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1   Executive Summary
Dear all,

Thank you for trusting us to help Herodotus with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of CairoLib according to Scope
to support you in forming an opinion on their security risks.

CairoLib is a library primarily for Herodotus on Starknet implementing Ethereum related operations
including Recursive Length Prefix (RLP) decoding, Keccak256 and Poseidon hash function wrappers,
Merkle Patricia Trie (MPT) verification and Merkle Mountain Range (MMR) structures.

The most critical subjects covered in our audit are functional correctness, data integrity and consistency,
and security vulnerabilities. Amongst others, the following issues have been uncovered:

• Missing Length Validation in MPT Verify

• MMR: Incorrect Root Update Possible, Insufficient Peaks Validation

• Keccak Discards Leading Zero Bytes in Last Little Endian Words64

After the intermediate report all issues have been resolved.

The general subjects covered are usability, efficiency and robustness.

In summary, for its intended usage in herodotus-on-starknet we find that the codebase of CairoLib
provides a good level of security. However, it's worth noting that more thorough testing could have
identified most of these issues early. Moreover, there is still room for enhancement in the testing
processes.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity
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1.1   Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 6

• Code Corrected 6

Low -Severity Findings 2

• Code Corrected 2
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2   Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

 

2.1   Scope
The assessment was performed on the source code files inside the CairoLib repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V
Date Commit Hash Note

1
19 September
2023

99b1c0e3b72e78a9db97e9c9e1a644304efc
0e1f

Initial Version

2
30 October 2023 0af61150a5f738dbc1b3cdf0b477ed9643e94

472
After Intermediate Report

3
2 November
2023

40e6841295a0b3467977edd6663a92a2ce9
c7adf

Fixes + Non Inclusion Proofs

4
6 November
2023

d2d4dd7ca6b9b5c681456136c801414b79a
285e6

Fixes

For the cairo code, the compiler version 2.2.0 was chosen. At the time of this review (September 2023)
Starknet v0.12.2 was live on mainnet. This review cannot account for future changes and possible bugs
in Starknet and it's libraries.

The following file was in scope of this review:

data_structures/eth_mpt.cairo
data_structures/mmr/mmr.cairo
data_structures/mmr/peaks.cairo
data_structures/mmr/proof.cairo
data_structures/mmr/utils.cairo

encoding/rlp.cairo

hashing/hasher.cairo
hashing/keccak.cairo
hashing/poseidon.cairo

utils/array.cairo
utils/bitwise.cairo
utils/math.cairo
utils/types/byte.cairo
utils/types/words64.cairo

This review focused on CairoLib as used within Herodotus on Starknet. Caution is advised when this
library is used in other projects. Reliability and/or the correct usage in other projects is not covered by this
review.
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2.1.1   Excluded from scope
Any file not listed above is excluded from the scope.

 

2.2   System Overview
Version 1This system overview describes the initially received version ( ) of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Herodotus offers CairoLib, a library that implements RLP (Recursive Length Prefix) decoding, wrappers
of Keccak256 and Poseidon hash functions, MPT (Merkle Patricia Trie), and MMR (Merkle Mountain
Range) algorithms with helper functions in utils.

2.2.1   Customized Type
A customized type Words64, as an alias of Span<u64>, is defined and used across the library. In most
cases of CairoLib, it is expected that the individual u64 is in little endian, but the overall Span<u64>
order is big endian.

Words64 implements the TryInto trait to convert itself into a u256. try_into() reverts in case the
input Words64 is too long to fit within 256 bits. It also reverts in case the input is an empty Words64.
Otherwise, it converts a span of 64 bit little endian words into a little endian u256.

Function slice_le is implemented to slice a Words64 with respect to the individual little-endian and
overall big-endian encoding. It always starts from the left word, and reads bytes from right to left within
individual words. It will return a new Words64 which is also encoded in the same way.

