

PUBLIC

Code Assessment

of the Kernel

Smart Contracts

December 2, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Informational 17

8 Notes 19

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Kernel DAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Kernel according to Scope to
support you in forming an opinion on their security risks.

Kernel DAO provides a token staking system that manages user assets within designated vaults. The
contracts are upgradeable and form the basis for the development of a restaking protocol that Kernel
DAO ultimately plans to implement.

The most critical subjects covered in our audit are integration with external protocols, DoS possibilities
and functional correctness. The general subjects covered are upgradeability, gas efficiency and event
emissions.

The most significant findings Broken clisBNB withdrawals and DoS by Donation have been corrected
through code correction.

In summary, we find that the codebase provides a good level of security.

Moreover, we would like to highlight that it is necessary to make the assumptions described in Integration
with Lista DAO to reliably integrate with the Lista DAO protocol. Failure to meet these assumptions could
put Kernel user funds at risk.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 0

Low -Severity Findings 4

• Code Corrected 4

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Kernel smart contract repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

Private Repository

V Date Commit Hash Note

1 19 Nov
2024

2e6827284f1d7cac163764e9759c3192bf8b5f0f v0.2 - Initial Version

2 27 Nov
2024

6c4ae16de4a6b39c3c368c825df9390356075c8f v0.3 - Unsupport clisBNB

3 27 Nov
2024

f76f7acd0b06e136b1ab6783602606f71e929b1a v0.4 - Base fixes

4 27 Nov
2024

560dc92fc7f63097c6c040da4703686889b756d4 v0.5 - Revised clisBNB

5 2 Dec 2024 dc57adb4ddf31a147461793c8e92dbcbcd573e13 v0.6 - DoS corrections

Public Repository

V Date Commit Hash Note

1 19 Nov
2024

2e6827284f1d7cac163764e9759c3192bf8b5f0f v0.2 - Initial Version

2 27 Nov
2024

6c4ae16de4a6b39c3c368c825df9390356075c8f v0.3 - Unsupport clisBNB

3 27 Nov
2024

f76f7acd0b06e136b1ab6783602606f71e929b1a v0.4 - Base fixes

4 27 Nov
2024

560dc92fc7f63097c6c040da4703686889b756d4 v0.5 - Revised clisBNB

5 2 Dec 2024 dc57adb4ddf31a147461793c8e92dbcbcd573e13 v0.6 - DoS corrections

For the solidity smart contracts, the compiler version 0.8.28 was chosen.

The files in scope were:

src/
 AssetRegistry.sol
 AssetRegistryStorage.sol
 HasConfigUpgradeable.sol
 KernelConfig.sol
 KernelConfigStorage.sol
 KernelVault.sol
 KernelVaultStorage.sol
 StakerGateway.sol

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 5

https://github.com/Kelp-DAO/kernel-smart-contracts-public/tree/2e6827284f1d7cac163764e9759c3192bf8b5f0f
https://github.com/Kelp-DAO/kernel-smart-contracts-public/tree/6c4ae16de4a6b39c3c368c825df9390356075c8f
https://github.com/Kelp-DAO/kernel-smart-contracts-public/tree/f76f7acd0b06e136b1ab6783602606f71e929b1a
https://github.com/Kelp-DAO/kernel-smart-contracts-public/tree/560dc92fc7f63097c6c040da4703686889b756d4
https://github.com/Kelp-DAO/kernel-smart-contracts-public/tree/dc57adb4ddf31a147461793c8e92dbcbcd573e13
https://chainsecurity.com

 StakerGatewayStorage.sol
 interfaces/
 IAssetRegistry.sol
 IHasConfigUpgradeable.sol
 IHasVersion.sol
 IHelioProvider.sol
 IKernelConfig.sol
 IKernelVault.sol
 IStakerGateway.sol
 IWBNB.sol
 libraries/
 AddressHelper.sol

2.1.1 Excluded from scope
All other files are out of scope. Other contracts of Kernel DAO are out-of-scope. Lista DAO contracts are
out of scope. We limit the review of the integration according to our understanding and our assumption
described in Integration with Lista DAO. We expect tokens to be regular BEP-20 tokens (no special
behaviour). Also, see Supported Tokens. Also, see Roles and Trust Model.

