PUBLIC

Expert Security Audit
of Kyber Network v2

June 29, 2018

Produced for

KYBER
NETWORK

Table Of Content

Foreword e 1
Executive Summary 1
System OVErvIEW L e e 2
Order Book Matching e 2
Trust Model 4
User Perspective o 4
Reserve Perspective 4
Network Perspective 4
Audit Overview 6
Scope ofthe Audit e 6
Depthof Audit. e 6
Terminology e 7
SCOPE . . o o e 8
Included inthe scope 8
Limitations 10
Details of the Findings o e 11
Security ISSUES L 11

1.1 Kyber Reserve EZINORERIIEY 11
1.2 Volume Imbalance RZINORERVEY 12
1.3 Userrequirements QZINOREEVER 12

1.4 Network requirements (partial) RZNONERNEY 13
1.5 Overflow in reserveFeeToBurn possible E::E 14
1.6 Overflow in getImbalance possible * v Acknowledged | 14

1.7 Influence of maxDestAmount on chosen conversion rate m v Acknowledged [F - 14

ChainSecurity Security Audit Report

1.8 Failing transaction due to rounding issue 0 v/ Acknowledged [N 15

1.9 Locked tokens or ETH RZINREENEY 16
Trustlssues 16
2.1 Wrong require in setMinSlippageFactor can lead to Underflow m 16
22 Additional Proxy Checks possible | [PAGEERN, 16
Design Issues L 17
3.1 Capitalization of constants 11 17
3.2 Specification mismatch :71 v Addressed | 17
3.3 validateTradeInput should fail by default m 17

3.4 Linter warnings disabled with no explanation o v/ Addressed | 17

3.5 transferAdminQuickly bypasses sanity checks m v Acknowledged [17

3.6 Code consistenc :: 18
3.7 Inconsistent use of feeAmount in sendFeeToWallet ’3 18
3.8 Lack of indexed fields in some events ‘,5: 18
3.9 Off-by-one error with MAX_QTY :f 19

3.10 Assigning to function parameters = Aol -« e 19
311 Gassavings possible PRI - o 19

3.12 Front-running possible E‘:E v Acknowledged | 19

Recommendations / Suggestions 20

Disclaimer e e 22

chainsecurity. com

chainsecurity.com

Foreword

We first and foremost thank KYBER.NETWORK for giving us the opportunity to audit their smart contracts. This
documents outlines our methodology, limitations, and results.

— ChainSecurity

Executive Summary

CHAINSECURITY is overall convinced of the soundness of KYBER.NETWORK'’s project with regards to its design
and its smart contract implementations. The smart contract test suite is exhaustive, and the smart contract code
is of high quality. During the audit, CHAINSECURITY uncovered several issues worthy of KYBER.NETWORK’s
attention, which have mostly been addressed. Overall, no significant security concern remains.

ChainSecurity Security Audit Report

Sy

The KYBER.NETWORK exchange consists of two main conceptual components:
e The network manages the platform, including fees, trading and reserves.

e The reserves hold funds and exchange them with market participants.

stem Overview

Both components consist of several separate smart contracts, whose architecture and trust model are
described in detail in a technical blogpost by KYBER.NETWORK".

Order Book Matching

There are a few (potentially unexpected) details about the order book matching. These, however, have valid
reasons from CHAINSECURITY’s point of view.

No partial completion: An order is never partially completed: It is either totally completed or not at all.

Same rate and reserve for complete order: If an order is completed, all of the funds are provided by the
same reserve at the same rate. Even though the order book of this reserve can contain different rates.

Consider the example below:

1,500

1,250
1,000 -
750 -
500 -
250 -
0

Rate

chosen point

0 0.5 1

Quantity

In this example all funds will be converted using a rate of 1000 even though some funds are available at
a better rate of 1250. This has the consequence that paying more can lead to a lower payout. For such

a case, consider the example below:

1,500 1 !
ade of O E R
1.250 Trade of 0.5 ETH
1,000 - Trade ¢f 0.6 ETH
8
< 750 -
e
500 -
250 -
0 : .
0 0.5 1
Quantity

1https://blog.kyber.network/kyber-network-smart-contract-29fd7b46a7af

chainsecurity. com

https://blog.kyber.network/kyber-network-smart-contract-29fd7b46a7af
chainsecurity.com

The shown trade of 0.6 ETH results in a rate of 1000 and thereby 600 KNCs. The shown trade of 0.5
ETH results in a rate of 1250 and thereby 625 KNCs. Hence, larger trades can potentially result in a
smaller output.

Note, that such issues can be partially resolved on the application layer by checking the order book
structure and, if needed, making multiple trades. This is only a partial resolve due to the inherent race
condition of checking something inside the blockchain state and then acting upon it.

ChainSecurity Security Audit Report

Trust Model

In this section we briefly describe the trust model for the different actors inside the KYBER.NETWORK.

User Perspective

Users of the KYBER.NETWORK want to exchange funds, but do not want to put their invested funds at risk. This
security property collides with KYBER.NETWORK’s requirement for updatable code, but KYBER.NETWORK has
found a good compromise:

A user’s funds are protected by the KyberNetworkProxy which forwards the request to the current imple-
mentation but checks that the execution was according to the client-specified requirements. In particular, it
checks that the minimum exchange rate was upheld. Note that no guarantee for the best possible exchange
rate is made.

In order to protect the minimum exchange rate, the user has to make sure that it has claimed all available
funds of the target token. Some services or tokens allow anyone to trigger a payout on behalf of a beneficiary.
If such payouts are available for the destination address the reserve can simply trigger the payout instead of
sending funds.

Just because users are protected from the effects of misbehaving reserves, they still cannot trust them. In
particular, users shouldn'’t trust reserve-emitted events as these can be manipulated.