2.2.2   RLP Decoding
Recursive Length Prefix (RLP) serialization is used extensively in Ethereum to standardize the transfer of
data between nodes in a space-efficient way. The type of the current decoding bytes is determined by the
first byte of the input. rlp_decode() is implemented in CairoLib, which accepts a Words64 as input,
and decodes it into a single byte, a string, or a list. In case there are trailing garbage bytes in the RLP
encoding, they will be discarded. Decoding RLP encoded nested list is not supported. The decoded RLP
item as well as the length of decoded bytes will be returned.

2.2.3   Hash Functions

2.2.3.1   Keccak256
A wrapper function keccak_cairo_words64 is defined, which calls cairo_keccak() in the Starknet
core library to invoke the system call keccak_syscall(). It accepts a list of 64-bit little-endian words
(Words64) as input. The hash is returned in little endian representation.

2.2.3.2   Poseidon
Poseidon is a family of hash functions designed for being very efficient as algebraic circuits. Starknet's
version of Poseidon is a sponge construction based on the Hades permutation over a three element
state. PoseidonHasher is implemented as a wrapper on top of the hades_permutation and
poseidon_hash_span in the Starknet core library. It exposes hash_single(), hash_double(), and
hash_many() to compute the digest of any amount of felt252.
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2.2.4   Merkle Patricia Trie
MPT (Mekle Patricia Trie) is used in Ethereum as a cryptographically authenticated data structure to
store all (key, value) bindings. Multiple MPTs are built upon the production of a new block. In the
execution block header, the stateRoot represents the root of the World State Trie, which provides the
bindings from an Ethereum address to its account state. storageRoot is a field in the account state
representing the root of the Account Storage Trie, which provides the bindings from a storage slot to the
value stored. There are Receipts Trie and Transactions Trie as well. One can prove the inclusion of a
(key, value) in the trie by constructing a merkle proof which encodes all the nodes along the path
from the root to the value. The key is a list of nibbles that should match the nibbles stored in the nodes
along the way down the proof.

There are four types of node in the Ethereum MPT:

1. NULL Node - represented as the empty string.

2. Branch Node - a 17-item node, which contains hashes of its 16 children and the value stored in this
node.

3. Extension Node - a 2-item node, which contains the shared nibbles and the hash of the next node.

4. Leaf Node - a 2-item node, which contains the nibbles and the value stored.

Each nibble is a hexadecimal character represented by 4 bits. Compact encoding is applied to store the
nibbles into bytes:

• Extension Node with even nibbles: prepend a 0x00 byte.

• Extension Node with odd nibbles: pack the first nibble ? with hexadecimal character 1 as: 0x1?.

• Leaf Node with even nibbles: prepend a 0x20 byte.

• Leaf Node with odd nibbles: pack the first nibble ? with hexadecimal character 3 as: 0x3?.

Function decode_rlp_node decodes a Words64 into MPT nodes based on the length of decoded list
and the 1 byte prefix of the node. It will revert in case the list length does not fit into any nodes, or the
prefix is invalid.

Version 1

Function hash_rlp_node calls keccak_cairo_words64() to hash an RLP encoded node. However,
as keccak_cairo_words64() reviewed in  discard trailing zero bytes, it may result in a
different hash compared to ethereum Keccak256.

Function verify accepts a u256 key, a usize key_len, and a Span<Words64> proof (a list of RLP
encoded nodes) as input. It traverses the nodes top-down to decode it and verify if the nibbles stored
match the next nibbles in the key. In case of a successful verification, it will return the value associated
with the key.

2.2.5   Merkle Moutain Range
Merkle Mountain Range is an alternative to Merkle trees. It can be seen as list of perfectly balanced
binary trees, where each individual is a simple merkle tree. A Merkle Mountain Range (MMR) is strictly
append-only: elements are added from the left to the right, adding a parent as soon as 2 children exist,
filling up the range accordingly. The parent is simply a hash of its two children. As a result, the MMR has
multiple merkle trees thus a list of peaks.