2.2 System Overview
Version 5This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Kernel DAO implements Kernel which is a token staking system on BSC (Binance Smart Chain) that
allocates assets to respective vaults. Currently, only deposits and withdrawals are supported without
other special staking-related functionality. Note that Kernel DAO aims to use the implemented contracts
as the foundation for future development of a comprehensive restaking protocol.

Kernel Config. The KernelConfig serves as a central data store for addresses and implements
access control features as well as protocol-wide pausing options.

KernelConfig.setAddress() maps a name to an address. The function is callable by the
DEFAULT_ADMIN_ROLE. Once a name has been assigned an address, the address for the name cannot
be modified. The allowed names are listed below along with the expected values. Each address has a
corresponding getter function to retrieve the address.

• ASSET_REGISTRY: The expected address is AssetRegistry.

• CLIS_BNB: The expected address is Lista DAO's clisBNB token.

• HELIO_PROVIDER: The expected address is Lista DAO's Helio Provider.

• STAKER_GATEWAY: The expected address is StakerGateway.

• WBNB_CONTRACT: The expected address is Wrapped BNB (WBNB).

Note that the getters may return 0x0 if the name has not been mapped.

KernelConfig.pauseFunctionality() and KernelConfig.unpauseFunctionality() pause
and unpause a set of functions in the protocol. ROLE_PAUSER and DEFAULT_ADMIN_ROLE can pause
and unpause, respectively. Only the functionality-sets below can be paused and unpaused.

• VAULTS_DEPOSIT: Defines whether vault deposits are paused (KernelVault.deposit()).

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• VAULTS_WITHDRAW: Defines whether vault withdrawals are paused (KernelVault.withdraw()).

• PROTOCOL: Defines whether all functionality sets are paused. At the time of writing, that includes the
deposits and withdrawals.

Getters for retrieving the pausing state are provided along with functions that allow enforcing that certain
functionalities are not paused.

Similarly, access control can be enforced. Note that access control is inherited from
AccessControlUpgradeable. For details and considerations, see Roles and Trust Model.

Asset Registry. The AssetRegistry serves as a central data store for mapping assets to vaults which
correspond to KernelVault contracts.

AssetRegistry.addAsset() and AssetRegistry.removeAsset() add and remove support for
an asset. More specifically, adding an asset takes a vault as an argument and maps the vault to its asset
while tracking the asset. Removing an asset undoes the operation. There can only exist one vault per
asset type. Note that respective getters are provided. Further, the asset registry wraps certain vault
getters.

Kernel Vault. A KernelVault holds the tokens of an asset and keeps track of the users' balances.

KernelVault.setDepositLimit() sets a deposit limit for the vault. More specifically, this limits only
new deposits. The function is only callable by ROLE_MANAGER. Note that the corresponding getter for
retrieving the deposit limit is provided.

KernelVault.deposit() and KernelVault.withdraw() mint and burn the vault shares (1:1 to
deposit/withdraw amounts; not a BEP-20 token). Both can only be called by the staker gateway and
respect the corresponding pausing. More specifically, depositing computes a balance delta and mints the
delta as shares to a given user. Withdrawing deducts the burned shares from the user and, if the staker
gateway's operation requires, gives approval to the staker gateway. Additionally, the total balance of
tokens deposited into a vault is tracked internally and kept in storage. Getters for the accounting, the
vault balance and the ERC20 token balance are provided.

StakerGateway. The StakerGateway commands the KernelVault.deposit() and
KernelVault.withdraw() functions to support staking and unstaking tokens.

Generally, staking and unstaking operations call KernelVault.deposit() and
KernelVault.withdraw(). The functions below mainly differ in how the funds are moved to and from
the vault due to differences in the staked assets. The staking functions available are the following:

• Regular BEP-20 tokens: StakerGateway.stake() moves the asset from the user to the vault.
StakerGateway.unstake() withdraws from the vault and forces an approval so that the asset
can be moved from the vault to the user.