However, the user is not entirely free from risk. A malicious network or reserve can steal the user’s gas.
Additionally, whenever the user trades malicious tokens (tokens with insecure contracts) all funds involved in
this transaction can be lost.

Users must review

If they want to independently protect their funds, users of KYBER.NETWORK need to review:
Proxy To ensure that it protects their interests and performs the necessary checks.

Traded Token To ensure that the token is not malicious, as the user can otherwise lose their tokens or they
can become worthless.

Reserve Perspective

A reserve aims to offer exchange services through the KYBER.NETWORK. However, KYBER.NETWORK admin-
istrators should have no control over the funds of a reserve.

The reserves pay for the participation inside KYBER.NETWORK in KNCs. This payment can be manipulated
by KYBER.NETWORK, because KYBER.NETWORK controls the exchange rate. Therefore, reserves can limit
their exposure and only make KNCs available once they agree with the exchange rate.

In the current contracts, the reserves fully trust the network contract, which is fine as long as these contracts
remain well-behaved. Therefore, reserves have to be very careful to update to future versions of the network
contract.

Reserves must review

If they want to independently protect their funds reserves of KYBER.NETWORK need to review:

Network Contract This check has to be renewed for each update to the network contract and has to consider
the complex relation between the two.

Offered Tokens To ensure that funds in these tokens cannot be suddenly lost.

Network Perspective

The network administrators need to perform proper KYC operations on the reserves. This is to ensure a pos-
sible punishment in case of misbehavior. The network needs to collect KNCs from the reserves as payment.
These token transfers currently require cooperation from the reserves.

4 chainsecurity. com

chainsecurity.com

Network should review

The network’s resources are generally not at risk. However, in order to ensure a good customer experience,
the network should review the following items:

Honest, Efficient Reserves To avoid undesirable performance, the network should ensure that reserve con-
tracts are gas-efficient, don’t steal and of user gas and act as proper reserves. A single misbehaving
reserve can block the network.

Proper Tokens In order to ensure disappointments when exchanging, KYBER.NETWORK should check the
basic properties for all listed tokens.

ChainSecurity Security Audit Report

Audit Overview

Scope of the Audit

The scope of the audit is limited to the following source code files. All of these source code files were received
on June 6, 2018, and updated on June 27, 2018?:

File

SHA-256 checksum

ConversionRates.sol

12caf9522e2c5153255e6bc62a3560f4f63f£20eb97c00b312ad0c8edlac1d38

ConversionRatesInterface.sol

bac394975da9%bad41c0c1130895a25336c98e2341102c6£8fa7494f£03d94£0bc

ERC20Interface.sol

b6c83117£2507859921£6abcc208b5a52d4a08169e259d734b518bc304950c1c

ExpectedRate.sol

3706894b63a2dd5f£1726c955£59a575cf616ae1631602190£8£633cb17e9fe2

ExpectedRatelnterface.sol

3ae93286e8713098d3£44c0915a43b9%e64f3acaf490b3d60fed4e2791e3ab2c4

FeeBurner.sol

9£99aa3f69£19d8c6e2a970a3bd55b6095de7c94719£12££9ab5547£184027bc

FeeBurnerlinterface.sol

b5e2£31806b34b5402b38b934c79234a2a0b480619£4b2961772ca8e0d9446¢cb

KyberNetwork.sol

b4£931a7d58445929897c4bc4a42d1542af2ab5b59101f7eal3af710c7c49e3996

KyberNetworklInterface.sol

c934£99e45194407148dcfc6224eal32eaa8d4b3c8d98ff2aaf93bdefadec944

KyberNetworkProxy.sol

7320bd6ae2£310c5d3d2£74e5e0d888be03c4b8b8fcc23ffc3a773a08bf25819

KyberNetworkProxyInterface.sol

03e88d920e4718e4eafe28£5887643c87e07e079£5d94478495d6a3£3£872430

KyberReserve.sol

759503e0ace2ca27c3ed2902d9ec6a12d8351c4f3bf14ad9e44c9c5d5a30398d

KyberReservelnterface.sol

eff68a389631936387fae004bdef82fcf4bbdb62ee2bcb4c9570b14c15899d62

PermissionGroups.sol

b9049798efd7£635369e27552ef6c£33265c23b440c7bb0336d64978df8£87fa

SanityRates.sol

21eb92652d1£1£fcb335de0e19c087c2blbbf2837ab8c1156£8fffedb891070de2

SanityRateslnterface.sol

2ab77302b357d7£6922c465744ab3354ef1b713b43176bd705b7483fed8cda36

SimpleNetworkInterface.sol

9d0950410c2028319a8027fb51e546430b9bdaclc3e7c297b80d7d94b560ba31

Utils.sol

85a24703baf20337be2642d2fcdd2596e020c5038431e6cae4195629e0£32700

Utils2.sol

102e99254872£55e3£2d91eb003d382efae9874b7d45535ae74ae85b46eadafe

VolumelmbalanceRecorder.sol

59f9e0b739ad93644844963d99d96868ef9f3bb47dd88fa0ad66c3418c423103

WhiteList.sol

aldedadddd491616dc68c9300db50de7c9b4c8daeedb1f007e25ccc7aldb80ed

WhiteListInterface.sol

0e4e871e3a01d9ff771b83797e6183501cff2bb4cea2c8513ae4e8a950ffec3c

Withdrawable.sol

£d9ddf8beeSeec20abc55767138e2815£2b9ac2b39807a54642£069967670£10

Depth of Audit

The scope of the security audit conducted by CHAINSECURITY was restricted to:

e Scan the contracts listed above for generic security issues using automated systems and manually in-

spect the results.

e Manual audit of the contracts listed above for security issues.