Contrarily to a Merkle tree, a MMR generally has no single root by construction. Thus, a bagging
operation is introduced to construct the root of all the peaks together with the size of the tree. If we
denote the Poseidon hash function as H, the number i peaks as P_i (from left to right), and the last
position as N, then the bagging operation will be be:

root = H(N , H(P0, H(. . . H(Pi − 2 H(Pi − 1, Pi)))))
In CairoLib, the struct MMR contains only two fields: root and the last_pos instead of storing all the
peaks. Two main functions exposed are:
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1. append() - to append a new hashed element to the MMR, the user needs to submit the correct
peaks of the current MMR which will be validated. The last position and new MMR root will be
updated accordingly.

2. verify_proof() - one can verify the inclusion of a hashed element by providing a merkle proof
and the correct peaks. It will computes the merkle root based on the proof and verify if the
constructed merkle root is a member of the validated peaks.

2.2.6   Roles and Trust Model
This library is expected to be mainly used by Herodotus, however, we assume other users of this library
to carefully follow the specifications and fully understand the caveats.

2.2.7   Changes in Version 3
Version 3The following functional changes were introduced in :

• eth_mpt.cairo: verify() has been updated to support non-inclusion proofs.
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3   Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.
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4   Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

 

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

 

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

 

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

 

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.
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5   Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

 

Herodotus - CairoLib - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com


6   Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedMissing Length Validation in MPT Verify 

High -Severity Findings 2

• Code CorrectedKeccak Discards Leading Zero Bytes in Last Little Endian Words64 

• Code CorrectedMMR: Incorrect Root Update Possible, Insufficient Peaks Validation 

Medium -Severity Findings 6

• Code CorrectedEmpty Extension and Leaf Nodes 

• Code CorrectedIncorrect Break Condition in Lazy Decode 

• Code CorrectedKeccak: Unsupported Empty Bytes Input Breaks EVM Equivalence 

• Code CorrectedMMR Verify Proof: Different Nodes Can Use the Same Index 

• Code CorrectedMissing Boundary Check in MPT Verification 

• Code CorrectedWords64TryIntoU256LE Does Not Automatically Pad Input 

Low -Severity Findings 2

• Code CorrectedBit_Length Will Revert if Input Most Significant Bit Is 1 

• Code CorrectedRight Shift Reverts on Bit Length Input 

Informational Findings 4

• Code CorrectedOrder of Evaluation Can Be Enforced 

• Code CorrectedUnused Import 

• Code CorrectedWords64TryIntoU256LE Reverts in Case of Empty Input 

• Code CorrectedFast Power May Improve Gas Efficiency 

 

6.1   Missing Length Validation in MPT Verify
Correctness Critical Version 1 Code Corrected   

CS-HRDTCL-005

When verifying a MPT proof by verify(key, key_len, proof), the nodes nibbles (denoted as
n-nibbles) are decoded and matched with the next nibbles in the key (denoted as k-nibbles).
However, length validation of the remaining nibbles is missing in the logic of matching both the Extension
Node as well as the Leaf Node. Let's assume there is an MPT with two valid proofs, each contains two
Branch Node, One Extension Node, and One Leaf Node denoted as:

proof 1 = Branch [ b ] | Branch [ c ] | Extension [ de ] | Leaf [ f2 ]

proof 2 = Branch [ a ] | Branch [ b ] | Extension [ cd ] | Leaf [ 0e ]
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In the following description, we will use these dummy proofs as examples.

Leaf Node: it retrieves the elements from k-nibbles and n-nibbles and checks if they are equal one
by one. The matching will be regarded as successful if it reaches the end of the input key. However, there
could still be some n-nibbles left unmatched.

• As 0xbcdef2 is a valid key for proof1, verify(0xbcdef2, 6, proof1) will succeed. However,
verify(0xbcdef, 5, proof1) will also succeed, even though it does not fully traverse the
nibbles in the Leaf Node. As a result, a partial key can be verified and the caller will get the same
value stored in the Leaf Node.