• Native token (native BNB): StakerGateway.stakeNative() and
StakerGateway.unstakeNative() perform the same operations as the corresponding functions
for the BEP-20 tokens but additionally wrap and unwrap WBNB.

• Lista DAO's clisBNB: StakerGateway.stakeClisBNB() calls Lista DAO's Helio Provider's
HelioProviderV2.provide() function to mint clisBNB to the vault with the native BNB provided
and deposits to the vault. StakerGateway.unstakeClisBNB() calls
HelioProviderV2.release() to burn the clisBNB and receive the underlying BNB in a
potentially asynchronous manner.

Note that the following assumptions for Integration with Lista DAO must hold in order for users to retrieve
their funds successfully.

2.2.1 Roles and Trust Model
The following roles are defined:

• ROLE_MANAGER: Partially trusted. Expected to set reasonable deposit limits.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• ROLE_PAUSER: Partially trusted. Expected to not pause the protocol unnecessarily.

• ROLE_UPGRADER. Fully trusted. Can upgrade contracts to steal funds. Could upgrade contracts to
remove the DEFAULT_ADMIN_ROLE role's privileges and take over the governance.

• DEFAULT_ADMIN_ROLE: Fully trusted. Can set roles and unpause.

Other roles are:

• System contracts: Expected to be the reviewed contracts. Deviations might break the system.

• Tokens: Expected to be trusted and regular BEP-20 tokens (e.g. non-rebasing). Malfunctioning
tokens may break the system for the given token.

• Lista DAO: Expected to work as documented. Malfunctioning might break the integration with Lista
DAO.

• Users: Users are untrusted.

Note that the protocol is fully upgradeable.

2.2.2 Changes
Version 2In , the clisBNB integration was removed, resolving all notes and issues related to the

integration.

Version 3In , all issues besides DoS by Donation are resolved.

Version 4 Version 2In , the clisBNB integration was readded. Note that the issues removed in have been
resolved through code correction.

Version 5In , a total supply field has been added to the vaults to resolve DoS by Donation.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedBroken clisBNB Withdrawals

Medium -Severity Findings 0

Low -Severity Findings 4

• Code CorrectedDoS by Donation

• Code CorrectedIncorrect Event Emissions

• Code CorrectedInefficient Array Operation

• Code CorrectedPause Getters Not Considering Protocol Pause

Informational Findings 3

• Code CorrectedLack of Events

• Code CorrectedNo Constants Used for Strings

• Code CorrectedStyle Choices

6.1 Broken clisBNB Withdrawals
Correctness High Version 1 Code Corrected

CS-KRNL-011

The clisBNB integration of the staker gateway breaks if insufficient funds are present in Lista DAO's
master vault. Ultimately, users will not be able to unstake their funds.

For context, the unstaking process can be described as follows:

1. clisBNB is unstaked through the StakerGateway. The respective amount of Kernel vault shares
are withdrawn.

2. HelioProviderV2.release() is called. This essentially burns the clisBNB and performs some
other accounting actions on the Interactions contract. Then, the
MasterVault.withdrawETH() function is called to unlock the capital in the master vault.

3. The master vault attempts to unlock funds according to the request. If the held BNB balance is
insufficient, strategy withdrawals for the remaining amount will be performed to give sufficient funds
to the account (staker gateway in this context).

Note that strategies not necessarily transfer the native token. Consider this strategy which has a delayed
withdrawal due to staking requirements.

Hence, two issues arise:

1. The staker gateway cannot handle such behaviour. As a result users will not receive funds.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 12

https://github.com/lista-dao/lista-dao-contracts/blob/master/contracts/strategy/SnBnbYieldConverterStrategy.sol
https://chainsecurity.com

2. The returned amount by the HelioProviderV2 will specify the amount unlocked, not the amount
transferred. Thus, trying to transfer the returned bnbAmount will lead to reverts leading to a DoS of
users.

