PUBLIC

IExec Security Audit

of PoCo Smart Contracts

May 16, 2018

Produced for

iexec

Table Of Content

1 Foreword 1
2 Executive Summary e 1
3 SCOPE . . o 2
3.1 Included inthe scope 2
3.1.1 Rewards and penalties e 2

B.1.2 SGX . 2

3.1.3 Misbehavingworkers e 2

3.1.4 Misbehaving schedulers e 3

3.1.5 Misbehaving users e 3

3.1.6 Marketplace e 3

3.1.7 Miscellaneous 3

3.2 OUutofSCOPE . . . o o 4

4 System OVEeIrVIEW e 5
4.1 Actorsand Components e e 5

5 Audit Overview 6
5.1 Scopeofthe Audit 6
5.2 Depthof Audit. 6
5.3 Terminology o 6

6 Limitations 8
7 Detailsofthe Findings e 9
7.1 Security ISSUES L L e 9
7.1.1 Worker rewards and penalties RZINCIEEVEY L 9

7.1.2 Scheduler can manipulate its reward percentage o 11

7.1.3 Scheduler can unfairly obtain kitty rewards m 11

7.1.4 Worker exploitation by scheduler RZIN[SRERER 11

ChainSecurity Security Audit Report

7.1.5 Marketplace FZINOREEEY 12

7.1.6 Misbehaving market participant can obtain or delay results o 12
7.1.7 Workers can be forced into pools :: 12
7.1.8 Consensus Auditability FINCIEEEY 12
7.1.9 Workers can circumvent single-pool limitation 0 13

7.1.10 Result without Payment 0 13

7.1.11 Joining and leaving a pool PAINREENEY 13
7.1.12 Arbitrary Contracts Are Trusted e 14

7.1.13 The worker score system can be gamed 0 v/ Addressed | 14

7.1.14 Caching scores makes them outdated ‘ v Addressed || 15
7.1.15 Requirements on the result space are not documented m v Addressed [EREREN 15
7.1.16 Correctness of the log function [NEHIIEE - - - - - -« -« v oo 15
7.1.17 No freshness when submitting results 5:55 v/ Address el | 15
7.2 TrustIssues e 16
7.2.1 Scheduler has indisputable decision power 0 16
7.2.2 Scheduler is incentivized to maximize the number of workers m 16

Bl / Addressed | 16

7.2.3 SGX-Related Trust Issues |

8 Recommendations/Suggestions e 18
9 Open QUESioNS e 20
10 Disclaimer e e e e 21

chainsecurity. com

chainsecurity.com

Foreword

We first and foremost thank IEXEC for giving us the opportunity to audit their smart contracts. This documents
outlines our methodology, limitations, and results.

— ChainSecurity

Executive Summary

The IEXEC smart contracts constituting the PROOF-OF-CONTRIBUTION protocol have been analyzed under the
agreed upon specification, with different tools for automated security analysis of Ethereum smart contracts and
manual review. The issues listed in this report result from CHAINSECURITY’s verification of this specification
and should not be considered exhaustive.

While we found that IEXEC employs good coding practices and has clean, well-documented code, the current
PROOF-OF-CONTRIBUTION implementation has a model that places trust in external contracts and key roles,
introducing several issues.

ChainSecurity Security Audit Report

Scope

IEXEC requested a precisely scoped audit, meant to assess the technical foundation of IEXEC’s project in its
current state, rather than establish its security soundness in the context of an actual deployment.

To define this scope, CHAINSECURITY listed potential points of failure and agreed with IEXEC upon them.

Issues that have been encountered while verifying this specification have been listed, even when they
were not explicitly mentioned in the specification. However, this list should not be considered exhaustive with
respect to the security of IEXEC’s smart contracts, due to the restricted nature of this audit. In particular,
CHAINSECURITY does not claim to have spent the effort required to fully audit such a project to the extent
it deserves; rather, CHAINSECURITY strived to verify the points listed below, to provide a report which could
serve as potential guidelines in the future, and to prepare for full audits to be carried out before the final release
and deployment.

Included in the scope

Rewards and penalties

CHAINSECURITY has checked whether the following reward and penalty situations are correctly enforced.

Worker rewards and penalties
e No contribution, consensus: no penalty
e Wrong contribution: stake seized, loss of reputation
e Correct contribution, doesn’t reveal, someone else revealed: penalized as when result is wrong

e Correct contribution, doesn’t reveal, nobody revealed, Consensus is reopened: workers are punished
(seized in finalizeWork) and excluded from the newly opened consensus.

Correct contribution, doesn’t reveal, nobody revealed, Consensus is not reopened: stake is unlocked
when failed consensus is reclaimed

Correct result, reveals result: stake unlocked, contribution reward, reputation gain

Contribution, no consensus: no direct consequences, unlocked stake after timeout

No contribution, consensus timeout: no penalty

Furthermore, CHAINSECURITY has studied the optimal strategy for an adversary with regards to the worker
rewards, e.g. should the adversary use one or multiple accounts. This also includes whether worker rewards
are proportional to their consensus weight.
Scheduler rewards and penalties

e Scheduler receives a correct percentage of the reward if consensus is achieved.

e Scheduler cannot significantly influence its reward by choosing the workers so that there is a big residue.
SGX

e The contracts correctly check whether the provided challenge was resolved.

e A potential bonus is only given if the challenge was resolved correctly.

Misbehaving workers

e Workers are required to commit a (possibly null) security deposit (stake) which is seized in case of bad
behavior. A deposit has to be made, when joining a pool and when contributing to an order.

e The incorrect result of less than half the workers (weighted by importance) does not change the consen-
sus result.

e Workers cannot leverage contributions made by other workers to submit a valid contribution without
computing the result themselves.