Extension Node: it retrieves the elements from k-nibbles and n-nibbles and check if they are equal
one by one. The matching will be regarded as successful if it reaches the first nibble that does not match.
However, this implies the following unexpected consequences:

• As n-nibbles are stored in Span<u64> in little endian, the padding zeros are indistinguishable
from valid 0 nibbles. In case the next input nibble is 0, it will be accidentally matched with the
padding in the Extension Node, leading to a failure when matching the next node. For example,
verify(0xabcd0e, 6, proof2) will fail even though proof2 is valid.

• An input key that fully skipped the Extension Node nibbles can bypass the matching in the Extension
Node and be successfully matched. In contrast to the failure on validating a legitimate key by
verify(0xabcd0e, 6, proof2), a forged key 0xab0e which fully skips the Extension Node will
succeed in verify(0xab0e, 4, proof2) since it directly matches the Leaf Node.

In summary, the missing length validation between the nibbles remaining and that stored in the Extension
Node or the Leaf Node implies:

1. A partial key can be verified by only matching a prefix of nibbles in the Leaf Node.

2. A legitimate key and proof may fail in case a padding 0 in an Extension Node is accidentally
matched with the next nibble in the key.

3. A forged key that skips nibbles of an Extension Node can be verified successfully.

Code corrected:

The length of the nibbles stored in the nodes is propagated after RLP decoding and taken into account in
MPT verification now:

1. Leaf Node: A partial key no longer works, a check ensures that all nibbles left from the input key
have been matched with all the nibbles stored in the leaf node.

2. Extension Node: The representation of the extension node now additionally contains the number of
shared nibbles. The matching is now considered successful if all nibbles match and the code
moves to the next node. This prevents skipping nibbles of an Extension node (Problem 3) as well
as accidentally matching padding zeros in case the next nibble of the key is zero (Problem 2).

 

6.2   Keccak Discards Leading Zero Bytes in Last
Little Endian Words64
Correctness High Version 1 Code Corrected   

CS-HRDTCL-001

fn keccak_cairo_words64(words: Words64) does not work correctly in case there are trailing
zeros in the big-endian input bytes (represented as leading zeros in the last item of little-endian
Words64).
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For example, the big-endian bytes [0xaaaaaaaaaaaaaabb, 0x653800] would be represented as
[0xbbaaaaaaaaaaaaaa, 0x3865] in Words64. There is no way for function bytes_used_u64 to identify
how many leading zeros should be included since it operates on the value. The trailing zeros are an
important part of the input however, omitting them will lead to a different hash.

Code corrected:

Function keccak_cairo_words64 now takes the byte length of the last word (last_word_bytes) as
an extra input. Using this the hash can be computed correctly even in case of leading zero bytes.

 

6.3   MMR: Incorrect Root Update Possible,
Insufficient Peaks Validation
Security High Version 1 Code Corrected   

CS-HRDTCL-015

A Merkle Mountain Range struct consists of:

1. last_pos: the last position (size) of the elements stored. The shape of the Merkle Mountain
Range as well as the number of peaks can be deterministically computed from the last_pos.

2. root: a hash consists of all peaks and the last_pos.

In mmr.append(), peaks.valid() does not check if the length of the input peaks is correct with
respect to last_pos. Given the special construction in the bagging algorithm shown below, one can
submit left side peaks together with an intermediate Poseidon hash of all right side peaks, which will also
pass the peaks validation.

root = H(N , H(P0, H(. . . H(Pi − 2 H(Pi − 1, Pi)))))
For example, if we assume currently there are 4 peaks denoted as [P_0, P_1, P_2, P_3]. One can
submit the forged 3 peaks as [P_0, P_1, H(P_2, P_3)] to bypass the peaks validation. Then
mmr.append() will compute the updated peaks and new root according to the wrong former peaks, and
the shape of the MMR will be disrupted.

In summary, one can update the root and peaks to wrong values by replacing some right side peaks with
intermediate bagging results. The insufficient peaks validation (peaks.valid()) also appears in
mmr.verify_proof().

Code partially corrected:

Version 2In , append() has been updated to ensure the amount of peaks given as input is correct given
the last_pos of the current mmr.