Ultimately, the integration with clisBNB is broken and will lead to a loss of funds.

Code corrected:

Version 1

Version 2 Version 4 Version 1

Note that the clisBNB staking functionality was originally included in , temporarily removed in
, and finally reintroduced in with all issues from resolved as described in the

following.

Kernel DAO modifies the code so that unstaking clisBNB no longer specifies the StakerGateway as the
recipient of funds on the Helio Provider. Instead, the final fund recipient is specified. As a consequence
the user is now responsible for handling the pending withdrawals (stake withdrawals) as well as for
receiving native token transfers from Lista DAO.

Note that the BNB amount emitted by the AssetUnstaked event in unstakeClisBNB may still be
incorrect. Specifically, it will overvalue the unstaked amount in case Lista DAO's mastervault does not
hold sufficient funds.

6.2 DoS by Donation
Correctness Low Version 1 Code Corrected

CS-KRNL-001

Two DoS possibilities exist due to the possibility to donate to the vault.

First, AssetRegistry.removeAsset() can be DoSed with donations. Namely, the zero-balance
could never succeed if a user decides to donate a single wei to the vault.

Second, deposits can be DoSed. Namely, if funds are donated such that the held balance exceeds the
deposit limit, all deposits will fail. Ultimately, that could be used as a gas griefing attack vector on users.

Note that for clisBNB, a DoS attack can be performed at no cost as the attacker can withdraw funds at
any point in time. More specifically, this is possible through an external user delegating to the vault from
their account via the Helio Provider.

Ultimately, important functionality could be DoSed.

Code corrected:

Kernel DAO resolves the issue by internally tracking the vault's total balance. Upon deposit, the deposit
limit is checked against the internal accounting.

6.3 Incorrect Event Emissions
Correctness Low Version 1 Code Corrected

CS-KRNL-006

The StakerGateway emits AssetStaked when assets are staked. However, the emitted
AssetStaked.amount is emitted inconsistently:

• stakeClisBNB(): Emits the minted vault shares which are equal to the balance delta in the vault.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

• stake(): Emits the input amount but not the minted shares (balance delta in the vault). However,
the values might not be equal, given that tokens with fees are supported.

• stakeNative(): Emits the msg.value which is equal to the balance delta.

Ultimately, for stake() the emitted amount could be wrong if tokens with fees are used. Similarly, the
emitted amount could be wrong if during a callback tokens are additionally donated to the vault contract.

Note that, if for AssetUnstaked the emitted amount correspond to the amount to transfer, no issue
arises. However, if the emitted amount should correspond to the burned shares, unstakeClisBNB()
will emit a wrong amount.

Code corrected:

Note that the issue has been corrected. Namely, the vault now returns the deposited balance delta which
is emitted in the event.

6.4 Inefficient Array Operation
Design Low Version 1 Code Corrected

CS-KRNL-007

In AssetRegistry, pushing items to an array and removing items from it is performed in an extremely
inefficient manner.

An asset is pushed as follows:

1. The full storage array is copied to memory. (n+1 SLOAD operations)

2. A new memory array is created that has one more element.

3. The array from 1 is copied in memory to the array of 2. The new element is put into the last position.

4. The full new array is stored in storage. (n+2 SSTORE operations)

This will already cost at least 2100 * n+1 gas. At 50 assets this will amount for over 100_000 gas. In
contrast, push() could be used which would only need 2 storage writes which will cost less than 5000
gas.

Similarly, the removal of items is as inefficient and could be optimized by swapping the item to remove
with the last item and calling pop() on the array.

Code corrected:

Now, regular push operations on array are used. Also, the removal has been optimized.

6.5 Pause Getters Not Considering Protocol
Pause
Correctness Low Version 1 Code Corrected

CS-KRNL-005

The functions KernelConfig.isFunctionalityPaused() does not consider whether the protocol is
paused. Hence, if the protocol is paused, the getter will return false. Note that the
requireFunctionalityVault*() functions consider the protocol-wide pausing.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Ultimately, the protocol pause should be considered in isFunctionalityPaused(), too.