2Git commit: 9a7£78c77d8946ed027fa8669a180e8e7c203cc8

chainsecurity. com

chainsecurity.com

Terminology

For the purpose of this audit, we adopt the following terminology. For security vulnerabilities, we specify the
likelihood, impact and severity (inspired by the OWASP risk rating methodology?).

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.
Impact specifies the technical and business related consequences of an exploit.

Severity is derived based on the likelihood and the impact calculated previously.
We categorize the findings into 4 distinct categories, depending on their severities:

~~ Low: can be considered as less important

o
° m Medium: should be fixed
° 0 High: we strongly suggest to fix it before release

° e Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the following table, following a stan-
dard approach in risk assessment.

IMPACT

LIKELIHOOD

During the audit concerns might arise or tools might flag certain security issues. If our careful inspection
reveals no security impact, we label it as . If during the course of the audit process, an issue has
been addressed technically, we label it as , while if it has been addressed otherwise by improving
documentation or further specification, we label it as . Finally, if an issue is meant to be fixed in
the future without immediate changes to the code, we label it as .

Findings that are labelled as either or are resolved and therefore pose no security

threat. Their severity is still listed, but just to give the reader a quick overview what kind of issues were found
during the audit.

Shttps://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

ChainSecurity Security Audit Report

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Scope

In cooperation with KYBER.NETWORK, CHAINSECURITY derived a specification for the system. This specifica-
tion determines the audited system properties and furthermore defines what is inside and outside the scope of
the audit.

Included in the scope
Main Properties
These properties are discussed in more detail in the Trust Model.

e User funds, including ether and tokens but excluding gas payments, are not at risk even if KYBER.NETWORK
admins and reserves are malicious

e Reserve funds are not at risk even if Kyber.Network admins are malicious (Only KNCs in the fee wallet
are at risk)

Properties during a sale

e The network moves user funds to the reserve offering the best rate
e The reserve is correctly charged (in burnt tokens)

e Users cannot exceed their cap

The chosen reserve has enough tokens/ETH for the trade

The chosen reserve’s conversion rate is above the user specified one
e The reserve has to deliver the correct amount of tokens to the Network, which forwards it to the user*

e Token to token exchanges use ETH as an intermediate

Reserves

e The recorded amount of to-be-burnt KNCs is correctly computed

e The burning is not enforced and requires reserve cooperation

e The amount of to be burnt tokens is correctly updated after each trade

o Sufficient deposit at all times of KNC is currently not enforced

e Reserves need to be able to update exchange rates

e Integrity of exchange rates needs to be preserved

e Reserves are expected not to selectively block transfers, in case they do they will be delisted

e A big imbalance will block future requests

e If a price update transaction took more than 5 blocks to be confirmed, the imbalance is imprecise

e Imbalance is the imbalance since the last confirmed price update transaction

e Volumelmbalance = NumTokensSoldByReserve(Token X) - NumTokensBoughtByReserve(Token X)
e Reserve should be able to fetch funds from any ETH address using transferFrom

e Should support a step function that offers different rates according to different order quantities

e There are sanity rates, which protect the reserves when market deviates > 12.8% in either direction.

e A block number is attached to every price update

4Ignoring minor rounding differences.

8 chainsecurity. com

chainsecurity.com

Users

e Users are subject to a user cap (set according to multiple criteria) e.g, users who did KYC will get higher
cap

e Unfulfillable trade requests (due to high limit) will fail

e Users are subject to a gas price limit

Proxy Contract

e The proxy contract allows upgradability with respect to the network

e However, the proxy contract still provides some trust

e Upgradability needs to be tightly guarded

e The proxy ensures correct conversion rate (minimum given by user or better)

Network

e Controlled by a Multi-Signature Contract

Network admin can list and unlist tokens and reserves
e getExpectedRate gives correct estimates

Network admin can set fees

But fee payment is not enforced

The network contract does not hold major funds (of tokens or Ether) during regular usage

Minor funds can accumulate due to rounding errors in arithmetic computations

e Exception is the digix token, cf out of scope section

Miscellaneous

e Arithmetic calculations cannot result in under/overflows
e Arithmetic calculations have appropriate precision
e Constraints on arrays exist and are correctly enforced

e There cannot be locked tokens or ETH ending up in contracts where they cannot be handled

Important Notes

e KYBER.NETWORK intentionally did not change compiler version from v1

e The KNC-ETH rate is manually inserted (updated as needed due to price volatility)

Out of Scope

e Checks for the gas efficiency of listed tokens (currently done off-chain)

KYC process of Reserve Managers (done off-chain)

All contracts in the folders mockContracts and wrappers and the Abi folder

Correct use of the different contracts (e.g. no modifications) (checked off-chain)

Website integration including all dApps

Multi-Signature contract controlling the Kyber.Network

The special case of the digix token, where transfer fees are paid to the digix dao

ChainSecurity Security Audit Report

Limitations

Security auditing cannot uncover all existing vulnerabilities, and even an audit in which no vulnerabilities are
found is not a guarantee for a secure smart contract. However, auditing allows to discover vulnerabilities that
were overlooked during development and areas where additional security measures are necessary.

In most cases, applications are either fully protected against a certain type of attack, or they lack protection
against it completely. Some of the issues may affect the entire smart contract application, while some lack
protection only in certain areas. We therefore carry out a source code review trying to determine all locations
that need to be fixed. Within the customer-determined timeframe, CHAINSECURITY has performed auditing in
order to discover as many vulnerabilities as possible.

chainsecurity. com

chainsecurity.com

Details of the Findings

In this section we detail our results, including both positive and negative findings.

Security Issues

In the following, we discuss our investigation into security issues. Therefore, we highlight whenever we found
specific issues but also mention what vulnerability classes do not appear, if relevant.