In addition, verify_proof() now ensures the length of the given proof matches the expected height of
the peak. This however is insufficient and still allows verification against a forged peak (see issue MMR
Verify Proof: Different Nodes Can use the same index).

Code corrected:

Version 3In  verify_proof() now features the same check as append() to ensure the amount of
peaks given as input is correct.
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6.4   Empty Extension and Leaf Nodes
Correctness Medium Version 3 Code Corrected   

CS-HRDTCL-002

Version 3In  of Cairo-lib, mpt.verify() has been changed to support:

1. When encountering an extension node that contains no nibbles, the function will continue its
process with the subsequent node.

2. In the case where a leaf node has no nibbles and the provided key has been completely processed,
the function will immediately return the node's value.

The Ethereum Yellowpaper states the following on page 21:

Leaf: A two-item structure whose first item corresponds to the nibbles in the
key not already accounted for by the accumulation of keys and branches traversed
from the root. The hex-prefix encoding method is used and the second parameter
to the function is required to be 1.

Extension: A two-item structure whose first item corresponds to a series of nibbles
of size greater than one that are shared by at least two distinct keys past the
accumulation of the keys of nibbles and the keys of branches as traversed from the
root. The hex-prefix encoding method is used and the second parameter to the function is
required to be 0.

https://ethereum.github.io/yellowpaper/paper.pdf

These would be 'empty` nodes which don't exist.

Code corrected:

The respective conditional branches for empty nodes have been removed.

 

6.5   Incorrect Break Condition in Lazy Decode
Correctness Medium Version 3 Code Corrected   

CS-HRDTCL-004

An RLP encoded list (with total length rlp_byte_len = p_len + len) consists of:

1. A prefix that reveals the list type and length of its content, whose length is denoted as p_len.

2. The actual content of the list, whose length is denoted as len.

rlp_decode_list_lazy() will decode only the corresponding indices of an RLP encoded list by
reading through the contents of the RLP encoded list and only slice its content if it is a target. However,
one of its break condition (check if it reaches the end of the RLP encoding) compares the current cursor
(current_input_index) with the partial len. As a result, rlp_decode_list_lazy() may return
with an error due to reading out of bounds even though it hasn't.

Code corrected:

The break condition has been corrected with rlp_byte_len.
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6.6   Keccak: Unsupported Empty Bytes Input
Breaks EVM Equivalence
Correctness Medium Version 1 Code Corrected   

CS-HRDTCL-003

fn keccak_cairo_words64(words: Words64) does not support empty bytes as input, hence is not
equivalent to the EVM's keccak256 opcode.

Version 2In : Empty bytes have been treated as a special hardcoded case, however the hash of empty
bytes returned is in big endian. For all other inputs, this function returns the hash calculated by
cairo_keccak(), which returns the hash in little endian representation.

Code corrected:

The function now returns the correct value for the empty input in little endian. The description of the
function has been enhanced to clarify the format of the return value / difference to the EVM opcode.

 

6.7   MMR Verify Proof: Different Nodes Can Use
the Same Index
Design Medium Version 1 Code Corrected   

CS-HRDTCL-010

In MMR verify_proof(), the user needs to submit:

• The index of the hash element to build a direction array, that determine the order (left or right) of
hash when reconstructing the merkle root.

• A hash of the to be verified node.

• A merkle proof array that reconstruct the root of a merkle trie that contains the node.

• MMR Peaks to check if the reconstructed root is one of the peaks.

After it has been ensured that the peaks are valid, the peak based on the given proof, index and hash is
calculated:

let peak = proof.compute_peak(index, hash);

However, the reconstruction ends if we have run out of the merkle proof elements regardless of the
direction array. As a result, one index of a node can also be used in the proof of another node in case the
shared part is the same.
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In the figure above, blue nodes denote the real MMR and the grey nodes are imaginary for building
direction array. Knowing that the elements of direction array is consumed in a reverse order, it is obvious
that (Poof B, Direction A) can also be used to verify against node 7.

Note this also enables the verification against an intermediate node instead of a leaf node. It may not be
a legitimate use case in practice, and external systems using this library should execute caution to avoid
this being abused.