2 chainsecurity. com

chainsecurity.com

Workers cannot use the output “The user chose the wrong category” as a beneficial strategy.

As discussed above, how does the stake act in the case of Sybil attacks? Does it provide something
beyond a “secondary reputation”?

A competing scheduler cannot deteriorate a competitor’s service (e.g. increase its latency) too signifi-
cantly by registering many fake workers.

Workers cannot make inconsistent contributions (e.g. contributions which do not match their address).

Each participating worker needs to have the required amount of reputation and stake for an order.

e A worker can only be member of one worker pool at any time.

Misbehaving schedulers

e Workers can observe when they are being “overused” by a scheduler to lower latencies, which would
reduce their benefits.

e Schedulers cannot successfully collude with a single worker apart from the worker selection process.

Misbehaving users

¢ A misbehaving user cannot obtain the result without making the agreed payment.

Marketplace

e Each market order can only be consumed once

e Market orders cannot be modified by unauthorized parties

e After a market has been consumed, its parameters are immutable

e Generic ethereum security issues

e Reentrancy

e Arithmetic overflow and underflow

e Unhandled exception

e Numeric imprecisions

e Common security practices, e.g. as documented in the Solidity documentation

Miscellaneous

e The log function in SafeMathOZ is correct.

e Constraints on arrays exist and are correctly enforced

e RLC tokens are handled securely. No tokens are lost. Locked tokens cannot be withdrawn.
e Correctness of basic computation, e.g. rounding errors

e All the operations from the sequence diagram have to be atomic.

e A worker can leave a pool at any time or be evicted by the scheduler. Both have an equivalent effect of
unlocking the worker’s stake.

e A leaving worker can finish leftover orders from a worker pool and will be rewarded or penalized for those
as usual.

e The validity and authenticity of different contracts can be verified.
e Work orders have unique identifiers.

e Each user has a reputation according to previous contributions that is preserved when it switches worker
pools.

e The policies of a worker pool (stake ratio, scheduler reward, minimum stake, minimum score) can only
changed by the scheduler.

ChainSecurity Security Audit Report _

Out of scope
e SGX integration, including attestation
e Privacy and security of the datasets and the applications
e Scheduler-related issues
e Consensus-related formulae
e Proper random selection of workers
e No proper penalty if finalizedWork is never called
e No proper penalty for not providing the correct result at the URI
e Secure Communication between the involved parties
e Security of dApps
e Correctness of computed result
e Malicious application providers that provide incorrect applications
e A worker’s decision procedure on when to switch to another worker pool because it is treated unfairly
e A scheduler’s decision procedure on when to remove a worker
e Misbehaving users which claim to have received incorrect results

e Access Control on the result URI

chainsecurity. com

chainsecurity.com

System Overview

In the following we describe the PROOF-OF-CONTRIBUTION protocol (POCO), its main components and how
these interact.

Actors and Components

The PROOF-OF-CONTRIBUTION protocol conceptually differentiates between three agents on the IEXEC plat-
form, with each one of them having different incentives for participation.

e User
A user of the IEXEC platform can pay a fixed amount of RLC tokens to have an order executed by workers.
He picks an ask order from the marketplace and provides details of the execution. Once the deal is in
place and execution process completed, the results are written back to the blockchain and are retrievable
by the user.

o Worker
A worker on the IEXEC platform can offer his services to the aforementioned users, executing their orders
in return for a reward in the form of RLC tokens and an increased reputation upon successful completion.
Workers subscribe to managed pools and stake a certain amount of tokens on their result contributions,
which gets confiscated in case the contribution turned out to be wrong. These worker pools have different
policies and participation requirements, such as a certain reputation treshold. Worker pools then submit
ask orders to the marketplace, describing their resources and trust level in terms of reputation.

e Scheduler
Schedulers manage the worker pools, setting their policies, coordinating the order execution process
and determining the consensus result. For this, a scheduler gets rewarded a percentage of the payment
made by the user who submitted the job.

The actors described above interact through several components, which constitute the IEXEC platform. These
are the following:

e Marketplace
The marketplace is a central piece of the POCO protocol, where the scheduler, in his role as a worker
pool manager, submits task orders to the orderbook which can then be consumed by a user. Such an
order has a value and volume, referring to the amount of times it can be consumed, as well as a required
trust level for execution, and other parameters’.

e Workerpool
The worker pool is fully controlled by his owning scheduler, who makes decisions about whether or not
to allow worker subscriptions and the pool policy. A policy is composed of: the percentage of the reward
to stake, the percentage of the reward going to the scheduler, the mininum subscription and reputation
stake, as well as the stake size to be locked when a worker joins a pool.

e Hubs
The Dataset-, App- and IEXEC-Hubs are separate smart contracts with distinct functionalities. The App-
and Data hubs are being used by the IEXEC hub to register applications to be executed and datasets to
be used by the workers. The IEXEC hub itself is the central managing instance, controlling the escrow for
the agents’ stakes, emitting relevant work order events and providing a link to the RLC token contract.

"Direction (Bid, Ask, Unset, Closed), worker pool and its owner, and remaining volume.