1.1 Kyber Reserve

CHAINSECURITY checked the following points related to the KyberReserve contract. The subpoints listed below
are comments on the fulfillment of the specification.

e Burning is eventually enforced.

— A public function burnReserveFees in the FeeBurner contract exists.

— At this point a reserve can avoid paying the fee, which should result in it being delisted manually by
the network administrator.

The amount of tokens to be burnt is correctly updated after each trade.

— The handleFees and burnReserveFees functions are the only functions modifying reserveFeeToBurn.
handleFees gets called at the end of the trading function in the KyberNetwork.

— No taxation happens on ETH-to-ETH trades.

Sulfficient deposit at all times of KNC is currently not enforced.

— Currently there is no such mechanism available.

— The balance of a reserve with regards to a specific token can be queried with the public function
getBalance.

Reserves need to be able to update exchange rates.

— This can be done by calling setBaseRate and setQtyStepFunction.

Integrity of exchange rates needs to be preserved.

— Fullfilled under the assumption that integrity means that only allowed actors can change rates.
— Both setBaseRate and setCompactData can only be updated by onlyOperator.

A malicious administrator can only cause the loss of the KNC of the reserve.

— Not just KNC but any token accidentally trapped in the reserve contract through the payable function,
by setting himself as an operator and approving withdrawal.

A big imbalance will block future requests.

— Enforced by returning an exchange rate of 0 in such a case in the ConversionRates contract,
getRate function.

Reserve should be able to fetch funds from any ETH address using transferFrom.

Should support a step function that offers different rates according to different order quantities.

— Implemented in the ConversionRates contract with a struct StepFunction.

— Each struct TokenData has the following StepFunction fields: buyRateQtyStepFunction and
sellRateQtyStepFunction.

— The above fields are set by onlyOperator.

There are sanity rates, which protect the reserves.

ChainSecurity Security Audit Report

1.2 Volume Imbalance

CHAINSECURITY verified the following specification related to the volume imbalance:
e A block number is attached to every price update.
e The imbalance is the imbalance since the last confirmed price update transaction.
e |f the price update transaction took more than 5 blocks to be confirmed, the imbalance is imprecise.

e The volume imbalance of a specific token is calculated as the number of such tokens bought by the
reserve substracted from the number of such tokens sold by the reserve.

Additionally, the diagram below illustrates how the exchange rate interacts with the volume imbalance in a
simplified fashion, highlighting key parameters and functions.

When Network trades: When called by a user: When called by an operator:
recordlmbalance() getRate(currentBlockN) setBaseRate(blockNumber)
read
3 L i ¥
write
addlmbalance() compactData setCompactDatalblockNumber)
.

check:
bN + duration = ¢BN
| o
Yes

write getlmbalance(bN, cBN)

read

Y

tokenlmbalanceData
= Totallmbalance
- blocklmbalance

!

executeStepFunc(Totallmbalance)

v

check: No
Total & block imbalance = threshold

Yes | v

‘ rate \ rate=0\

Figure 1: Rate and imbalance interaction for an arbitrary token.

1.3 User requirements

CHAINSECURITY did not find issues in the specific points:
e User cap
e User can only lose gas or time due to malicious behavior
e User only needs to review the KyberNetworkProxy.sol file and the token contract

¢ Unfulfillable trade requests (due to high limits) fail User has gas price limits

12 chainsecurity. com

chainsecurity.com

We now explain these points in detail.

The admin (i.e. smart contract owner) of the Proxy contract can connect it to any contract that matches the
KyberNetworkInterface. This is the main purpose of a proxy contract, to be upgradeable.

But this also represents a threat in terms of trust, since the admin may change the underlying contract at
any time to an unaudited and potentially buggy or malicious version.

The KyberNetworkContract variable is public, and its value can be easily checked if the code has been
published/verified (as it undoubtedly will be).

As we will see below, the proxy is built in such a way to make the review of the behind the scenes contracts
irrelevant to the user. Indeed, once ETH or tokens are entrusted to the proxy for a transaction, they will either be
traded for the requested tokens (including ETH), respecting the minimum expected rate, or refunded through
a revert (which rolls back to the state prior to the trade). It is therefore sufficient for the user to review and
establish trust in the proxy contract, without worrying about the implementation details behind it.

The proxy contract inherits from 3 other smart contracts: one interface (which helps other contracts interact
with it), Withdrawable.sol and Utils2.sol, both adding some utility features.

Utils2 inherits from the Utils contract. Together, they define a set of functions to handle retrieval and
calculation of decimals (which may differ from token to token), user balance of ETH and tokens, conversion
rates and amounts of destination and source tokens. All functions in Utils and Utils2 are consultative and
do not change the state of the blockchain, except for one, which keeps track of the decimals of each token.

Withdrawable makes sure no ETH nor tokens can get stuck in the contract, and allows the admin to move
them wherever he chooses. Withdrawal functions can only be called by the admin and only externally, so they
can never interfere during a transaction (it would require them to be called internally, which is forbidden).

The trade and tradeWithHint functions are payable (i.e. they accept ETH), but the received ETH is
immediately sent to KyberNetwork in the same transaction, and either traded for tokens or refunded through a
revert (in case the transaction fails for whatever reason). The same is true for token to ETH trades. This means
the Withdrawable behavior can never be used to steal ETH (nor tokens) from trades, since those valuables are
never stored in the contract itself in between transactions.

The proxy contract forwards all trade transactions to the KyberNetwork contract, along with a reference to
the trader’s address, and verifies that the result of the transaction is in line with expectations. All other functions
are direct proxies to their equivalents at the KyberNetwork.sol level, except for calculateTradeQOutcome,
which is used as a verification tool for trades.