Version 2The updated code of  ensures the provided proof has the correct length and compares the
computed peak of the element to the specific peak in the list of peaks. The list of peaks however is an
input to the function and hence may be manipulated. Although now very restricted, it's still possible to
verify against a forged peak as illustrated in the following example:

Code corrected:

Version 3In  verify_proof() has been strengthened: A check now ensures the number of peaks given
as input is correct given the last_pos of the current MMR. Since MMRs are deterministic, this together
with the validations of the peaks (peaks.valid()) ensures verify_proof() verifies against the
correct MMR without forged peaks.
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6.8   Missing Boundary Check in MPT Verification
Correctness Medium Version 1 Code Corrected   

CS-HRDTCL-009

Note: This issue was discovered by Herodotus.

When matching the input nibbles with the nibbles stored in an extension node or a leaf node (in
MPT.verify()), the nibbles stored in the nodes, represented as individually little endian and overall big
endian Words64, are read in a special order:

• Within one u64, bytes are loaded from right to left.

• Within one byte, nibbles are loaded from left to right.

• Once it finishes an u64, it will jump to the next u64.

However, the jump in step 3 does not check if it has reached the end of the Words64. Consequently,
MPT.verify() may revert on a valid proof due to reading out of bounds or overflow.

Code corrected:

Herodotus has updated the logic of the code to avoid reading out of bounds or overflow.

 

6.9   Words64TryIntoU256LE Does Not
Automatically Pad Input
Correctness Medium Version 1 Code Corrected   

CS-HRDTCL-008

Words64TryIntoU256LE implements try_into() to convert a overall big-endian and individually
little-endian Words64 (namely Span<u64>) into a little-endian u256. In case the input length is less than
4 u64, it will not automatically add leading zero padding upon conversion, and the result may be
incorrect. For example:

1. Assume the original big-endian u256 is 0x11aaaaaaaaaaaaff.

2. If its Words64 representation is an array [0xffaaaaaaaaaaaa11] with length 1.

3. As Words64TryIntoU256LE does not pad the input array, the result little-endian u256 will be
0xffaaaaaaaaaaaa11.

4. If one converts it back to big-endian, one will eventually get a much bigger value:
0x11aaaaaaaaaaaaff000000000000000000000000000000000000000000000000.

Code corrected:

Words64TryIntoU256LE has been removed and the following functions have been added to facilitate
the conversion between endianess with different bytes length:

fn as_u256_le(self: Words64, bytes_used: usize) -> Result<u256, felt252>;
fn as_u256_be(self: Words64, bytes_used: usize) -> Result<u256, felt252>;
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6.10   Bit_Length Will Revert if Input Most
Significant Bit Is 1
Correctness Low Version 1 Code Corrected   

CS-HRDTCL-006

bitwise::bit_length() computes the result by finding the first n that 2^n is larger than the input
number. Consequently, if the input number of type T has 1 on the most significant bit, and type T
implements overflow protections, bit_length() will revert due to 2^n overflows type T. For example,
to measure the bit length used for 128_u8, it will compute 2^8 in the last round and revert by overflowing
u8.

Code corrected:

The code has been corrected to measure the bit length by iteratively dividing the input by 2.

 

6.11   Right Shift Reverts on Bit Length Input
Design Low Version 1 Code Corrected   

CS-HRDTCL-007

bitwise::right_shift(num, shift) will divide the number by two to the power of shift (computed
by bitwise::pow()). pow() accepts the input of type T and returns the result in the same type T.
Consequently, right_shift() will revert in case shift >= bit_length(max(T)) and type T
implements overflow protection, since the return value of pow() overflows type T . For example, in case
the input number is of type u32, right_shift() will revert if shift==32 since 2^32>max(u32).

Code corrected:

Code has been changed to achieve right shift by dividing input number by 2 iteratively instead of
computing pow().