ChainSecurity Security Audit Report

Audit Overview

Scope of the Audit

The scope of the audit is limited to the following source code files. All of these source code files were received
on April 26, 2018, and updated on May 21, 2018:

File SHA-256 checksum
App.sol 7dedb27bf57££26c4004075£e35a2a33253bb104b20fbdfa6319867££2461609
AppHub.sol d2d7111009ebc07c8569ea98c4134ccece6aadbc36£2944223f8c7a65f6815bb
Dataset.sol 4984c442£1d0e172£818738465264435d3ed665820e8696be25a3d4bca385270
DatasetHub.sol 5b40e7c8a4fe601bc809b4e6712305ed1bee909e1901£26983£8faa3b6bdd090
lexecAPl.sol 3592c032707152£d5b6d78791225b2fee313802c5a7b19dab37470120e523277
lexecCallbackInterface.sol | 258cdfb7b93c752ddfdb8030ecc62fd1fcdcb8699e7e6c986d5b07636bf c3644
lexecHub.sol £05a1c8855d310ad5452ac1023738edb9452730036£8fealddcbcddab91ed343
lexecHubAccessor.sol 02cb46962750e€269181743d6911c683611cd5ceb8870c932a8707d848348454
lexecHublnterface.sol b8a3c910eb18fad425467d8958eb2cb9ab2c58178365536da39434473£7cb9e3
lexecLib.sol 5c2be259013563ee06201b873023e8ada997c021d077cfa275ef3a76c0a3a712

Marketplace.sol

0fb28dcab57e31694aa0b0ae891c114fa22664eabbb71dfd4£97ae93939£8b20

MarketplaceAccessor.sol

2a9fcbccd9a75b842439ffe8971ec85781f7cc0al1e916604d408e63cc31837e4

Marketplacelnterface.sol

e1c488645cfbfc8ad69afb007d6bl1faf9764723a1d4deabaf6435772024£1770

OwnableOZ.sol 3f548ab4d71aa1836cc63e37a5d8412ecccb3504809a7c62d4e966fd2cd90ca’
SafeMathOZ.sol €9d48bf5b1a6b029fd7d9dc1le98afaadOfadf416cael1a0107467d1ac113£03d0
TestSha.sol 8546e0518f4dc8e1d45b15c9119£380ee39baal31c63f09baddd6a8a067bbl3e
WorkOrder.sol 275e5093baf0ab143d38d468d765803217af4e7b476972309d2d94fb9a6248e0
WorkerPool.sol 76a61b1d312a05634d13ac0269a35a3ef3abad6abl59c1e8adbbc02cc1da80cdl
WorkerPoolHub.sol 8d60cb10e05695d0dc9b6b01517bfecdd8ec86acldbd5£5d2c1d5b812d376a43

Depth of Audit

The scope of the security audit conducted by CHAINSECURITY was restricted to:

e Scan the contracts listed above for generic security issues using automated systems and manually in-
spect the results.

e Manual audit of the contracts listed above for security issues.

Terminology

For the purpose of this audit, we adopt the following terminology. For security vulnerabilities, we specify the
likelihood, impact and severity (inspired by the OWASP risk rating methodology?).

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.
Impact specifies the technical and business related consequences of an exploit.

Severity is derived based on the likelihood and the impact calculated previously.

We categorize the findings into 4 distinct categories, depending on their severities:

- Low: can be considered as less important

®https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

chainsecurity. com

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
chainsecurity.com

° 0 - Medium: should be fixed
° 0 - High: we strongly suggest to fix it before release

° e - Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the following table, following a stan-
dard approach in risk assessment.

IMPACT

LIKELIHOOD

During the audit concerns might arise or tools might flag certain security issues. If our careful inspection
reveals no security impact, we label it as . Finally, if during the course of the audit process, an
issue has been addressed technically, we label it as , while if it has been addressed otherwise we
label it as .

Findings that are labelled as either or are resolved and therefore pose no security
threat. Their severity is still listed, but just to give the reader a quick overview what kind of issues were found
during the audit.

ChainSecurity Security Audit Report

Limitations

Security auditing cannot uncover all existing vulnerabilities, and even an audit in which no vulnerabilities are
found is not a guarantee for a secure smart contract. However, auditing allows to discover vulnerabilities that
were overlooked during development and areas where additional security measures are necessary.

In most cases, applications are either fully protected against a certain type of attack, or they lack protection
against it completely. Some of the issues may affect the entire smart contract application, while some lack
protection only in certain areas. We therefore carry out a source code review trying to determine all locations
that need to be fixed. Within the customer-determined timeframe, CHAINSECURITY has performed auditing in
order to discover as many vulnerabilities as possible.

chainsecurity. com

chainsecurity.com

Details of the Findings

In this section we detail our findings, including both positive and negative findings.

Security Issues

In this section, we discuss our investigation into security issues. Therefore, we highlight whenever we found
specific issues but also mention what vulnerability classes do not appear, if relevant.

Worker rewards and penalties

A crucial part of IEXEC’s platform is the incentive model, which is supposed to motivate workers to subscribe
to worker pools managed by schedulers, then contribute the results of their computations, after which they get
rewarded should their contribution be correct. Figure 1 shows the workflow of a worker participating in this
process.

Workerpool.sol

W =worker
gschadulne /7" Worker made a contribution
¢ =contribution paucel W called contributef)
* = correctness only determined by s
*=only new workers in the same pool can contribute,

or workers with previously incorrect contributions,

Punishment incurred

-—

Yes No

W not added through confributef)
notin consensus.contributors] |

Wowas allowWarker TeContributel)
by 8, has ¢ states AUTHORIZED

No consensus Consensus contribution by W

'

5. Norewards/penalties

TE I
i ¢ hed o W cistatus == CONTRIBUTED, W f ! |
E?r:vsii:iéulurgfzz 0reat: e JockForWark() called : : W not touched in distributeRewards()
Correct* Wrong*
(i Revealedby W 5} Revealed by others
Yes
No,
Yes No but by others
& R '&?_geum?pk:g’ W ' Consensus reopened by S Ne
'r_Z_B‘,'I neward recelve b}' ! 5 called reopenf) p—
% W called reveal(), revealCounter==
S ditributeReward()
1

Yes

No

Unlock stake after timeout
g claimFaoiledConsensus(),
urntockForWark() called.
w c.stotus = AUTHORIZED

Figure 1: Worker perspective on participating in an order execution

The diagram should be read from top to bottom. We now consider an exemplative workflow.

