.

Kyber.Network - KyberSwap Classic - ChainSecurity 17

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Amplification Increases Risk for Liquidity
Providers
Note Version 1

A higher amplification coefficient increases the risk for the liquidity providers. Due to a large amplification
factor, larger trade volumes are required in order for the current price to be reached. Moreover, the
smaller spread may be exploited by arbitrage bots balancing liquidity accross markets.

7.2 Tokens With Multiple Entrypoints
Note Version 1

This is more a theoretical issue but has applied to tokens in the past. Nowadays this is a less common
issue. Some (very few) tokens have multiple addresses as entry points, e.g. a proxy not using
delegatecall and the actual implementation contract. TrueUSD is such an example.

In the DMM system, this may has following consequences.

• The check in DMMFactory.create() to prevent the creation of a pool where tokenA and tokenB
are equal can be bypassed.

• A second unamplified pool may exist for the same token pair.

7.3 Volume Increase
Note Version 1

By swapping large amounts of funds of a pool with the receiver being the pool itself anyone may execute
a trade with a large volume. The requirement is that some additional tokens are transferred to the pool
during the callback in order to cover the fees so that the transaction can succeed.

As any swap, such a trade gets recorded in the VolumeTrendRecorder. The volume observed by the
VolumeTrendRecorder may be increased by anyone willing to spend the fee in order to do so.

Kyber.Network - KyberSwap Classic - ChainSecurity 18

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 DMMPool
	2.2.2 DMMFactory
	2.2.3 The DaoRegistry
	2.2.4 The DMMRouter (Periphery)
	2.2.5 Fees

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Obsolete Storage Writes During Pool Deployment
	5.2 Actual Amplification Reduces After Unblanced Contribution

	6 Resolved Findings
	6.1 Conflicting Statements About Contribution Ratio
	6.2 Sandwich Attack on New Liquidity Providers
	6.3 Outdated Compiler Version
	6.4 Redundant Modulo Operation
	6.5 Unused Library
	6.6 Unused blockTimestampLast
	6.7 Wrong Inequality
	6.8 vReserve Wrong Naming

	7 Notes
	7.1 Amplification Increases Risk for Liquidity Providers
	7.2 Tokens With Multiple Entrypoints
	7.3 Volume Increase