Code corrected:

The code has been adjusted to support querying in two modes. Namely, users can specify whether
protocol-wide pauses should be included.

6.6 Lack of Events
Informational Version 1 Code Corrected

CS-KRNL-008

Events can help off-chain information retrieve on-chain data more easily. However, some functions do
not emit events appropriately. Below is a list of such functions:

1. KernelVault.setDepositLimit(): Deposit limit changes can not be retrieved by events.

2. KernelConfig.pauseFunctionality() and KernelConfig.unpauseFunctionality():
The set paused state including the paused functionality could be emitted.

Code corrected:

The events are now emitted.

6.7 No Constants Used for Strings
Informational Version 1 Code Corrected

CS-KRNL-009

Strings are always typed out. Typically, using constants for strings can make code less error-prone (e.g.
typos). For example, _getAddress("ASSET_REGISTRY"); could be replaced by an expression
_getAddress(STR_ASSET_REGISTRY);.

Code corrected:

The code has been adjusted accordingly.

6.8 Style Choices
Informational Version 1 Code Corrected

CS-KRNL-010

1. StakerGateway.getVault() returns address(_getVaultForAssetAddress(asset))
which includes double-casting. The internal function _getVaultAddressForAssetAddress()
could be used directly. The current implementation leads to unnecessary nesting.

2. StakerGateway._stake() casts the address asset to address. Ultimately, the cast is
redundant. Similarly, KernelVault.getAsset() casts an address to address.

3. Often, the custom errors encode a string with string.concat. For example, the
KernelVault.deposit() could revert with signature IKernelVault.DepositFailed. In

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

one occurrence, integers are encoded to strings, making the code slightly more inefficient. Further,
these error messages might be harder to parse. For example,

DepositLimitExceed(depositAmount, depositLimit, previousBalance)

could be easier to parse by front-ends compared to

DepositFailed(
 string.concat(
 "Unable to deposit an amount of ",
 Strings.toString(depositAmount),
 ": limit of ",
 Strings.toString(depositLimit),
 " exceeded"
)
)

Code corrected:

The below list elaborates on which style changes have been applied.

1. Applied.

2. Applied.

3. Partially applied. Note that on several occasions the same pattern is used. Namely, that is for
IKernelConfig.NotStored, IKernelConfig.InvalidArgument,
IKernelVault.DepositFailed, IKernelVault.WithdrawFailed,
IStakerGateway.InvalidArgument and IStakerGateway.UnstakeFailed. Note that for
the usage of these, the way of reverting should be sufficient.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Floating Pragma
Informational Version 1 Acknowledged

CS-KRNL-002

The contracts use a floating solidity pragma: ^0.8.28. Contracts should be deployed with the same
compiler version and flags that have been used during testing and audit. Locking the pragma helps to
ensure that contracts do not accidentally get deployed using, for example, an outdated compiler version
that might introduce bugs that affect the contract system negatively.

Note that for interfaces a less restrictive version could be used so that third-parties can easily reuse the
interfaces. Similarly, for libraries keeping the floating pragma could be useful if the library is designed to
be used across a wider range of contracts.

Acknowledged:

Kernel DAO acknowledges the issue and does not fix the compiler version.

7.2 Gas Inefficiencies
Informational Version 1 Code Partially Corrected

CS-KRNL-003

Some operations consume more gas than necessary. Below is a non-exhaustive list of gas inefficiencies:

1. No immutable variables are used. The KernelConfig serves as a data store for important
addresses. The mapping cannot be changed. Contracts such as the StakerGateway could
leverage this immutability to retrieve the needed addresses on deployment of the implementation
contract to reduce gas cost of executions. For example, StakerGateway would not need to
always query the KernelConfig. Calls and storage reads could be saved.

2. Further, HasConfigUpgradeable.configAddress could be set as an immutable, given that
the configuration address cannot change and is always the same.