A worker makes a correct contribution by calling contribute() (1), which is accepted if the scheduler
previously allowed this worker to contribute. During the contribution, the worker’s stake is locked (2). The
consensus contribution of this worker is correct and he needs to reveal it (4). However, this does not happen,

ChainSecurity Security Audit Report

but all other workers in this pool reveal their results. This leads to a punishment of the worker who did not
reveal his result, meaning that he loses his stake and some reputation (8).

Following the specification, the behaviour list below has been verified through manual review and the ex-
haustive test suite provided by IEXEC, which offers a high test coverage 3.

¢ A non-contributing worker is neither rewarded nor punished if a consensus is reached.
e A non-contributing worker is neither rewarded nor punished if no consensus is reached.

e A worker contributing a wrong result loses his submitted stake and some reputation if consensus is
reached.

e A worker contributing a correct result that he does not reveal loses his stake and some reputation when
consensus is reached.

e A worker contributes a correct result and does not reveal it, but neither does any of the other workers.
The scheduler reopens consensus and as a consequence all workers that contributed the correct result
but did not reveal it cannot participate in the next round and all lose their stake and some reputation.

e A worker contributes a correct result and does not reveal it, but neither does any of the other workers.
The scheduler does not reopen consensus and once the user ordering the job claims a failed consensus
after the timeout, all stakes of workers participating in this pool are unlocked.

e A worker contributing and revealing a correct result will regain his stake, increase his reputation and get
a reward upon completion of consensus.

e A worker contributing and revealing a result in a worker pool that does not achieve consenus does not
gain a reward or get punished and his stake is unlocked after a timeout.

e A worker has a reputation according to previous contributions that is preserved when he switches worker
pools and can only be manipulated by a malicious scheduler.

e The policies* of a worker pool to which a worker subscribed can only be changed by the current scheduler.

We note that the correctness of a worker’s contribution is determined solely by the scheduler, which is
extensively discussed in the trust section. Reputation loss is set to the minimum between 50 and the current
worker reputation. Meanwhile, reputation is only increased in steps of 1.

Each worker’s reward should be proportional to his consensus weight. This is indeed the case and can be
seen by the formula encoded in the smart contract. First, the bonus for each worker depends on whether or
not SGX is used.

(1)

b— 3 if worker uses SGX
1 otherwise

Then each worker’s consensus weight is calculated, influenced by his bonus and score, which is also referred
to as his reputation.

Wworker = max(ovlog(sworke’r X b)) (2)
The reward of all workers combined is calculated based on the scheduler’s reward ratio policy (his reward

percentage) and the pool reward, consisting of the payment for that order and all stakes lost. Finally, a single
worker’s reward is a weightened fraction of that.

Tpool X (100 - pscheduler)
workers — 3
fwork 100 ®)

Wyworker X Tworkers Wyorker X Tpool X (100 - pscheduler)
- - 4
Tworker = — ()
Wtotal 100 X wiotar

Hence, we can conclude that a worker’s reward is directly proportional to his consensus weight.

3100% coverage of all statements, functions and lines and 81.73% of branch coverage in the WorkerPool.sol contract. This result can
be verified by running npm run coverage on the provided codebase
4These include stake ratio, scheduler reward, minimum stake, minimum score

10 chainsecurity. com

chainsecurity.com

Scheduler can manipulate its reward percentage 0

A scheduler can call changeWorkerPoolPolicy after workers submitted their contributions and revealed them,
arbitrarily increasing his reward percentage up to 100%. While the workers get notified about this by a corre-
sponding event, there is no action left for them except to unsubscribe from the worker pool, which would leave
them with no rewards at all.

Storing the m_schedulerRewardRatioPolicy in consensus in the emitWorkOrder function would resolve
this issue.

Likelihood: High

Impact: Medium

Post-Audit Fix: |IEXEC adapted the proposed solution and the scheduler reward is now stored with the con-
sensus object.

Scheduler can unfairly obtain kitty rewards a v Addressed

Whenever a user calls claimFailedConsensus through the IEXEC hub, the workerPoolStake is seized from
the scheduler who failed to deliver a consensus result and then payed out as a bonus to the next scheduler
who successfully finalized a work order.

Another scheduler can, on purpose, give itself a very long-running order it never finishes. However, once
he observes the WorkOrderClaimed event, indicating a claim on a failed consensus, he finishes it to get the
kitty reward. This can be repeated an unlimited number of times.

Likelihood: Medium

Impact: Medium

Post-Audit Fix: |IEXEC is aware of this possiblity and concludes that, considering an attacker would have to
create market orders, find or run accomplice workers and pay gas for the dry run of the POCO just to retrieve
small amounts of value, this is not a significant issue.

Worker exploitation by scheduler

The scheduler has an inherently stronger position than the worker. However, while he can manipulate certain
policy elements (as mentioned in a separate issue on page 11), workers cannot be completely exploited by a
scheduler to deliver free results.

A worker can adapt the following optimal procedure to avoid providing free work:

e Wait for the event AllowWorkerToContribute before doing any work.

e Estimate revenues based on m_consensus [workOrder] . poolReward and m_schedulerRewardRatioPolicy.
However this is only reliable once the issue allowing a scheduler to change his reward percentage is fixed.

e Simulate a call to contribute() privately and verify that it succeeds. It might fail, for instance if the
enclave challenge was incorrect.

e At this point, the worker has revealed no information, therefore it is not being used. Proceed with the
protocol. See the worker penalties and rewards in figure 1.

e |f own resultHash is not the winner result, do not reveal own result.
We remark the following limitations:

e A resultHash can be contributed, but no rewards paid, if the scheduler picks another resultHash, or calls
reopen.

e Results can be revealed, but no rewards paid, if the scheduler stalls and claimFailedConsensus is not
called.

e There can be value in the resultHash, even without revealing the result, such as detecting success in
crypto-currency mining.