The verification is done as follows: the trade is executed and the network reports a destination amount
(tokens that should have been received as result of trade). The calculateTradeOutcome function is then used
to observe the actual amount received by the user, in a way that is totally independent from the KyberNetwork
contract implementation (current or future). Two conditions might make the transaction fail, and thus revert all
operations to the state prior to the trade:

e |f the reported and observed amounts do not exactly match

e If the amount is not equal or greater than the minimum expected amount (derived from the minimum rate
initially mentioned in the transaction)

This means that whatever happened behind the scenes (e.g. in KyberNetwork.sol or other related contracts),
the destination amount of tokens (or ETH) will respect expectations, or cancel the trade (with gas fees expen-
diture as the only consequence for the user).

One last piece of the system might present a risk to the user, and that is the behavior of the tokens involved
in the trade. Neither KYBER.NETWORK nor the reserve managers can take responsibility for the behavior of
those tokens, so it is up to the user to establish if the token smart contract can be trusted. This is outside the
scope of this audit, and the user is encouraged to verify the trustworthiness of tokens he wishes to trade, by
reviewing their smart contract code or the related audits.

1.4 Network requirements (partial)
Some points of the specification we checked had issues which we explained in other parts of this report. The
network is under control of an admin, and users should make sure that this admin is actually a multisig that
cannot be compromised by a rogue admin. CHAINSECURITY did not find issues in the following points:

e The network has the ability to list and unlist tokens and exchanges

e getExpectedRate gives correct estimates

e During regular usage, the token and ETH balances are null after a transaction.

ChainSecurity Security Audit Report

1.5 Overflow in reserveFeeToBurn possible E:?I

The FeeBurner contract uses the function handleFees to keep track of reserves’ fee debts. However, through
the unsafe addition reserveFeeToBurn[reserve] += feeToBurn, a reserve can purposefully overflow the
counter to avoid paying fees, for example by trading with itself.

However, since a reserve would need to pay for the gas costs of a lot® of transactions to achieve the
overflow, this is extremely unlikely.

Likelihood: Low

Impact: Low

1.6 Overflow in getImbalance possible ‘ =8 / Acknowledged

In the getImbalance function, the multiplication totalImbalance *= resolution is performed unchecked.
Since the resolution field can be arbitrarily big and totalImbalance can reach 2% —1, overflows are possible.
A check on writing the resolution variable could be introduced to avoid this.

Since the function is only used to retrieve information and in a benevolent case resolution should not be
this big, this is unlikely. But because this function is used in the getRate function, a consequence could be
returning a wrong rate to users.

The same applies to currentBlockImbalance *= resolution.

Likelihood: Low

Impact: Low

Acknowledged: KYBER.NETWORK is aware of this issue.

1.7 Influence of maxDestAmount on chosen conversion rate a v Acknowledged

When trading, a user can specify the maxDestAmount, which signals the maximum amount of output tokens it
aims to receive. In the current design, this amount is only considered after the best rate has been chosen,
therefore the chosen rate can be “incorrect” in different ways:

1. Too low rate due to wrong reserve: The user might receive a smaller rate than possible because the
wrong reserve was chosen due to the non-consideration of maxDestAmount. Example:
e Trade request: 1 ETH — KNC, maxDestAmount = 500 KNCs
e Reserve A: rate = 500, 1000 KNCs
e Reserve B: rate = 1000, 500 KNCs
e Reserve B is chosen, because reserve A has insufficient funds for 1 ETH.

In the example above, reserve B could have offered a better rate.

2. Too low rate due to cached rate: The user might receive a smaller rate than possible due to the influence
of maxDestAmount. Consider the conversion rate of an exchange as shown below:

1,500 ! ! !
optimal point

1,250 -
chosen point
1,000 - -

750 A -
500 - -
250 - -

0 . . :
0 0.5 1 1.5 2

Quantity

Rate

5Assuming a walletFee of 0, maximum reserveFeesInBps, kncPerETHRate and tradeWeiAmount this would be on the order of 1027
transactions.

14 chainsecurity. com

chainsecurity.com

125
126
127
128
129

In case of a trade request for 1 ETH — KNC, maxDestAmount = 500 KNCs, the chosen rate will be 1000,
as the red dot is the chosen point on the curve. Afterwards, only 500 KNCs will be emitted resulting in a
price of 0.5 ETH.

In the optimal case, the green point would have been chosen, as it suffices to exchange 500 KNCs. In
that case the rate would have been 1250 and hence the price would have been 0.4 ETH.

3. Too high rate due to cached rate: In case an exchange exists a reserve which has a (partially) increasing
conversion rate in relation to the exchanged source quantity, then the user can reach a better rate using
maxDestAmount. Consider the conversion rate of an exchange as shown below:

1,500 : : '
chosen point
1,250 -

1,000 - -

750) -
real point
500 - -
250 - -

0 . . :
0 0.5 1 1.5 2

Quantity

Rate

In case of a trade request for 2 ETH — KNC, maxDestAmount = 500 KNCs, the chosen rate will be 1250,
as the red dot is the chosen point on the curve. Afterwards, only 500 KNCs will be emitted resulting in a
price of 0.4 ETH.

In the optimal case, the green point would have been chosen, as it suffices to exchange 500 KNCs. In
that case, the fair rate would have been 750 and hence the price would have been 0.66 ETH.

Hence, the user is able to enforce a higher rate than expected for reserves with a (partially) increasing
conversion rate by making a trade request with a large source amount.

Likelihood: Medium
Impact: Medium

Acknowledged: KYBER.NETWORK is aware of this issue. KYBER.NETWORK will advise the reserves to avoid
the use of increasing exchange rates to omit the third issue. The avoidance of the first two issues is left to
the user and its application. While it cannot be entirely resolved due to the inherent non-atomicity of multiple
blockchain interactions, KYBER.NETWORK will advise applications on how to reduce the effect of this issue.
Finally, improvements with respect to this issue will be made in next version of the project.