3. KernelVault.withdraw() retrieves the staker gateway. However, given that msg.sender
must be the staker gateway, msg.sender could be used to save gas.

4. In KernelVault.deposit() the current balance of the vault could be cached instead of making
multiple calls to _balance().

Code partially corrected:

Some optimizations have been applied. See the list below:

1. Not applied.

2. Not applied.

3. Applied. msg.sender is now used.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

4. Applied. The value is now cached.

7.3 Pausing State Machine
Informational Version 1 Acknowledged

CS-KRNL-004

The KernelConfig.pauseFunctionality() and the
KernelConfig.unpauseFunctionality() do not validate whether the state is already paused and
unpaused. Hence, pausing the same functionality twice in a row is possible. Ultimately, this is
inconsistent with for example the asset registries adding and removing of assets where only added
assets could be removed.

Acknowledged:

Kernel DAO acknowledges the issue but has decided not to make changes to the code.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Considerations for clisBNB Withdrawals
Note Version 4

To resolve Broken clisBNB withdrawals, the user is specified as the recipient of funds when redeeming
clisBNB. Given that funds will potentially be staked, the responsibility of fully handling withdrawals is
given to the user.

Hence, users should be aware that redeeming their clisBNB vault shares might lead to incomplete
withdrawals in native tokens. As a consequence, users should monitor their pending withdrawals in Lista
DAO's master vault.

8.2 Deposit Limit
Note Version 1

Users and governance should be aware that the deposit limit is enforced softly. Namely, the deposit limit
only applies to new deposits. However, it could be violated if the deposit limit is reduced below the
current supply.

8.3 Depositing to KernelVaults With Paused
Withdrawal
Note Version 1

Users should be aware that contracts are pausable. Note that withdrawals can be paused while deposits
could still be allowed. As a result, the deposited funds could be locked until the DEFAULT_ADMIN_ROLE
unpauses withdrawals.

8.4 DoS by clisBNB Minimum Withdrawal
Amounts
Note Version 1

Users depositing into the clisBNB vault could be DoSed by the minimum withdrawal amounts required by
the Lista DAO contracts. Namely, the following check

require(
 amount >= minumumUnstake,
 "value must be greater than min unstake amount"
);

in the Helio Provider could trigger reverts for users.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

However, unless Lista DAO sets very high minima, users should be able to top-up by depositing first.
Interestingly, the deposits do not enforce any minimums.

Thus, governance and users should be aware of this and act accordingly.

8.5 Initializers
Note Version 1

The contracts are deployed by EOAs (no factories) and are expected to be initialized when deploying the
proxies. Namely, that is expected to happen directly in the constructor of the proxies by passing the
respective _data. See the ERC1997 implementation for reference.

8.6 Integration With Lista DAO
Note Version 1

The staker gateway integrates with Lista DAO's HelioProviderV2 contract to enable users to deposit
into a clisBNB Kernel vault. Below we give an overview of our understanding of ListaDAO. Given the lack
of documentation, we limit the assessment according to that understanding.

Overview. The BNB provided to the Helio Provider will be deposited in the Lista DAO masterVault to
follow yield earning strategies returning master vault shares (called MasterVault.vaultToken and
HelioProviderV2._ceToken) that will be deposited as collateral to the Lista DAO CDP system as
collateral on behalf of an account (through the _dao contract). In the context of the StakerGateway,
that account will be StakerGateway, giving it the rights to claim the underlying collateral. Note that
withdrawing is thus 1:1 with the deposited BNB (excluding fees).

Note that the yield generated is not distributed among the MasterVault depositors (and thus not
among the HelioProviderV2 depositors). However, collateral providers can be rewarded by airdrops
and similar mechanisms. Such rewards can be delegated to another address.

clisBNB is a non-transferable token, representing such delegations. In the context of StakerGateway,
the delegatee will be the respective vault.