ChainSecurity Security Audit Report g

Marketplace

The marketplace is implemented in three different contracts:
e Marketplace
e MarketplaceAccessor
e Marketplacelnterface
We verified that:
e Each ASK market order can only be consumed volume times.

e ASK market orders cannot be modified by unauthorized parties and only workpool owners can create or
close their corresponding orders.

e After a ASK market order has been consumed its parameters are immutable.

Misbehaving market participant can obtain or delay results o

Because of the costly computations in the loop of the WorkerPool contract during the scheduler’s call to
distributeRewards, where the contract iterates twice over all contributors of a given consensus, this func-
tion will exceed the block gas limit® once more than 120 workers participate.

An attacker can prevent the finalization of a work order by spawning and subscribing enough workers to
exceed the block limit, which will require 121 — n,caiworkers WOrkers with sufficient stake and score according
to the pool policy.

Even under the assumption that worker selection is performed randomly, a worker pool with more worker
will make it easier for an attacker to fill it up to exceed the 120 participant threshold.

Under the assumption that in such a worker pool at least one worker revealed his contribution, the only
way to resolve this deadlock is for claimFailedConsensus to be called. (Note that, as described on page 18
claimFailedConsensus is also limited in the maximum size it can handle.) This results in all stakes, including
the resources the attacker dedicated for this delay, to be unlocked again. More so, the current scheduler’s
stake gets confiscated and will supposedly be used as a bonus for the next well finalized task, giving the
attacker additional incentive (see page 11), since he could reinstall himself as the next scheduler in addition
to purposely delaying the result in the previous round, where he could have already obtained the results from
other workers for free.

Likelihood: Low

Impact: High

Workers can be forced into pools : i

An attacker can publicly register a worker pool by calling createWorkerPool through the iExecHub contract,
hence being able to subscribe arbitrary workers to his pool by calling registerToPool, as long as they are not
already registered somewhere else.

This call locks workers’ deposits and registers their affectation to this malicious pool, blocking a part of their
funds and the possibility to do work in other pools, without workers’ consent and cost for the attacker. The
workers will only be able to stop this once the call to unsubscribeFromPool () succeeds.

Likelihood: Medium

Impact: Low

Consensus Auditability

The question of whether or not schedulers can successfully collude with a single worker apart from the worker
selection process, boils down to the question of whether any such conspiracy can be detected. Under the
assumption that it is not possible to deploy arbitrary workOrder contracts and all of them run the official code,
the consensus can be fully audited.

Once the event FinalizeWork is observed for a particular workOrder, anyone can rely on the fact that no
further events, payments, or state changes will happen to this workOrder. Therefore, they can start reviewing
the sequence of past events (AllowWorkerToContribute, Contribute, Reopen, RevealConsensus, Reveal),
and verify whether the consensus protocol was followed by the scheduler and workers.

This is confirmed by m_status = COMPLETED in WorkOrder .setResult. All functions involving a workOrder
require that m_status != COMPLETED. The COMPLETED status is final and hence the round is finished.

5Assuming a gas limit of 8 million.

12 chainsecurity. con

chainsecurity.com

Workers can circumvent single-pool limitation 0

The specification requires that workers should only be able to work in a single pool at a time. However, the
current design allows workers to practically be part of multiple pools at the same time.

The overall idea is that a worker can leave a pool immediately after allowWorkerToContribute has been
called. Then, the worker remains unassigned and only joins a new pool as that pool is about to receive a new
work order.

Here is a concrete example:

e Worker W is part of pool A and is randomly chosen as an allowed contributor for order O

W leaves pool A, but can still contribute and reveal for O, and get the reward

Pool B gets a new work order O through buyForWorkOrder

W front-runs this transaction to join pool B

W gets randomly chosen as an allowed contributor for order O,

W leaves pool B, but can still contribute and reveal for O, and get the reward

Pool C gets a new work order O3 through buyForWorkOrder
e W front-runs this transaction to join pool C

We note that this strategy is in theory extendible to an arbitrary number of pools.
Likelihood: Medium
Impact: Medium

Result without Payment 0

A malicious consumer could try to obtain the result without having to pay for the completion of the order. During
the finalization of an order an optional callback is made:

109

110 // optional dappCallback call can be done
111 require(lexecCallbackInter face(m_callback).workOrderCallback(
112 this,
113 _stdout,
WorkOrder.sol

If the consumer makes sure that this callback will never succeed then the order can never be finalized.
Hence, the consumer never has to pay as it can claim a failed consensus after the timeout.

Even though the callback fails, the consumer can observe all the relevant parameters inside the contract
execution on the blockchain (e.g. on etherscan). Therefore, the consumer receives the result without having to
make a payment.

Likelihood: Medium

Impact: High

Post-Audit Fix: IEXEC fixed this issue by removing the callback from the general workflow. It can now be
triggered separately, but does not act as an automatic callback any longer. Therefore, the issue does not
persist.

Joining and leaving a pool

Workers are expected to go from one pool to another, depending on how well schedulers perform. This pos-
sibility creates a healthy competition between pools, but it also makes the implementation more complicated,
given that IEXEC has to handle all the possible cases, e.g. what if a worker leaves in the middle of an order?

CHAINSECURITY found no issue in how IEXEC handles these cases. In particular, a worker can leave a
pool at any time or be evicted by the scheduler. Both have an equivalent effect of unlocking the worker’s stake.
A leaving work can finish leftover orders from a worker pool and be rewarded or penalized for those as usual.
This holds under the assumption that the pool is implemented as designed in the Workerpool.sol contract
and is not some arbitrary contract.