1.8 Failing transaction due to rounding issue o v Acknowledged

During the audit, the following code was modified:

require(reportedDestAmount == tradeOutcome.userDeltaDestAmount);
require(tradeOutcome.actualRate >= minConversionRate);

ExecuteTrade(msg.sender, src, dest, tradeOutcome.userDeltaSrcAmount, tradeOutcome.userDeltaDestAmount);
KyberNetworkProxy.sol
This new code can lead to a failure of a valid transaction. To explain, we provide the following example:
e One exchange offers an ETH-KNC rate of 1.1

e A user tries to exchange 300 wei into KNC with a minimum conversion rate of 1.1 and a maximum
destination amount of 218 KNC twei.

e Due to the maximum destination amount, only 199 wei will be exchanged.

e Hence, the actualRate computed for the line above will be % and therefore smaller than the minimum
conversion rate of 1.1.

ChainSecurity Security Audit Report _

e The proxy reverts the transaction.

As the example shows, a satisfiable transaction can fail, due to rounding issues. The likelihood of occur-
rence depends on the frequency with which the maximum destination amount is set and the conversion rates
of the reserves.

Likelihood: Low

Impact: Medium

Acknowledged: KYBER.NETWORK considers that this behaviour is unlikely to occur, based on the previous
usage patterns. Additionally, it will advise integrating application to use slightly lower minimum conversion
rates in order to avoid the issue.

1.9 Locked tokens or ETH R0\ [0} CEITE)

Thanks to the nice design of the Withdrawable contract, any token sent should be retrievable by KYBER.NETWORK,
and sent back to the rightful owner.

Trust Issues

The issues described in this section are not security issues but describe functionality which is not fixed inside
the smart contract and hence requires additional trust into KYBER.NETWORK, including in KYBER.NETWORK
ability to deal with such powers appropriately.

2.1 Wrong require in setMinSlippageFactor can lead to Underflow m
In ExpectedRate.sol, the function setMinSlippageFactor sets the variable minSlippageFactorInBps to the
input bps.

function setMinSlippageFactor(uint bps) public onlyOperator ({
require(minSlippageFactorInBps <= 100 * 100);

MinSlippageFactorSet(bps, minSlippageFactorInBps, msg.sender);
minSlippageFactorInBps = bps;

ExpectedRate.sol

minSlippageFactorInBps must be less than or equal to 10’000, because otherwise the following could cause
an underflow:

minSlippage = ((10000 — minSlippageFactorInBps) * expectedRate) / 10000;
ExpectedRate.sol

The problem is the require in setMinSlippageFactor. It checks whether the old value is less than 10’000,
not whether the new value is less than 10°000. This means that not only can it be set to a large value causing
an underflow, but also because of this require statement, once minSlippageFactorInBps has been set to this
wrong value, it cannot be changed again, effectively breaking the code.

For this issue to arise, the operator would have to make a mistake when using this function, which makes
the whole issue unlikely.

Fixed: The correct require is now in place.

2.2 Additional Proxy Checks possible :w:

As described above, the proxy is supposed to protect the user. For that purpose, the proxy could perform the
following additional checks.

1. Enforce maximum destination amount: The proxy could enforce that no more than the desired maximum
was generated.

2. Check for empty transactions: The proxy currently contains the following checks:

188 require(userDestBalanceAfter >= destBalanceBefore);
189 require(srcBalanceBefore >= userSrcBalanceAfter);
KyberNetworkProxy.sol

In case, if these checks used > instead of >=, they could filter out empty transactions and hence prevent
the subsequent exception through a division by zero, which consumes all of the user’s gas.

16 chainsecurity. com

chainsecurity.com

Fixed: KYBER.NETWORK added additional checks inside the proxy to further protect the user. These checks
also include a check for the maximal destination amount:

194 require(tradeOutcome.userDeltaDestAmount <= maxDestAmount);

KyberNetworkProxy.sol

Design Issues

The points listed here are general recommendations about the design and style of KYBER.NETWORK’s project.
They highlight possible ways for KYBER.NETWORK to further improve the code.

3.1 Capitalization of constants :4 o

Constants should be capitalized. An example violating this convention is the constant public kgtHolderCategory
in the Whitelist contract.

3.2 Specification mismatch :4 &8 v/ Addressed

KYBER.NETWORK listed the following point as a part of the specification:
e When the market deviates more than 12.8% in either direction the base price should be updated.

However this does not hold, since currently price updates only happen manually.

Addressed: The specification has been revised to indicate that the base rate update is manual.

3.3 validateTradeInput should fail by default 0

validateTradeInput checks several conditions, and returns true by default. The other pattern is preferable,
i.e. it is better to fail by default, in case a case has been forgotten in the implementation.

On top of that, given the current use of this function, the function could revert if a bad input is encountered,
rather than returning the corresponding boolean. It would reduce the boilerplate and make the function clearer.

Fixed: The checks are now implemented using a series of require.

3.4 Linter warnings disabled with no explanation m v Addressed

Solhint code complexity warnings are disabled in some functions, and indeed these functions are complex and
would benefit from being split into several internal functions. Warnings should be heeded rather than ignored
in these cases, or at least, further justification should be provided as to why they have been ignored.

This also applies to other patterns that are deactivated in the code.

Addressed: KYBER.NETWORK added comments, where applicable. Some functions could still be split into
several for better readability.

3.5 transferAdminQuickly bypasses sanity checks m v Acknowledged

KYBER.NETWORK has implemented a function to transfer the rights to a new administrator without any check.