 

6.12   Fast Power May Improve Gas Efficiency
Informational Version 1 Code Corrected  

CS-HRDTCL-014

The current implementation of bitwise::pow() has a time complexity O(n). A fast power
implementation only requires O(log(n)) time complexity and may improve gas efficiency.

Code corrected:

A fast power (fast_pow()) implementation has been added. In addition, bitwise::pow() has been
changed to execute slow_pow() if the exponential is below 16, otherwise, it will execute fast_pow().

 

6.13   Order of Evaluation Can Be Enforced
Informational Version 1 Code Corrected  
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CS-HRDTCL-011

At the time of this review, there is no Starknet official documentation of the order of expressions
evaluation. In words64::Words64TryIntoU256LE, the execution order of the following code is not
guaranteed to be always from left to right. Explicit brackets can be used to enforce the order of
evaluation.

Code corrected:

Explicit brackets have been added in words64::Words64TryIntoU256LE to enforce the evaluation
order.

 

6.14   Unused Import
Informational Version 1 Code Corrected  

CS-HRDTCL-012

words64.cairo imports bitwise::right_shift, however, it is never used.

Code corrected:

The unused import has been removed.

 

6.15   Words64TryIntoU256LE Reverts in Case of
Empty Input
Informational Version 1 Code Corrected  

CS-HRDTCL-013

Words64TryIntoU256LE implements try_into() to convert a Words64 (namely Span<u64>) into a
u256. In case the input exceeds 256 bits, it will return an Option::None. Moreover, it does not accept
empty span as input, and will reverts in this case.

Version 2In , Words64TryIntoU256LE has been adjusted to return 0 in case the input is empty.

Code corrected:

Version 3In , two functions (as_u256_le and as_u256_be) facilitate the conversion between different
endianness for variable input length.
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7   Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1   Lazy Decode Returns Items With Ascending
Indices
Note Version 3 

rlp_decode_list_lazy(input: Words64, lazy: Span<usize>) will iterate the items in the
input (RLP encoded list) and append the item to the output array in case the current index is in the
required indices list (lazy). As a result:

• Duplicated indices in (lazy) will only be counted once.

• In the output array, the items will be in an ascending order according to their indices in the input
array, and irregardless of their positions in the input array (lazy).

 

7.2   Left Shift May Revert Due to Overflow
Note Version 1 

bitwise::left_shift() computes the result by multiplying the input of type T with two to the power
of shift. In case type T implements overflow protection for trait TMul, the result must also fits within type
T, otherwise it will revert due to overflow.

 

7.3   MPT Verify Can Not Get the Value in the Root
Branch Node
Note Version 1 

A branch node can store 16 hashes of the children nodes and one value. In case the root node is a
branch node, theoretically we should be able to retrieve the value stored inside. Whereas
mpt.verify() does not support this and would revert due to underflow when computing key_pow2.
Though this shouldn't be a practical use case in Ethereum.

 

7.4   Missing Length Information of Type Words64
Note Version 1 

A customized type Words64, as an alias of Span<u64>, is defined and heavily used across the library.
In most cases, it is used to store bytes, however, the length of bytes within each u64 is missing. As a
result, the leading valid zeros bytes in u64 is indistinguishable from padding in bytes_used_u64. This
has lead to various problems e.g. in keccak256 and MPT verification.

Within CairoLib and Herodotus on Starknet the project this library has been build for, length information
of data stored in Words64 is handled separately throughout the codebase. Other users of the library
must be aware and handle this correctly.
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7.5   RLP Decode Will Discard Garbage Bytes
Note Version 1 

rlp_decode() will only read and decode bytes according to the length that is encoded in the input
prefix. In case there are trailing garbage bytes, they will be discarded and rlp_decode() will not revert.

 

7.6   Reverse Endianness U64 Reverts if Significant
Bytes Are Larger Than 8
Note Version 1 

reverse_endianness_u64() will reverse the endianness of a u64 given the significant bytes the user
wants to reverse. There is no restrictions on the significant bytes, in case the significant bytes are larger
than 8, pow2() will return 0 in the last iteration of the loop and reverse_endianness_u64() will
revert due to division by zero.
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