ChainSecurity Security Audit Report “

Arbitrary Contracts Are Trusted °

IEXEC has implemented several contracts meant to fulfill separate roles. However, the current implementation
implicitly relies on every contract being used as is, without modification, especially not modifications with
malicious intent.

In particular, the interface of the WorkOrder contract is used in the claimFailedConsensus function of the
TexecHub contract.

function claimFailedConsensus(address _woid) public returns (bool)

{
WorkOrder workorder = WorkOrder(_woid);
require(workorder.m_requester () == msg.sender);
WorkerPool workerpool = WorkerPool (workorder.m_workerpool());

IexecLib.WorkOrderStatusEnum currentStatus = workorder.m_status();

require(currentStatus == IexecLib.WorkOrderStatusEnum.ACTIVE || currentStatus == IexeclLib.
WorkOrderStatusEnum.REVEALING) ;

// Unlock stakes for all workers

require(workerpool.claimFailedConsensus(_woid));

workorder .claim(); // revert on error

uint256 value = marketplace.getMarketOrderValue(workorder .m_marketorderIdx()); //
revert if not exist

address workerpoolOwner = marketplace.getMarketOrderWorkerpoolOwner (workorder .m_marketorderIdx()
); // revert if not exist

uint256 workerpoolStake = value.percentage(marketplace.ASK_STAKE_RATIO());

require(unlock (workorder.m_requester(), value.add(workorder.m_emitcost()))); // UNLOCK THE
FUNDS FOR REINBURSEMENT

require(seize (workerpoolOwner, workerpoolStake));

// put workerpoolOwner stake seize into iexecHub address for bonus for scheduler on next well
finalized Task

require(reward (this, workerpoolStake));

require(lock (this, workerpoolStake));

emit WorkOrderClaimed(_woid, workorder.m_workerpool());
return true;

}

This function can be called by anybody (since it is a public function), with any argument representing the
address of a work order. No check is made on this address, and the code will execute provided that the
corresponding function is implemented. In particular, this will also work if the work order was never on the
market place to begin with. Given that this function relies on the value of workorder .m_marketorderIdx()
to retrieve parameters from the marketplace, a malicious work order can easily reuse a preexisting value to
prevent failures.

An attacker can thus unlock arbitrary amounts of an arbitrary address (defined by workorder .m_requester()),
and seize funds of any address that ever designated a scheduler.

Although this is the most serious vulnerability that CHAINSECURITY found with respect to interacting with
arbitrary contracts, CHAINSECURITY suspects that there may be more, and thus recommends IEXEC to make
sure that either the interfaces used are always safe being trusted, or that the outputs of said interfaces are
checked before being used blindly.

Likelihood: High

Impact: High

Post-Audit Fix: IEXEC fixes this issue by registering legitimate work orders inside the m_woidRegistered
variable. Only such work orders can be used in any subsequent function calls.
As these work orders are created according to IEXEC’s template, the issue does not persist.

The worker score system can be gamed 0 v Addressed

A worker’s score is shared among all worker pools in which he is ever involved. A worker wanting to get a
higher share of the rewards could artificially inflate its own score, by creating its own pool and submitting lots
of small work orders. For every completed order, its score increases.

If that worker later completes an order in a regular pool, its reward can easily be three or four times larger
due than usual due to the inflated score.

Note, that a worker can arbitrarily inflate its score using this technique, however, due to logarithm involved
in reward calculation the benefits are diminishing.

Likelihood: High

Impact: Medium

14 chainsecurity. com

chainsecurity.com

Post-Audit Fix: IEXEC states that if some suspicious reputation gains are observed for a worker the scheduler
can blacklist him and not feed him any work. The burden is thus on the scheduler to do this due diligence.

Caching scores makes them outdated i:i v/ Addressed

The score of a worker is only checked when it is registered to a pool, so a diminishing score would not
automatically lead to the eviction from the pool, and the score used in the reward system is not updated to
take the latest value into account. Similarly, if the score requirement for a pool is raised, existing members
below the requirement will not be automatically ejected.

In practice, this would be countered by some due diligence from the scheduler, who would evict workers
manually; however some mechanisms could be put in place to automate these steps in the smart contracts
themselves.

Likelihood: Low

Impact: Low

Post-Audit Fix: IEXEC is aware of this situation and states that the score in the reward system should not be
updated to provide auditability of the sarmenta formula computed by the workerpool and that the scheduler
can handle this issue.

Requirements on the result space are not documented 0 v Addressed

A yes or no question® has only two possible results, encoded in only two different hashes. In these conditions,
reverting the hash is possible for a lazy worker, who would then follow the majority and submit a contribution
without computing the actual order. This breaks the concept of confidence which is ingrained in IEXEC’s
system.

The same applies to any question which has a small set of possible answers, and can be generalized to
questions for which answers are likely to be in a small subset of all possible answers.

Overall, CHAINSECURITY was not able to find the assumptions on the concrete requirements on the result
space which users have to take into account before submitting a work order. These should be made explicit,
and automatically enforced if possible.

We suspect the likelihood of this issue to be low, but it greatly depends on the use cases of IEXEC’s platform,
which are to predict a priori.

Likelihood: Low

Impact: High

Post-Audit Fix: IEXEC acknowledged the lacking documentation and committed to provide the missing infor-
mation.

Correctness of the log function

We tested the implementation of the log function (more precisely, the ceiling of the logarithm function with base
2), which was taken from the Internet’.
The computations are correct up to at least 2228, which seems to match the use of IEXEC.

No freshness when submitting results
There is no freshness involved when submitting results. This means that, if two different work orders have the
same results, a lazy worker can see that some of the hashes submitted to the last order are the same as for
the first, and thus reuse the result which was previously revealed without having to compute it.