/*%
* Q@dev Allows the current admin to set the admin in one tx. Useful initial deployment.
* Q@param newAdmin The address to transfer ownership to.
*/
function transferAdminQuickly(address newAdmin) public onlyAdmin {
require(newAdmin != address(Q));
TransferAdminPending(newAdmin);
AdminClaimed(newAdmin, admin);
admin = newAdmin;

}

Since there is no limit on this function, this can be reused even after initial deployment, which is bound to
happen.

To prevent such a misuse, this function should be removed. Setting the administrator in the initial deploy-
ment can be done through the constructor instead. Even if set manually, this means that only two transactions
have to be done instead of one.

ChainSecurity Security Audit Report

Acknowledged: KYBER.NETWORK acknowledges the issue, but only plans to use the function during deploy-
ment to save several costly multisig transactions. Thereby, KYBER.NETWORK plans can reduce the potential
risk.

3.6 Code consistency

The file PermissionGroups.sol contains both
alertersGroup.length—;
PermissionGroups.sol
and
operatorsGroup.length —= 1;

PermissionGroups.sol

Only one of these forms should occur in the code, to make it more readable.
Another consistency issue arises with if-branches that contain only one statement. KYBER.NETWORK’s
code contains the following:

if (destAddress != (address(this)))
destAddress. transfer (amount);
KyberNetwork.sol
as well as:
if (src == ETH_TOKEN_ADDRESS) {
callValue = amount;
}
KyberNetwork.sol

Only one style should be used, either use curly braces everywhere (recommended), or do not use curly braces
when there is only one statement.

3.7 Inconsistent use of feeAmount in sendFeeToWallet

The sendFeeToWallet function is designed as follows:

125 function sendFeeToWallet(address wallet, address reserve) public {

126 uint feeAmount = reserveFeeToWallet[reserve][wallet];

127 require(feeAmount > 1);

128 reserveFeeToWallet[reserve][wallet] = 1; // leave 1 twei to avoid spikes in gas fee
129 require(knc.transferFrom(reserveKNCWallet [reserve], wallet, feeAmount — 1));

130

131 feePayedPerReserve [reserve] += (feeAmount — 1);

132 SendWalletFees(wallet, reserve, msg.sender);

133 }

FeeBurner.sol

One twei is left inside the fee balance to avoid higher gas prices for the next trader interacting with this
reserve. Therefore, feeAmount - 1 is being transferred. Hence the require should also check feeAmount -
1 which is why the assignment in line 126 could directly be

126 uint feeAmount = reserveFeeToWallet[reserve][wallet] — 1;

to ensure consistency.

Additionally, to avoid the same issue and increase code readability, the burnReserveFees function can set
uint burnAmount t0 reserveFeeToBurn[reserve] - 1 directly, saving writing burnReserveFees - 1 several
times later on.

3.8 Lack of indexed fields in some events ~ FALGUIERLES

Some events do not have any indexed field, although it seems natural that they should have one. Examples
are TokenWithdraw and EtherWithdraw in Withdrawable.sol, but there are others. KYBER.NETWORK should
review all events and make sure that fields are indexed when appropriate.

Acknowledged: KYBER.NETWORK is aware of this issue.

18 chainsecurity. com

chainsecurity.com

3.9 Off-by-one error with MAX_QTY :,,3

Trading exactly MAX_QTY seems to be prohibited by the validation function:

function validateTradelInput(ERC20 src, uint srcAmount, address destAddress) internal view returns(bool) {
if ((srcAmount >= MAX_QTY) || (srcAmount == @) || (destAddress == 0))
return false;

KyberNetwork.sol

However other functions treat this case as a valid one. The tests on getExpectedRate also imply that only
MAX_QTY + 1 is prohibited.

Fixed: Trading exactly MAX_QTY is now possible.

3.10 Assigning to function parameters : v Acknowledged

Assigning to function parameters should be avoided. Two occurences of this can be found in KYBER.NETWORK,
specifically in the ConversionRates contract:

e In the recordImbalance function, the argument rateUpdateBlock is written to.

e In the getRate function the unsigned integer qty is overwritten.

Acknowledged: KYBER.NETWORK is aware of this issue.

3.11 Gas savings possible = FACGIOVIEL [T

In a number of places, a uint is checked for positivity, e.g. uint x > 0. However, in the case of uint, the
check x > 0 is equivalent to x !'= 0, as uint cannot hold negative values. The latter check is significantly
more gas-efficient in both deployment and execution costs and should hence be preferred for gas efficiency.
This would however require more care if KYBER.NETWORK ends up changing the type of these variables to
int rather than the current uint, given that this would make negative values possible.

Fixed: KYBER.NETWORK is aware of this possible optimization.

3.12 Front-running possiblefﬁfi v Acknowledged

As in any marketplace or exchange, users can influence each other’s transactions by design. In particular, in
KYBER.NETWORK users can try to front-run each other in order to receive arbitrage amounts.

In case of a sparse order book, a reserve could front-run major purchase transactions, buy the funds and
directly offer them again at a higher price which results in the chosen minimum conversion rate of the front-run
transaction. Depending on the chosen parameters and the structure of the market, different gains would be
possible in such a behavior.

Acknowledged: KYBER.NETWORK has acknowledged the existence of these issues. As previously, this issue
is inherent to marketplaces and exchanges and was already partially addressed with the minimum conversion
rate.

ChainSecurity Security Audit Report

Recommendations / Suggestions

M In ExpectedRate.sol, the variable name minSlippage is confusing. We would recommend replacing it
with something like expectedWorstCaseSlippageRate.

M In KyberNetworkProxy.sol, a comment says “make sure no overflow”, however, the associated check
prevents an underflow.

M In the contracts, sometimes ETH is referred to as such (e.g. ethAmount) and sometimes (more correctly)
as amount in wei (e.g. tradeWeiAmount). Consistency could aid the general readability.