Assumptions. For users of the clisBNB KernelVault to be able to correctly receive their share of BNB
upon unstaking, we must assume the following:

1. The ink and gem balances generated through the _dao contract will always be sufficient to handle
withdrawals. Ultimately, it is expected that a
_dao.deposit(stakerGateway, _ceToken, amount) implies that
_dao.withdraw(stakerVault, _ceToken, amount) is possible.

2. Similarly, the _ceToken escrowed in the respective gem join adapter should be sufficient to cover
all other logic.

3. Ultimately, that implies that liquidations and any other mechanisms cannot impact what was
deposited.

4. Accordingly, the balance of clisBNB tokens held by the clisBNB KernelVault cannot decrease
unexpectedly.

5. It is expected that the MasterVault will return amounts accordingly. Note that there is no
enforcement that strategies will return the expected amount of funds.

uint256 value = IBaseStrategy(strategy).withdraw(recipient, amount);
require(
 value <= amount,

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

 "invalid withdrawn amount"
);

For example, strategies could return zero. That is not expected and should never occur. value
should always be as close as possible to the desired amount.

8.7 Rewards Unsupported
Note Version 1

According to Kernel DAO, clisBNB may be eligible for rewards and airdrops. Kernel DAO specified that
not being able to retrieve such rewards immediately is intended and by design.

Note that future upgrades could change that.

8.8 StakerGateway May Receive BNB From Users
Note Version 1

The enableNativeTokenReceive modifier is used in order to ensure that the StakerGateway can
only receive native BNB tokens from the WBNB contract. However, any user of the system may still
transfer BNB to the staker gateway contract. Consider the options below:

1. During the low level call to msg.sender in StakerGateway.unstakeNative(), native token
transfers are possible. BNB that is transferred to the staker gateway contract through this path can
not be retrieved and will be stuck.

2. Similarly, with selfdestruct the gateway could receive funds.

Ultimately, the check is not always effective.

8.9 Supported Tokens
Note Version 1

Governance and users should be aware that not all tokens are supported. While generally, the protocol
supports BEP-20 tokens, considerations are to be made for similar token types. Below is a
(non-exhaustive) list of considerations:

1. Not all standard ERC-20 tokens are supported. Namely, ERC-20 (unlike BEP-20) does not enforce
the existence of the decimals() function that is used during the initialization of vaults.

2. Tokens with fees deducting the fee amount from the sent amount are supported. However, tokens
with fees topping up the transfer amount are unsupported.

3. Rebasing tokens are unsupported.

4. Reentrant tokens are generally supported (e.g. ERC-777). However, scenarios exist where
reentrancy into governance functionality during KernelVault.stake() might lead to deposits to
a vault that has been removed from the asset registry (stake and during a callback change the vault
in the asset registry).

5. Tokens with blocklists might DoS a vault or its users for certain tokens.

Note that any future upgrade might affect the supported tokens.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

8.10 Vault Removal
Note Version 1

An asset, and consequently a vault, can only be removed from the system if all users have fully
withdrawn their funds, resulting in a vault.totalBalance of 0. This scenario is unlikely, meaning
assets added to the staking system will likely remain supported indefinitely.

Kernel DAO - Kernel - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Roles and Trust Model
	2.2.2 Changes

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Broken clisBNB Withdrawals
	6.2 DoS by Donation
	6.3 Incorrect Event Emissions
	6.4 Inefficient Array Operation
	6.5 Pause Getters Not Considering Protocol Pause
	6.6 Lack of Events
	6.7 No Constants Used for Strings
	6.8 Style Choices

	7 Informational
	7.1 Floating Pragma
	7.2 Gas Inefficiencies
	7.3 Pausing State Machine

	8 Notes
	8.1 Considerations for clisBNB Withdrawals
	8.2 Deposit Limit
	8.3 Depositing to KernelVaults With Paused Withdrawal
	8.4 DoS by clisBNB Minimum Withdrawal Amounts
	8.5 Initializers
	8.6 Integration With Lista DAO
	8.7 Rewards Unsupported
	8.8 StakerGateway May Receive BNB From Users
	8.9 Supported Tokens
	8.10 Vault Removal