Likelihood: Low

Impact: Medium

Post-Audit Fix: IEXEC will instruct application providers to make sure that their applications’ results are unique
(e.g. by containing an internal nonce). Then, the issue becomes irrelevant.

8such as the satisfiability of a logic formula
7https ://ethereunm. stackexchange.com/questions/8086/logarithm-math-operation-in-solidity
8according to independent computations

ChainSecurity Security Audit Report

https://ethereum.stackexchange.com/questions/8086/logarithm-math-operation-in-solidity

Trust Issues

The issues described in this section are not security issues but describe functionality which is not fixed inside
the smart contract and hence requires additional trust into IEXEC.

Scheduler has indisputable decision power 0

Since the calculation of the worker consensus for the result of an order is done completely off-chain, only
the scheduler decides on-chain what result is considered correct. This happens when the scheduler calls
revealConsensus and passes the argument _consensus in the Workerpool contract.

The consensus protocol can be audited after the fact, in particular after observing the event FinalizeWork
for a work order anyone can be certain that no further events, payments, or state changes will happen to this
order. However, there is no mechanism for the workers to dispute the chosen outcome. Hence, if a scheduler
is malicious, correct results would have been computed and revealed by the workers, but they still loose their
stake and reputation with no direct punishment for such a scheduler.

Even if the consensus calculation is too expensive to be put on-chain and executed for each order, there
could be a separate contract doing the computation. While this would be costly, it could be called by somebody
not agreeing who would pay the gas, and who would get rewarded if indeed the scheduler took the wrong
decision. There may also be other (better) solutions.

Likelihood: Medium

Impact: High

Scheduler is incentivized to maximize the number of workers 0

In distributeRewards (), the scheduler is awarded the default reward as set by schedulerRewardRatioPolicy,
plus whatever residue accrues from rounding down during the calculation of the worker rewards:

workerReward = workersReward.mulByFraction(m_contributions[_woid][w].weight, totalWeight)

WorkerPool.sol

If the number of tokens is much larger (i.e. several orders of magnitude) than the number of workers, the
residue is only a relatively small part of the scheduler’s reward. For example, if the total reward is 100 000
tokens and there are 100 workers, the residue will be between 0 and 99 tokens, which is small compared to
the scheduler’s default reward of 1000 tokens (if schedulerRewardRatioPolicy == 1).

However, if the reward is only 10,000 tokens or if there are 1000 workers, the residue could be almost
as large (99 percent) as the scheduler’s default reward. If the reward is only 10,000 and there are 1000
contributing workers, the residue could be several times as large as the default scheduler reward. This means
that for smaller rewards, the residue represents a bigger part of the scheduler’s reward, and the scheduler will
be incentivized to maximize the number of contributing workers (i.e. more than might be needed to form a good
consensus) in order to increase the size of the residue.

Likelihood: Medium

Impact: Medium

‘” v/ Addressed

SGX-Related Trust Issues

IEXEC encourages the use of Intel's Software Guard Extensions (SGX) as they can help to protect the confi-
dentiality of both dataset and application.
With regards to the use of SGX, there are the following trust issues:

1. Trust into SGX and Intel: Especially, in the light of recent low-level CPU issues, including Meltdown and
Spectre, all involved parties have to trust the SGX architecture to be correct and not to be vulnerable to
relevant side channel attacks. Furthermore, they need to trust Intel, which is in charge of key generation
and key management.

2. Trust into enclave: The enclave which is holding the private key associated with IEXEC’s SGX challenge
has to be designed in such a way that the private key can not be exported or leaked. This property needs
to be verified by all parties. If the key could be extracted, the verificaion system would collapse.

3. Scheduler needs to correctly attest SGX: All workers need to trust the scheduler to correctly attest the
SGX. This includes the verification that the right enclave is running. If the scheduler would collude with
one of the workers it could stealthily omit this attestation step.

16 chainsecurity. com

chainsecurity.com

4. Freshness issues: As discussed above, there are freshness-related issues with the commit-reveal pro-
cess of IEXEC’s consensus. If a result appears multiple times the previous signature of an SGX can be
reused.

Likelihood: Low
Impact: Medium

Post-Audit Fix: |IEXEC acknowledges the difficulties related to the secure usage of SGX and the importance
of a correct implementation, however notes that this is outside the scope of the PROOF-OF-CONTRIBUTION
protocol.

ChainSecurity Security Audit Report

Recommendations / Suggestions

e The IexecLib.sol contract contains structs that are routinely instantiated by the Hub, Market and Work-
erpool contracts. Considering the frequent usage, gas costs optimizations have a significant impact.
We recommend reordering the Category struct by placing the string name and string description
fields first, followed by uint256 catid and uint256 workClockTimeRef saving roughly 50000 gas on
transaction and deployment costs per struct.

e allowWorkersToContribute() and claimFailedConsensus () in WorkerPool.sol will also result in dead-
lock if the number of contributing workers is too high (266 in this case. However, it would be best to stay
under 200, in order to have a 25 percent margin of safety). This is because they both contain loops
performing expensive storage operations.

e tx.origin should only be used when strictly necessary. In the few places where IEXEC uses it, it seems
to only be an implicit argument, which makes the code harder to reason about for no real gain. The
functions in which it is used, the create functions, could also be changed completely: IexecHub.sol
only provides public interfaces to functions implemented elsewhere; these interfaces are currently only
meant to enforce that a certain marketplaceAddress is used.