[J Several unused imports exist in the codebase. Concretely, the FeeBurner contract imports the ERC20Interface,
but does not use it. These imports are unnecessary and misleading.

[The visibility of some functions should be further restrained, so that their use is clearer when reading the
code. In particular, the functions setReasonableDiff and setSanityRates in the SanityRates contract
should be specified as external.

[] Additionally, our testing showed that calling either of these two functions with more than 363 tokens would
result in exceeding the block gas limit® and failure. We recommend to document this for future reserve
managers.

[] getUserCapInTokenWei in KyberNetwork.sol is not implemented, but returns 0. To prevent any misuse,
a assert(false) is more appropriate.

[] Testing revealed that the ConversionRates contract function setBaseRate exceeds a block gas limit of 8
million when called with approximately 180 tokens. This information can be added to the documentation.

(] ETH_TOKEN_ADDRESS could be renamed to ETH_TOKEN given that it is used as an ERC20 token.

(] The VolumeImbalance contract defines two structs TokenControlInfo and TokenImbalanceData. The
fields of these structs could be restricted to smaller uint sizes, to avoid overflows as mentioned in the
issues and save on storage and gas.

M The variable buy is defined twice inside the KyberReserve contract, once as a bool indicating the trade
direction, in the getConversionRate function, and once as an int in the doTrade function, denoting
the signed trade amount. For consistency and better readability, we recommend to rename one of the
variables, e.g. to tradeVolume for the integer version.

] Unnecessary type conversions are introduced in the VolumeImbalance contract. In the addImbalance
function, the argument uint currentBlock is passed and again cast to uint a few lines later. The same
applies to the int buyAmount argument.

[] In the KyberReserve contract, doTrade function, a boolean parameter validate allows to skip some
require statements, presumably to save gas on duplicate checks. These savings are rather small and the
code could be simplified by just verifying twice, which is less error-prone.

[Basic rate steps (bps variables) are by design limited to 100 * 100. KYBER.NETWORK could use a more
systematic check on these variables, in the current state there is little consistency between the various
checks.

M The KyberNetworkInterface could be an interface instead of a contract.

M A user can convert from currency T to T, even when T is ETH. This seems to offer little benefit, and
KYBER.NETWORK has to handle this case separately, rather than just checking assert (src != dst).

6 Assuming an 8 million limit.

20 chainsecurity. com

chainsecurity.com

Users might be tricked in case extra events are added

Currently, KYBER.NETWORK emits no events which contain the destination address of the trade. If such events
would be added in the future, recipients could be tricked in the following way.

In case a KYBER.NETWORK user B is awaiting the payment for another KYBER.NETWORK user A and there-
fore monitors the NewTrade event which signals completed trades, then B can be tricked.

The attack scenario is as follows:

e B awaits a payment of 10 KNCs from A
e Ais areserve for KNCs
e Aninnocent user C happens to make a KYBER.NETWORK transaction, aiming to transfer 10 KNCs to A

A can use its privileged role as an exchange to perform the following attack:

Attacker &
Reserve
c Kyber.Network A Kyber.Network
yber.Networ (Reserve) vber.Networ

trade

: trade : :
1 ETH, KNC, -> B= : >~ 1ETH : :
I0KNC->B | trade !
1 ETH, KNC, -> B_ | Network
P performs
regular
trade

NewTrade(A, B, 1 ETH, 10 KNC)

/

A

a
Y] 1

NewTrade(C, B, 1 ETH, 10 KNC)

_—

A

e A receives the 1 ETH paid by C

e Ausesthe 1 ETH to issue a new trade inside the Kyber.Network

e The trade is performed regularly and the event NewTrade (A,B,1 ETH, 10 KNC) is emitted
= B thinks that it received a payment from A, but A has used no funds.

e The original trade is completed and the event NewTrade(C,B,1 ETH, 10 KNC) is emitted

= B thinks that it received a payment from C

This might happen to merchants which expect to receive multiple payments. It could also used by clients to
“double-spend” against such a merchant. If, in the example above, A and C are controlled by the same entity,

they can make two payment at once.
C CHAINSECL

ChainSecurity Security Audit Report

Disclaimer

UPON REQUEST BY KYBER.NETWORK, CHAINSECURITY LTD. AGREES MAKING THIS AUDIT RE-
PORT PUBLIC. THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESEN-
TATIONS AND WARRANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY FOR
DAMAGE ARISING OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF THIS
REPORT REMAINS WITH CHAINSECURITY LTD..

chainsecurity. com

chainsecurity.com

	Foreword
	Executive Summary
	System Overview
	Order Book Matching

	Trust Model
	User Perspective
	Reserve Perspective
	Network Perspective

	Audit Overview
	Scope of the Audit
	Depth of Audit
	Terminology

	Scope
	Included in the scope

	Limitations
	Details of the Findings
	Security Issues
	Kyber Reserve push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Volume Imbalance push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	User requirements push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Network requirements (partial) push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Overflow in reserveFeeToBurn possible repla
	Overflow in getImbalance possible repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Influence of maxDestAmount on chosen conversion rate replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Failing transaction due to rounding issue replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Locked tokens or ETH push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Trust Issues
	Wrong require in setMinSlippageFactor can lead to Underflow replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Additional Proxy Checks possible repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Design Issues
	Capitalization of constants repla
	Specification mismatch repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	validateTradeInput should fail by default replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Linter warnings disabled with no explanation replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	transferAdminQuickly bypasses sanity checks replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Code consistency repla
	Inconsistent use of feeAmount in sendFeeToWallet repla
	Lack of indexed fields in some events repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Off-by-one error with MAX_QTY repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Assigning to function parameters repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Gas savings possible repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Front-running possible repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Recommendations / Suggestions
	Disclaimer