function createWorkerPool (
string _description,
uint256 _subscriptionLockStakePolicy,
uint256 _subscriptionMinimumStakePolicy,
uint256 _subscriptionMinimumScorePolicy)
external returns (address createdWorkerPool)
{
address newWorkerPool = workerPoolHub.createWorkerPool (
_description,
_subscriptionLockStakePolicy,
_subscriptionMinimumStakePolicy,
_subscriptionMinimumScorePolicy,
marketplaceAddress
¥
emit CreateWorkerPool(tx.origin, newWorkerPool, _description);
return newWorkerPool;

lexecHub.sol

function createWorkerPool (
string _description,
uint256 _subscriptionLockStakePolicy,
uint256 _subscriptionMinimumStakePolicy,
uint256 _subscriptionMinimumScorePolicy,
address _marketplaceAddress)
external onlyOwner /xowner == IexecHub*/ returns (address createdWorkerPool)
{
// tx.origin == owner
// msg.sender == IexecHub
// At creating ownership is transfered to tx.origin
address newWorkerPool = new WorkerPool (
msg.sender, // iexecHubAddress
_description,
_subscriptionLockStakePolicy,
_subscriptionMinimumStakePolicy,
_subscriptionMinimumScorePolicy,
_marketplaceAddress
)
addWorkerPool (tx.origin, newWorkerPool);
return newWorkerPool;

WorkerPoolHub.sol

These interfaces could be removed, while the create functions could instead use the marketplace address
which would be retrieved directly from the owner (variable m_owner), considered as an IexecHub.

e Some assumptions are made about the computation costs, but they should be tested more thoroughly.
In particular, writing to the storage is expensive, a lot more than simple computations. Comments seem
to indicate that the workerWeight variable is stored into the contribution to avoid recomputations, but if
this is to save gas, this is misguided.

18 chainsecurity. com

chainsecurity.com

workerBonus = (c.enclaveChallenge != address(Q)) ? 3 : 1; // TODO: bonus sgx = 3 ?
workerWeight = 1 + c.score.mul(workerBonus).log();

totalWeight = totalWeight.add(workerWeight);

c.weight = workerWeight; // store so we don’t have to recompute

WorkerPool.sol

e Some variables are unused, and see to be in the contracts only to keep a log of events. This functionality
is better server by proper events, which can be emitted cheaply. Examples of such variables are stdout,
stderr and m_uri in the WorkOrder contract.

e In MarketplaceAccessor.sol, the variables marketplaceAddress and marketplacelnterface are ef-
fectively the same. address(marketplace) can be used instead. The same applies t0 IexecHub.sol
and IexecHubAccessor.sol.

e In WorkerPool.sol, finalizeWork could use an assert to guarantee that consensus.winnerCount is
never null. assert that never fail are cheap, so gas is not issue for them.

e removeWorker can be optimized in terms of gas consumption:

— The storage writes could be omitted if the removed worker was also the last worker.
— m_workerIndex [worker] could be cleared.

ChainSecurity Security Audit Report

Open Questions

Each order currently requires deploying a smart contract along with its code. Could structs be used
instead?

e Overall, a lot of state is kept in many different contracts. Could some of this state be reset, i.e. set to 0,
to save on gas costs?°

e If seize() is ever called without a corresponding call to reward () (to add the tokens that were deleted by
seize () to a different account), then it destroys tokens (because they are deleted from _user’s account
without being added anywhere else). Is this the intended behavior?

e It has been mentioned that, under certain assumptions, “using a confidence threshold of 90% or less
would probably allow a worker to achieve consensus alone”'?. It could be interesting for users to know
which threshold is high enough to prevent this, even under the given assumptions.

e |t seems that for the fastest category workers have only 60 seconds to reveal their contribution. Couldn’t
this be a problem if the scheduler intentionally calls revealConsensus when the network is very busy and
then immediately calls reopen to seize the workers’ stakes?

e The fact that CHAINSECURITY was able to find issues regarding arrays could be related to the small
amount of testing done in that regard: tests all use less than 10 different accounts, which does not seem
realistic in IEXEC’s case. More testing with larger pools (for example) could highlight this kind of issues
before the next audit. Are the current tests realistic in terms of what IEXEC expects from its users?

B
> CHAINSECURITY

9See Rycicar in the yellow paper
Ohttps://medium. com/iex-ec/poco-series-2-on-the-use-of-staking-to-prevent-attacks-2a5c700558bd

20 chainsecurity. com

https://medium.com/iex-ec/poco-series-2-on-the-use-of-staking-to-prevent-attacks-2a5c700558bd
chainsecurity.com

Disclaimer

UPON REQUEST BY IEXEC, CHAINSECURITY LTD. AGREES MAKING THIS AUDIT REPORT PUBLIC.
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS AND
WARRANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY FOR DAMAGE
ARISING OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF THIS REPORT

REMAINS WITH CHAINSECURITY LTD..

ChainSecurity Security Audit Report

	Foreword
	Executive Summary
	Scope
	Included in the scope
	Rewards and penalties
	SGX
	Misbehaving workers
	Misbehaving schedulers
	Misbehaving users
	Marketplace
	Miscellaneous

	Out of scope

	System Overview
	Actors and Components

	Audit Overview
	Scope of the Audit
	Depth of Audit
	Terminology

	Limitations
	Details of the Findings
	Security Issues
	Worker rewards and penalties push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Scheduler can manipulate its reward percentage replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Scheduler can unfairly obtain kitty rewards replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Worker exploitation by scheduler push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Marketplace push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Misbehaving market participant can obtain or delay results repla
	Workers can be forced into pools repla
	Consensus Auditability push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Workers can circumvent single-pool limitation repla
	Result without Payment replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Joining and leaving a pool push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Arbitrary Contracts Are Trusted replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	The worker score system can be gamed replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Caching scores makes them outdated repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Requirements on the result space are not documented replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Correctness of the log function push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. No Issuedarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	No freshness when submitting results repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Trust Issues
	Scheduler has indisputable decision power repla
	Scheduler is incentivized to maximize the number of workers repla
	SGX-Related Trust Issues repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Recommendations / Suggestions
	Open Questions
	Disclaimer

